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Abstract— As a significant part of system modeling and control,
parameter identification of continuous and discrete-time systems
has been extensively studied in the past decades. However, most
existing parameter identifiers cannot guarantee exponential pa-
rameter convergence without a strict condition termed persistent
excitation (PE). This paper presents a composite learning-based
parameter estimator for discrete-time nonlinear systems with
linear-in-the-parameters uncertainties. A generalized prediction
error based on regressor extension with online data memory
is incorporated into the normal prediction error to accelerate
parameter estimation. The storage and forgetting of online data
are determined by only active regressor channels, which removes
the restriction that all regressor channels need to be activated
simultaneously for parameter estimation. Exponential parameter
convergence under the proposed estimator is achieved under an
interval excitation (IE) or even partial IE condition that is strictly
weaker than the PE condition. Simulation results have verified the
effectiveness and superiority of the proposed estimator compared
with state-of-the-art estimators.

I. INTRODUCTION

Parameter identification refers to determining the parameters
in the mathematical model of a system by observing input and
output signals [1]. As a significant part of system modeling and
control, parameter identification of continuous and discrete-
time systems has been widely studied in the past decades, with
recent survey papers in [2]–[8]. Despite the rich experience and
progress gained in this field, several open issues still remain,
especially those related to improving parameter convergence
performance. In general, parameter convergence cannot be en-
sured without a stringent condition termed persistent excitation
(PE), which implies that input signals must contain sufficiently
rich spectral information to excite system models relevant to
identified parameters [9]. In fact, the input signals may lead to
undesired phenomena, such as exciting unmodeled dynamics
that can destroy system performance or even stability [10].

Modern control systems are usually implemented through
digital computing units, such that system inputs and outputs
are discretely processed. Estimation and control based on
discrete-time frameworks are beneficial for understanding the
design and implementation of digital control systems, thereby
improving system performance, reliability, and efficiency [11].
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Adaptive parameter estimation for discrete-time linear time-
invariant systems under relaxed excitation conditions has been
considered primarily based on dynamic regressor extension and
mixing (DREM) [12]–[16] and memory regressor extension
(MRE) [17]. In [12]–[14], some DREM parameter estimators
were presented to ensure asymptotic parameter convergence
under a non-square integrability condition. In [15], a linear
regression equation with a regressor under PE was constructed
based on DREM, while the original regressor only needs to sat-
isfy a weaker condition named interval excitation (IE) to obtain
exponential parameter convergence. Parameter convergence in
finite time based on DREM under IE was achieved in [16], but
it is valid only when specific initial conditions are imposed on
the estimator. In [17], a parameter estimator based on MRE
was introduced to achieve asymptotic parameter convergence
under a weaker non-Lebesgue integrable condition. Nonlinear
systems can more accurately describe real-world plants in
which the changes of unknown parameters affect the dynamic
behavior in a nonlinear manner. There are only a few results
on parameter estimation for discrete-time nonlinear systems
without the PE condition [18], [19]. In [18], a DREM-based
estimator for nonlinearly parameterized systems was developed
to achieve asymptotic parameter convergence under the non-
square integrability condition. In [19], a DREM-based least-
squares (LS) parameter estimator for the same system as in [18]
was designed to guarantee exponential parameter convergence
under the IE condition, where a stringent global Lipschitz
condition is imposed on nonlinear terms.

Composite learning is an emerging methodology for adap-
tive estimation and control to ensure exponential parameter
convergence without the PE condition [20]–[22] and has been
applied to many real-world robotic systems [8]. In composite
learning, a generalized prediction error is constructed utilizing
regressor extension with online data memory and is incor-
porated as extra feedback for parameter estimation such that
exponential parameter convergence is guaranteed under IE [23].
A major limitation of existing composite learning methods is
that the storing and forgetting of online data are determined
by the minimum singular value of an excitation matrix, which
means that all channels of the regressor need to be activated
simultaneously at a certain moment. A natural idea is whether
it is possible to forget the information of inactive channels
while ensuring partial parameter convergence. In addition,
composite learning is expected to be established in a discrete-
time framework for more convenient implementation.

