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Abstract— For the optimization of advanced driver assis-
tance systems (ADAS) and the implementation of autonomous
driving, the perception of the vehicles environment and in
particular the maximum friction coefficient µmax is crucial.
Since µmax cannot be measured directly via existing serial
sensors, estimating this coefficient based on available sensors is
an area of research. In this paper, µmax estimation is presented
using transformer neural networks (TNN) based on the input
data measured by onboard vehicle sensors. The TNN is applied
to both a simulative dataset created with IPG CarMaker and
an experimental dataset recorded on a test track, each using
a sports utility vehicle (SUV) as the test vehicle. Both datasets
contain typical longitudinal and lateral driving maneuvers on
different road surfaces. On an independent test dataset, the
data-based TNN approach shows improved results in estimating
µmax compared to the model-based approach of an unscented
Kalman filter (UKF) and to two other data-based approaches
using recurrent artificial neural networks (RANNs) from pre-
vious works. In particular, the TNN responds faster and more
accurate to jumps of µmax, especially during lateral driving
maneuvers. Moreover, the TNN has both less parameters, and
training epochs compared to the RANN.

I. INTRODUCTION

Precise knowledge of vehicle dynamics is important for
enhancing the performance of advanced driver assistance
systems (ADAS) and will be essential for future autonomous
vehicles. Particularly the maximum friction coefficient µmax
has a significant influence on the vehicle’s stability and
maneuverability. Since µmax cannot be measured directly by
existing vehicle sensors in serial production cars, maximum
friction coefficient estimation is a challenging field in modern
automotive research [2].

Methods for estimating µmax can be divided into model-
based and data-based. Model-based approaches use a physi-
cal model of the vehicle dynamics, which can be integrated
into an estimation algorithm such as the Kalman filter [3]. In
particular, an unscented Kalman filter (UKF) achieves good
results, as shown in [4]–[6]. A more detailed overview about
model-based approaches is given in [2] and [3]. Both sources
indicate that the estimation accuracy is mainly limited by
the level of detail of the physical model. Furthermore, an
in-depth knowledge of the system is required for identifying
and developing the physical model. As a result, data-based
methods are becoming increasingly popular in applications
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such as vehicle state estimation, e.g. estimating the vehicles
sideslip angle [7], or the vehicles roll angle [8].

Data-based methods aim to map inputs to outputs without
a priori information [9]–[13]. Disadvantage of many of
these methods is the loss of physical interpretability and
the resulting susceptibility to errors due to overfitting to
the data and lack of extrapolation capabilities. In [9] two
feed-forward neural networks (FFNN) are used to estimate
µmax based on the trucks king pin forces in longitudinal
and lateral direction, tie rod forces, steering angle, and
suspension inclination angle. In another approach, a FFNN
with 12 inputs, the longitudinal and lateral acceleration, slip
rates, yaw rate, wheel speeds, and steering wheel angle,
and two hidden layers is used [10]. An RANN is applied
in [11] for µmax estimation on simulative data, based on 18
inputs, by combining long short-term memory (LSTM) cells
with deep ensembles. In difference to [10], here the inputs
are extended by the throttle position, steering wheel rate,
braking pressure, vehicle speed, vertical acceleration, and
engine torque. A convolutional neural network (CNN) for
friction potential estimation is presented in [13]. The CNN
is trained and tested on experimental data with good results,
even during low vehicle dynamic excitation. Contrary to the
data-based approaches presented in [9]–[11], [13], which all
use additional sensors as inputs, e.g. suspension inclination
angle, truck kingpin forces, slip rates, or sideslip angle,
in [12] only sensors that are available in serial production
vehicles are used to train an RANN, with the addition that
vehicle dynamic excitation monitoring is introduced.

Moreover, there are several hybrid approaches combining
a physical vehicle model and data-based methods [14]–[16]
for µmax estimation. On the one hand, hybrid approaches can
increase accuracy while maintaining physical interpretability.
On the other hand, high-level knowledge of the system to
find a physical model, as well as suitable combinations of
the physical model and data-based methods are still required.