Motivated by the above discussions, we propose a compos-
ite learning parameter estimator for discrete-time nonlinear
systems with linear-in-the-parameters (LIP) uncertainties to
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achieve exponential parameter convergence without the PE
condition. Compared with existing parameter estimators for
discrete-time systems, the proposed estimator includes several
advantages: 1) The normal prediction error is incorporated to
accelerate parameter estimation; 2) the storage and forgetting
of online data are determined by only active regressor channels,
removing the restriction that all regressor channels must be
activated simultaneously for parameter estimation; 3) expo-
nential parameter convergence is achieved under IE or even
partial IE. It is worth noting that this article provides the first
composite learning scheme in the discrete-time framework,
which does not simply discretize its continuous version.

Notation: R, R+, Rn, and RN×n denote the spaces of real
numbers, positive real numbers, real n-dimensional vectors,
and real N × n-dimensional matrices, respectively, N denotes
the set of positive integers, ∥x∥ is the Euclidean norm of x, I is
an identity matrix, Ωr := {x|∥x∥ ≤ r} denotes a ball of radius
r ∈ R+, L∞ denotes the space of bounded signals, σmin(A)
is the minimum singular value of A, and argmaxk∈S f(k) :=
{k ∈ S|f(i) ≤ f(k), ∀i ∈ S} with f : N 7→ R and S ⊂ N,
where N,n ∈ N, A ∈ Rn×n, and x ∈ Rn.

II. PROBLEM FORMULATION

Consider a class of discrete-time nonlinear systems with LIP
uncertainties as follows [24]1:

x(k + 1) = f(x(k),u(k)) + ΦT (x(k),u(k))θ (1)

where x(k) ∈ Rn is a system state, u(k) ∈ Rm is a control
input, f(x(k),u(k)) : Rn×Rm 7→ Rn is a known vector field,
Φ(x(k),u(k)) : Rn × Rm 7→ RN×n is a known nonlinear
regressor, θ ∈ Ωcθ ⊂ RN is an unknown parameter vector, cθ
∈ R+ is a certain constant, and N ∈ N denotes the number
of unknown parameters. For convenience, f(x(k),u(k)) and
Φ(x(k),u(k)) are abbreviated as f(k) and Φ(k), respectively.
Two definitions are given for theoretical analysis [25].

Definition 1: A bounded signal Φ(k) ∈ RN×n is of PE if
∃kd, σ ∈ R+ such that

∑k
τ=k−kd

Φ(τ)ΦT (τ) ≥ σI, ∀k ≥ 0.

Definition 2: A bounded signal Φ(k) ∈ RN×n is of IE if
∃kd, σ, ka ∈ R+ such that

∑ka

τ=ka−kd
Φ(τ)ΦT (τ) ≥ σI.

Definition 3: A bounded signal Φ(k) ∈ RN×n is of partial
IE if ∃kd, σ, kb ∈ R+ such that

∑kb

τ=kb−kd
Φν(τ)Φ

T
ν (τ) ≥

σI, where Φν ∈ Rq×n is a sub-regressor composed of some
row vectors of Φ(k) with 1 ≤ q < N .

A row vector ϕj(k) ∈ Rn(j = 1, · · · , N) of a regressor
Φ(k) ∈ RN×n is named an active channel if ∥ϕj(k)∥ ≠ 0
for the current moment k; otherwise it is an inactive channel2.
So, Φν(k) in Definition 3 is composed of all active channels,
which means that Φν(k) is of IE and Φ(k) is of partial IE.

Let θ̂ ∈ RN be an estimate of the unknown parameter vector
θ, and θ̃(k) = θ− θ̂(k) ∈ RN be a parameter estimation error.
To avoid using x(k+1) in parameter estimation and enhancing
robustness against noises, we apply a discrete-time stable filter

1The LIP system (1) has nonlinearities in Φ(x(k),u(k)) so that many
results on linear systems cannot be directly applied to (1), and f(x(k),u(k))
and Φ(x(k),u(k)) are bounded and continuous in their arguments.

2All row vectors ϕj(k) ∈ Rn(j = 1, · · · , N) are linearly independent.

L(z):= α1

1−α2z−1 with α1, α2 ∈ R+ to (1), which results in a
filtered linear parameterized model

χf(k) = ΦT
f (k)θ (2)

with χf(k) := L(z)[x(k)] − z−1L(z)[f(k)] and Φf(k) :=
z−1L(z)[Φ(k)]. A state prediction model is given by

χ̂f(k) = ΦT
f (k)θ̂(k)

where χ̂f(k) ∈ Rn denotes an estimate of χf(k). Define a
filtered state prediction error

εf(k) := χf(k)− ΦT
f (k)θ̂(k) (3)

and design a standard gradient-based estimator

θ̂(k + 1) = θ̂(k) + γM−1
f (k)Φf(k)εf(k)

in which Mf(k) := I + γΦf(k)Φ
T
f (k) ∈ RN×N is a matrix

normalization gain, and γ ∈ R+ is a learning rate. Then, the
parameter error dynamics can be represented by

θ̃(k + 1) = θ̃(k)− γM−1
f (k)Φf(k)Φ

T
f (k)θ̃(k)

which implies that the normal prediction error εf(k) in (3)
converges to 0 asymptotically [25, Sec. 3.6.2]. However, the ex-
ponential convergence of θ̃(k) depends on PE, which requires
that the system state x(k) in (1) includes considerably rich
spectral information all the time. This article aims to design
a parameter estimation scheme to achieve the exponential
convergence of θ̃(k) under IE or even partial IE.

Remark 1: Three different excitation conditions are given
in Definitions 1-3, respectively. The PE condition in Definition
1 is quite strict as it requires the excitation strength to be greater
than σ all the time. The IE condition in Definition 2 weakens
the PE condition as it only requires the excitation strength to
satisfy the condition at a certain moment ka, which may be
satisfied during transient processes [20]–[22]. However, the PE
or IE condition requires all channels ϕj(k)(j = 1, · · · , N) to
be activated simultaneously for all k ≥ 0 and a certain time
ka, respectively, which is difficult to satisfy in most practical
scenarios. The partial IE condition in Definition 3 ignores all
inactive channels such that it is satisfied at the beginning and
some certain moments later owing to x(0) ̸= 0 and x(k) ̸=
0,∃k > 0 in general, i.e., it is impossible for all channels
ϕj(k) ≡ 0 (j = 1, · · · , N),∀k ≥ 0.

III. COMPOSITE LEARNING PARAMETER ESTIMATION

This section aims to design a composite learning parameter
estimator for the system (1) to ensure exponential convergence
of the parameter estimation error θ̃(k) under IE or partial IE.
First, define an excitation matrix

Q(k) :=

k∑
τ=k−kd

Φf(τ)Φ
T
f (τ). (4)

Multiplying each side of (2) by Φf(k) and applying (4), one
gets a generalized regression model

ψ(k) = Q(k)θ
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with ψ(k) :=
∑k

τ=k−kd
Φf(τ)χf(τ). It is assumed that there

exist ka, σ ∈ R+ to make the IE condition hold. Define a
generalized prediction error

ξ(k) :=

{
ψ(keν)−Q(keν)θ̂(k), k < ka

ψ(ke)−Q(ke)θ̂(k), k ≥ ka
(5)

with
ke := argmaxτ∈[ka,k]σmin(Q(τ)),

keν := argmaxτ∈[0,k]σmin(Qν(τ))

in which Qν(k):=
∑k

τ=k−kd
Φfν(τ)Φ

T
fν(τ) with ΦT

fν(k) being
a sub-regressor composed of some columns ϕfti(k) of ΦT

f (k)
that satisfies ∥ϕfti(k)∥ ̸= 0 for the current moment k, i.e.,
ΦT

fν(k)=[ϕft1 ,ϕft2 , · · · ,ϕftNν
] with 1≤ ti≤N and i = 1 to

Nν < N . The current maximal exciting strength is

σc(k) :=

{
σmin(Qν(keν)), k < ka

σmin(Q(ke)), k ≥ ka.
(6)

The composite learning estimator that integrates the normal
prediction error εf(k) in (3) and the generalized prediction
error ξ(k) in (5) is designed as follows:

θ̂(k+1)= θ̂(k)+
γ

2

[
M−1

f (k)Φf(k)εf(k)+M
−1(k)ξ(k)

]
(7)

in which

M(k) :=

{
I + γQ(keν), k < ka

I + γQ(ke), k ≥ ka

is a matrix normalization gain. Let θ̂ν(k) ∈ RNν denote a
part of θ̂(k) regarding the sub-regressor Φfν(k), and θ̃ν(k) ∈
RNν denote the corresponding parameter estimation error. The
following theorem shows our main results.