Until now, RANNs based on gated recurrent units (GRUs)
have achieved the best results in estimating µmax in the ma-
jority of cases [5]. This was also the case for natural language
processing (NLP) until transformer neural networks (TNNs),
introduced by [1], were applied to this area [17]. In recent
years, TNNs have been successfully applied to other areas
such as computer vision, language generation, time-series
forecasting, and speech processing, in which they have
achieved state of the art performance [18]. In contrast to
RANNs, which are based on recurrence, TNNs rely on a
self-attention mechanism, relating different positions of a
single sequence in order to compute a representation of the
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sequence [1]. There are some examples of applying TNN to
time series data [18], but there are only few in which they are
used for state or parameter estimation. For instance, a TNN
for estimating the state of charge of lithium-ion batteries is
presented in [19]. In [20], a TNN for tool wear estimation
is presented. A self-attention based approach for remaining
useful life (RUL) estimation is given in [21]. Two other
examples are the estimation of pan evaporation rates in [22]
and the attitude estimation in smartphones based on inertial
sensors, presented in [23].

As indicated, TNNs have potential in the area of parameter
and state estimation, because self-attention allows for the
network inputs to interact with one another and be weighted
by their importance to the final estimate. Compared to
RANNs, this has the advantage that many time steps can
be processed simultaneously. Furthermore, transformers can
converge faster than traditional sequence models [17]. There-
fore we present a data-based algorithm for µmax estimation
based on a TNN, which is evaluated on both simulative as
well as experimental data. To the best of our knowledge, this
work is the first attempt to use transformer- or self-attention-
based neural networks in the context of vehicle dynamics.
This novel approach is then compared to other state-of-the-
art approaches for µmax estimation such as the UKF, and
two RANNs based on GRUs or LSTM cells, which have
been applied on the same datasets.

The paper is organized as follows: In section II, GRUs
and TNNs are presented and the network architecture is
proposed. The datasets, training procedures, and results for
the simulative data from IPG CarMaker are presented in
section III, and for the experimental data in section IV.
Moreover, the novel estimator is compared to other state
of the art µmax estimators from previous works. Finally, a
conclusion and outlook are given in section V.

II. NEURAL NETWORK MODELS

In this section, the multi-head attention based neural
network for estimating µmax is presented as shown in Fig. 1.
It mainly consists of transformer encoders and GRU layers,
which are explained in the following. Afterwards, the overall
architecture is presented.

A. Gated Recurrent Unit (GRU)

RANN have an additional feedback loop compared to
FFNN, which allows them to use information from previous
inputs to influence the current input. RANNs are therefore
able to predict time-varying sequential data by incorporating
causal relationships from the past. GRUs are a type of RANN
structure, based on the LSTM cell [24]. In comparison, they
are simpler in design, as they only use update and reset gates
instead of input, forget, and output gates [25]. Given the input
xt and previous output ht−1, the reset gate r t , update gate z t ,
candidate h̃t , and hidden state ht can be calculated by

r t = sigmoid(Wxr x t +Whr ht−1 +br), (1)

z t = σ(Wxz x t +Whz ht−1 +bz), (2)

h̃t
= tanh(Wxh̃ x t + r t ⊙ (Whh̃ ht−1)+bh̃), (3)

ht = (1− z t)⊙ h̃t
+ z t ⊙ht−1 (4)

with trainable input weights Wxr, Wxz, Wxh̃, recurrent
weights Whr, Whz, Whh̃, and biases br, bz, bh̃.

B. Transformer Encoder

The TNN is a novel type of neural network for pro-
cessing sequential data, originally introduced in the field of
NLP by [1], which can be applied to time series data as
shown in [19]. In contrast to LSTM or GRU networks, a
transformer lacks recurrence and can access all points of
time of a sequence in parallel by relying on a self-attention
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Fig. 1. Overall structure of the proposed transformer neural network model based on transformer encoders and GRUs, cf. [1].
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mechanism [18]. The original TNN consists of an encoder-
decoder structure. In this work an encoder-only structure is
implemented to make use of independent self-attention [26].

An encoder block, which is shown in Fig. 1, consists of
a multi-head self-attention module and a position-wise feed-
forward network with a residual connection around each of
the two sub-layers, followed by layer normalization [1]. The
input data from k sensors and a time window length T is
defined as nT = (t1, t2, . . . tT )T with each vector ti of dim k.
First, three matrices, queries Q, keys K, and values V are
generated in the encoder as follows:

Q = nT Wq
s , K = nT Wk

s , V = nT Wv
s , (5)

where Wq
s , Wk

s , Wv
s are the trainable matrices. Using Q,

K, and V, scaled dot-product attention is then applied to
determine which elements should be given more attention:

Attention(Q,K,V) = softmax
(QKT
√

dk

)
V (6)

where dk is the dimension of the keys and queries. Several
scaled dot-product attentions are applied in parallel and then
linked using multi-head attention to get one output. The
multi-head attention is represented as follows:

MultiHead(Q,K,V) = Concat(head1, . . . ,headh)WO,

with headi = Attention(QWQ
i ,KWK

i ,V
V
i )

(7)

where h describes the number of attention heads. Every head
is using the scaled dot-product attention, but the weights
calculated during training are different, so the multi-head
attention summarizes the results of multiple attention mech-
anisms with different perspectives. Further details can be
found in [1].