Theorem 1: Let [0, kf) with kf ∈ R+ denote the maximal
iteration set of the existence of solutions of the system (1). For
any given θ̂(0) ∈ Ωcθ and γ ∈ R+, the composite learning
update law of θ̂(k) in (7) guarantees that:

1) θ̂(k) and εf(k) are of L∞, ∀k ≤ kf ;
2) θ̃(k) → 0 exponentially at k ≥ ka as k → ∞, if the

IE condition Q(ka) ≥ σI in Definition 2 is satisfied for
certain constants ka, σ ∈ R+;

3) θ̃ν(k) → 0 exponentially at k ≥ kb as k → ∞, if the
partial IE condition Qν(kb) ≥ σI in Definition 3 holds
for certain constants kb, σ ∈ R+.

Proof: The proof is given in the Appendix.
Remark 2: It follows from Theorem 1 that the proposed

parameter estimator (7) ensures exponential parameter con-
vergence under the strictly weaker IE or partial IE condition,
which endows robustness against external disturbances and
measurement noise, where the rigorous proof can be referred
to [9]. Increasing the learning rate γ in (7) can accelerate
parameter convergence but may also potentially increase the
sampling frequency required and noise sensitivity.

Remark 3: Compared with the MRE estimator in [17], the
proposed parameter estimator (7) has the following character-
istics: 1) The normal prediction error εf(k) in (3) is involved
additionally to enhance parameter convergence, while the MRE
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Fig. 1. Parameter estimates θ̂ by three estimators under the PE condition.

Fig. 2. Performance comparisons of three estimators under the PE condition.
(a) The estimation error norms ∥θ̃∥. (b) The exciting strengths σc. (c) The
estimation error norms ∥θ̃∥ in logarithm.

estimator only uses a generalized prediction error to estimate
unknown parameters; 2) the exciting strength σc(k) in (6)
is monotonically non-decreasing, attributing to the storage
and forgetting of online data, which is beneficial to improve
the rate of parameter convergence; 3) exponential parameter
convergence can be achieved under IE or partial IE instead of
PE for the MRE estimator.

IV. SIMULATION VALIDATION

Consider a Van der Pol oscillator modeled in the discrete-
time form as follows [26]:{

x1(k + 1) = x1(k) + Tsx2(k),
x2(k + 1) = x2(k) + Tsφ

T (k)θ
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Fig. 3. Parameter estimates θ̂ by three estimators under the IE condition.
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Fig. 4. Performance comparisons of three estimators under the IE condition.
(a) The estimation error norms ∥θ̃∥. (b) The exciting strengths σc. (c) The
estimation error norms ∥θ̃∥ in logarithm.

with φ(k) = [−x1(k), x2(k),−x2
1(k)x2(k)]

T and Ts ∈ R+

being a sampling time. We get x(k) = [x1(k), x2(k)]
T ,

f(k) = [x1(k) + Tsx2(k), x2(k)]
T , and Φ(k) = [0, Tsφ(k)].

For simulations, set θ̂(0) = 0, Ts = 0.01, α1 = 5, and α2 =
e−5Ts . Gaussian white noise with 0 mean and 0.0002 standard
deviation is added to the measurement of x(k). The classical
LS estimator in [27] and the MRE estimator in [17] are selected
as baselines of the proposed composite learning (CL) estimator,
where the shared parameters of the three estimators are set to
be the same values for fair comparisons.

Case 1: Under PE. Consider the case of PE with x(0) =
[1, 0]T , θ = [1, 1, 1]T , and γ = 20. Performance comparisons
of the three estimators are shown in Figs. 1-2. The estimation
error θ̃ by the CL estimator converges to 0 after running about

-1

0

1

by CL-Estimator

-1

0

1

by LS-Estimator

0 500 1000 1500 2000

-1

0

1

by MRE-Estimator

Fig. 5. Parameter estimates θ̂ by three estimators under partial IE.
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Fig. 6. Performance comparisons of three estimators under partial IE. (a) The
norms of the partial estimation error θ̃ν . (b) The exciting strengths σc. (c) The
estimation error norms ∥θ̃∥ in logarithm.