C. Proposed Neural Network Structure

An overview of the proposed network can be seen in
Fig. 1. Several architectures have been tried, including
FFNN or LSTM output layers instead of GRU or the
multi-dimensional approach from [21], with this architecture
showing the best results. The input nT ∈ R(k×T ) of the
model is time series data from k onboard vehicle sensors.
First, the inputs are fed into a linear layer, which converts
the k sensor dimensions into dmodel dimensions, since the
number of inputs for the transformer must be divisible by
the number of attention heads. The encoder block weights
the time steps according to their relevance using the attention
mechanism, while the dimensions remain the same. After-
ward, the weighted data is passed into a multi-layer GRU and
then broken down to the output oT ∈R(1×T ) using two dense
layers, representing the predicted µmax for T time steps.
The network is designed for a sequence length T = 100,
which corresponds to 1s using a sampling frequency of
100Hz. For vehicle dynamics, past causal relationships of
µmax are not to be expected above this time interval. Thus,
from the input nT , a sequence of 100 values is estimated,
of which only the last 10, representing 0.1s, are used. This
is done to get a recurrent system, allowing the network to
include information from the last 90 time steps for the current

estimation. The implementation of all algorithms has been
carried out with PyTorch 1.11 in Python 3.8.10.

III. RESULTS ON THE SIMULATIVE DATASET

The simulative dataset is based on a front-wheel drive
Dacia Duster modeled in IPG CarMaker, which is identical
to the vehicle used in section IV. The dataset was simulated
as part of a former contribution [5]. In this chapter, first, the
simulative dataset is presented, then the training process is
explained and finally, the results are discussed.

A. Dataset

For the simulative dataset, independent training, valida-
tion, and test data were simulated in IPG CarMaker for
various driving maneuvers on different road surfaces. The
sensors measure the steering angle δ , steering torque Ms,
braking pressure pb,i, wheel speeds ω t,i with i = 1, . . . ,4 in-
dexing each of the four wheels, the longitudinal ax, lateral ay,
and vertical az acceleration as well as roll κ̇ , pitch ϕ̇ , and
yaw rate ψ̇ . Furthermore the height of the wheels in relation
to the vehicle body zH,i is measured. Moreover, the engine
torque Me and gear ratio ig are calculated to the overall
driving torque Md. In summary, inputs x and output y of
the simulative dataset can be expressed as

x = [Md, pb,i,δ ,Ms,ax,ay,az, κ̇, ϕ̇, ψ̇,ω t,i,zH,i]
T, (8)

y = µmax (9)

assuming identical µmax in longitudinal and lateral direction
for all four wheels. Gaussian white noise was added to the
inputs to account for measurement noise as shown in [5]. As
the data in real vehicles are available on the controller area
network (CAN) bus with a frequency of 100Hz, this is also
implemented for the simulated data.

Since µmax is only observable during vehicle dynamic
excitation [2], maneuvers with longitudinal and lateral ex-
citation were simulated with a varying µmax from 0.2 (icy
road) to 1.0 (dry concrete). For training, a total of 4834
longitudinal maneuvers were simulated including

• accelerations with different trapezoidal engine torques,
varying initial velocities, and acceleration durations,

• braking maneuvers with trapezoidal braking pressure for
varying initial velocities, braking times, and pressures,

• acceleration and braking from different start to end
velocities using the IPG driver in three different modes
(defensive, normal, aggressive) on µ jump roads,

and 4048 lateral maneuvers including

• sine steering with varying amplitudes and frequencies,
• slalom with different cone spacings,
• lane changes with varying lateral offsets, and
• left or right turns from different start to end velocities.

Overall, 8882 driving maneuvers were used for training and
an additional 20 for validation. A further 961 maneuvers
were used for final testing and comparison with model-based
approach from [12] and data-based approaches from [5].
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B. Training

In this section, the procedure for training the TNN on
the simulated dataset is presented. Adaptive Moment Esti-
mation (ADAM), as presented by [27], is used for gradient
descent optimization of the TNN weights. The loss func-
tion that is minimized during training is the mean square
error (MSE) between each actual y ∈R1×T and estimated ŷ
value for µmax.

MSE =
1
T

T

∑
i=1

(yi − ŷi)
2 (10)

Before the driving maneuvers were given into the TNN,
each was divided into sequences of T = 100 time steps using
a rolling window approach with a subsequent step size of
10 to provide continuous µmax estimation. As a result, the
input tensor of each driving maneuver is extended by one
batch dimension b. For example, a driving maneuver with
2000 time steps would be extended from a dimension of
2000× k to 191×T × k, corresponding to b = 191 batches
of the input nT . Each driving maneuver is used for training
the network separately. The inputs are min-max normalized
to a range from −1 to 1, scaled by training data.

For hyperparameter optimization, the asynchronous suc-
cessive halving algorithm (ASHA) is used [28], optimiz-
ing the number of multi-head attention models, number
of encoder layers, number of expected features in the en-
coder (dmodel), dimensions of the FFNN in the encoder,
sequence length, number of GRU layers, hidden size of GRU
layers, learning rate, and dropout rate. For the simulated
dataset, a network architecture without GRU layers using
only linear layers after the transformer encoder performed
best after training for 32 epochs with the parameters shown
in Table I. The hyperparameter optimization was performed
on four Nvidia Quadro RTX 6000. The individual trials of hy-
perparameter optimization are shown in a parallel coordinate
plot in Fig. 2. Each of the lines represents a configuration
colored based on its MSE loss over the validation dataset.

C. Results

In this section, the results of the µmax estimation for the
simulative data using the TNN are presented and compared
to the results of a UKF, presented in [12] and two RANNs
based on LSTM cells and GRUs, presented in [5].

TABLE I
HYPERPARAMETERS OPTIMIZED BASED ON VALIDATION DATA.

Element Hyperparameter Simulative Experimental

Encoder Encoder layer 3 4
Number of heads 4 4
Dim model 96 64
Dim feedforward 128 192

GRU GRU layer / 2
Hidden size / 100

Training Dropout rate 0.072 0.18
Learning rate 3.4e−4 2.1e−4

Fig. 4 displays the estimation results of the UKF, LSTM
net, GRU net, and TNN on 508 driving maneuvers with
longitudinal and 453 maneuvers with lateral excitation.
Both the unreduced MSE, which was also used as a loss
function during training, and the unreduced mean absolute
error (MAE) are shown in the boxplot. Unreduced means
that the loss functions were calculated individually for each
time step, and then concatenated into one long array. Since
no validation dataset has been used in [5] or [12] to date in
the collection of UKF, LSTM net, and GRU net results, a
TNN (a) is shown, in which the hyperparameters are selected
according to the test dataset for better comparability. For
TNN (b) a validation dataset is used for choosing the best
trial following best practice [29].

In all cases, the model-based approach of the UKF has
the highest median MSE and MAE. On the maneuvers with
longitudinal excitation, the GRU network performs best with
an MSE of 0.0013 and an MAE of 0.036, compared to the
TNN (b) with an MSE of 0.013, and an MAE of 0.011.
In contrast, on lateral maneuvers, both the TNN (a) and (b)
perform best with an MSE of 0.027, and an MAE of 0.16,
followed by the RANN based GRUs with an MSE of 0.049
and an MAE of 0.22.

Fig. 3 shows the results of different µmax estimations
approaches for (a) a longitudinal driving maneuver, and (b)
a lateral driving maneuver. The two upper diagrams plot
the longitudinal and lateral slip as well as the longitudinal
and lateral acceleration. Longitudinal slip is expressed as
the ratio of the difference between the wheels velocity and
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over a simulative dataset with 508 longitudinal and 453 lateral maneuvers
based on the unreduced MSE and MAE.

the vehicles speed to the speed of the vehicle. Lateral slip
refers to the angle between the direction the tire is moving
in and the direction it is pointing. Finally, the third diagram
shows the estimated values for µmax using the UKF, LSTM
net, GRU net, and TNN compared to the simulated values.
The behavior of the TNN on the selected maneuvers can
also be observed on other samples of the test dataset and is
representative for the dataset.

For longitudinal maneuvers the RANN approaches and
the TNN are good at estimating low friction values during
sufficient excitation. Moreover, due to their recursion, the
LSTM and GRU networks can estimate a previous friction
value continuously for a certain time, e.g., from 20s to 24s,
even without excitation, resulting in less abrupt estimations.
The TNN, however, has no recurrence and can only include
information of the last 90 time steps in the current estimation,
causing difficulties during these situations.

The lateral driving maneuver displayed in Fig. 3 (b) shows
a slalom drive on a surface with a constant value for µmax.
It can be seen that the estimation accuracy depends on the
excitation, represented by slip and acceleration. Notably,
TNN provides the best estimation accuracy with an offset
compared to the RANN approaches.

IV. RESULTS ON THE EXPERIMENTAL DATASET

The experimental dataset was recorded in the context of
the work shown in [6] during test drives carried out with a
Dacia Duster (Fig. 5, at the ZF WABCO track in Jeversen,
Germany. In this chapter, first, the experimental dataset is
presented, then the training process is explained, and finally,
the results are discussed.

A. Dataset

The test vehicle features an internal combustion engine on
the front and an electric motor on the rear axle. Only sensors
already installed in production vehicles or under development
are used, so the inputs are identical to the simulated dataset
with few exceptions. The vehicle is equipped with individual

−0.1

0.0

0.1

0.2

sl
ip

long. slip lat. slip −0.04

−0.02

0.00

0.02

0.04

−4

0

a
in

m
/s

2

ax ay −4

−2

0

2

4

0 5 10 15 20

time in s

0.0

0.4

0.8

1.2

µ
m
a
x

(a) longitudinal driving maneuver

µmax (simulation) µmax (UKF) µmax (LSTM) µmax (GRU)

0 5 10 15 20

time in s

0.0

0.4

0.8

1.2

(b) lateral driving maneuver
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ECO+ inertial platform as a reference sensor system. Measurements of the
6D-IMU, strain gauges, and potentiometers as well as CAN bus data are
logged with an imc CRONOSflex data acqusition system.

wheel speed sensors, a six degrees of freedom inertial
measurement unit (6D-IMU), four potentiometer as height
level sensors (HLS), and strain gauges on the tie rods. A
low-cost version of the tie rod force sensors is currently
under development as shown in [12]. These measure the
local strain, which is calculated to the tie rod forces FTR,i.
Moreover, the engine torques of the front Me,f and rear
axle Me,f, as well as the gear ratio ig are available via
the CAN bus, which are converted to the driving torque
of the front Md,f = ig,f Me,f and rear axle Md,r = ig,r Me,r. In
summary, inputs x and output y are expressed by

x = [Md,f,Md,r, pb,δ ,ax,ay,az, κ̇, ϕ̇, ψ̇, . . .

ω t,i,zH,i,FTR,1,FTR,2]
T,

(11)

y = µmax (12)

with all measurements recorded at a sample rate of 100Hz.
The ZF WABCO test track shown in Fig. 6 provides road

surfaces with different friction coefficients, ranging from
low µmax values, e.g. wet steel, to high µmax values, e.g.
dry concrete. As µmax cannot be measured directly with
common sensors, reference values were identified under the
assumption that it is constant over the entire road surface for
all four wheels. 27 brake maneuvers with anti-lock braking
system (ABS) interventions have been executed on each
road surface of the test track and an optimization algorithm
has been used to identify the reference values for µmax by
minimizing the error between the estimated and measured

wet steel
µmax,ref = 0.19
wet concrete
µmax,ref = 0.72

dry concrete
µmax,ref = 1.02

dry tarmac
µmax,ref = 0.93

wet cobblestone
µmax,ref = 0.37

irrigated road surfaces

Fig. 6. ZF WABCO test track in Jeversen, Germany with the reference
maximum friction coefficients µmax,ref for all five road surfaces [12].

longitudinal acceleration ax. Particle swarm optimization in
combination with sequential quadratic programming is used
as an optimization algorithm. The identification process is
carried out 100 times for each surface to ensure convergence
and the mean identified values over all iterations are used
as ground truth. The determined reference values for µmax,
which are subsequently used, are shown in Fig. 6, mapped
on the test track, similar to [6].

For the dataset, a total of 603 driving maneuvers were
conducted on the test track at speeds ranging from 0m/s
to 22m/s with defensive and aggressive driving behavior.
The dataset is similar to the simulative dataset and includes
370 longitudinal maneuvers as well as 233 lateral driving
maneuvers. Further details on the experimental dataset can
be found in [6]. All maneuvers are divided into 509 training,
20 validation, and 74 test maneuvers. The same split has been
used for the UKF and RANN results from [6].

B. Training

The training on the experimental dataset is identical to
that described in III-B and the optimized hyperparameters
are shown in Table I. However, the TNN was trained for 233
epochs instead of 32, mainly due to the size of the datasets.
In comparison, the RANNs based on LSTM cells and GRUs
presented in [5] were trained for 1000 epochs.

C. Results

In this section the µmax estimation results on the ex-
perimental dataset using TNN are presented and compared
to the results of a UKF, presented in [12], and RANN
based on LSTM cells and GRU, presented in [6]. Fig. 8
displays the estimation results on the UKF, LSTM net, GRU
net, and TNN on 45 driving maneuvers with longitudinal
excitation, and 29 maneuvers with lateral excitation based
on the unreduced MSE and MAE.

Similar to the simulated dataset, the model-based approach
of a UKF shows the highest median MSE and MAE. Based
on the median, the TNN performs best in all cases with a
longitudinal MSE of 1,5e−4, and a lateral MSE of 1,7e−4,
compared to the GRU net with 6,8e−3 and 5,7e−3.
Noteworthy is that despite the recognizably better median,
the TNN still has larger longitudinal maneuver outliers than
the GRU net, which can be seen in the upper whisker. In
addition, it should be noted that all methods achieve better
results on the lateral maneuvers than on the longitudinal
ones, probably due to the higher absolute accelerations.

Fig. 7 shows the results of different µmax estimations for
(a) a longitudinal, and (b) a lateral driving maneuver. The
two upper diagrams show the x and y position of the vehicle
on the test track, as well as the longitudinal ax and lateral ay
acceleration. Finally, the third diagram shows the estimated
values for µmax using the UKF, LSTM net, GRU net, and
TNN compared to the identified reference values.

In the longitudinal driving maneuver, it can be seen that
the TNN is able to respond faster to µmax jumps as soon
as it receives an excitation, which is the case, e.g., at about
50m, or 160m. However, this also means that in situations
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with longitudinal excitation on changing road surfaces, and (b) a lateral maneuver with changing road surfaces.
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Fig. 8. Comparison of the UKF [12], LSTM net [6], GRU net [6], and TNN
for µmax estimation over an experimental test data with 45 longitudinal and
29 lateral driving maneuvers based on the non-reduced MSE and MAE. All
driving maneuvers have sufficient driving dynamic excitation ax > 2m/s.

without sufficient excitation, larger outliers in the estimates
may occur due to the higher sensitivity, such as at about 80m.
The RANN approaches presented in [6] do not show this
problem, since they can continue to estimate the preceding
value when there is insufficient excitation over a period of
time through recurrence. Overall, the TNN provides the best
estimation results for the longitudinal driving maneuver.

During the lateral driving maneuver, it is also the case that
the TNN reacts fastest to µmax jumps with some outliers
at 40m and 180m. It should be noted that for a short
period of time at each lane change there will be a mu-split
situation which is not reflected in the identified reference
value. As a result, friction value jumps may be detected
slightly earlier or later. Again, the TNN provides the best,
and fastest estimations overall and is particularly accurate in
estimating low friction values. In practice, this can help to
detect sudden black ice quickly so that ADAS can intervene
as soon as possible.

V. CONCLUSIONS AND FUTURE WORK

In this paper, neural maximum friction coefficient µmax
estimation based on onboard vehicle sensors is presented
using a transformer neural network (TNN). Compared to
state of the art approaches from previous works such as
a model-based unscented Kalman filter (UKF), or recurrent
artificial neural networks (RANN) based on LSTM cells, or
GRUs, the TNN achieved improvements on the simulated
dataset for lateral, and on the experimental dataset for both
lateral and longitudinal driving maneuvers. In particular, the
TNN responds faster and better to changes in µmax, although
it has fewer parameters and requires fewer training epochs
compared to the RANN. Due to the high sensitivity and lack
of recurrence, this also means that the TNN can sometimes
have larger outliers compared to the other approaches, espe-
cially during low vehicle dynamic excitation.

For this reason, and given that the TNN is a black box
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model, combining a TNN with excitation monitoring should
be considered in the future. In terms of practical application,
it should be considered that overestimating µmax can have
serious consequences. In addition, the behavior of the neural
network in case of sensor failure should be tested. Also,
the computation times of the TNN in prediction should be
compared with other approaches and investigated for real-
time capability. In addition, a recurrent transformer structure
using the encoder-decoder architecture of [1] could be inves-
tigated. In order to avoid overfitting, additional independent
experimental test data should be collected on a different test
track not included in the training data. Furthermore, other test
vehicles, and additional variations such as incline or cross
slope maneuvers should be included.
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