100 iterations [see Fig. 2(a)], and the exciting strength σc in
(6) keeps at a high level throughout [see Fig. 2(b)]. The LS
and MRE estimators converge slower than the CL estimator
[see Figs. 2(a) and (c)], although they also achieve exponential
convergence due to the presence of PE [see Fig. 1].

Case 2: Under IE. Consider the case of IE with x(0) =
[1, 0]T , θ = [0.5,−1, 1]T , and γ = 20. Performance com-
parisons of the three estimators are shown in Figs. 3-4. The
LS and MRE estimators perform much worse under IE [see
Fig. 4(a)], as their exciting strengths σc decrease to 0 after
running around 500 iterations [see Fig. 4(b)]. In contrast,
the CL estimator achieves the convergence of θ̃ to 0 rapidly
after about 200 iterations [see Fig. 4(a)], where σc in (6) is
monotonically non-decreasing and keeps at a high level after
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about 250 iterations [see Fig. 4(b)] due to the storage of online
data. The convergence rate of the CL estimator is higher than
those of the other two estimators [see Fig. 4(c)].

Case 3: Under partial IE. Consider the case of partial IE
with x(0) = [0.3, 0.001]T , θ = [0.5,−1, 1]T , and γ = 5.
Performance comparisons of the three estimators are shown in
Figs. 5-6, where θ̃ν := [θ̃1, θ̃2]

T is a partial estimation error on
active channels, and an estimated value always 0 corresponds
to an inactive channel. The LS and MRE estimators perform
much worse under partial IE [see Fig. 6(a)], as their exciting
strengths σc are 0 all the time [see Fig. 6(b)]. In contrast, the CL
estimator exhibits the convergence of θ̃ν to 0 after about 250
iterations [see Fig. 6(a)], where σc in (6) is monotonically non-
decreasing and keeps at a high level after about 500 iterations
[see Fig. 6(b)]. The CL estimator converges faster than the
other two estimators [see Fig. 6(c)].

V. CONCLUSIONS

This paper has developed a CL parameter estimator for
discrete-time nonlinear systems with LIP uncertainties, where
exponential parameter convergence can be achieved under
IE or even partial IE, which is strictly weaker than PE. The
storage and forgetting of online data are determined by only
active regressor channels, which gets rid of the restriction
that all regressor channels must be activated simultaneously
for parameter estimation. The effectiveness of the proposed
method has been validated on a discrete-time model of the
Van der Pol oscillator, where simulation results illustrate the
superiority of the proposed estimator compared to the LS-based
and MRE-based estimators. Future studies would apply the
proposed estimator to more complicated systems.

APPENDIX: THE PROOF OF THEOREM 1

Proof: The parameter error model derived by the parame-
ter estimation law (7) is represented by

θ̃(k + 1) =
[
I − γ

2
Λ(k)

]
θ̃(k) (8)

in which Λ(k) ∈ RN×N is given by

Λ(k) :=

{
M−1

f (k)ΦfΦ
T
f +M−1(k)Q(keν), k < ka,

M−1
f (k)ΦfΦ

T
f +M−1(k)Q(ke), k ≥ ka.

Consider a Lyapunov function candidate

V (k) = θ̃T (k)θ̃(k). (9)

In view of (8) and (9), V (k + 1) is calculated as

V (k + 1) = θ̃T (k)
[
I − γ

2
M−1

f (k)Φf(k)Φ
T
f (k)

− γ

2
M−1(k)Q(k)

]2
θ̃(k).

It follows from the following inequality

0 < I− γ

2
M−1

f (k)Φf(k)Φ
T
f (k)−

γ

2
M−1(k)Q(k) < I (10)

to get V (k + 1) ≤ V (k), which implies θ̃(k), θ̂(k) ∈ L∞,
and hence, εf(k) ∈ L∞ on k ∈ [0, kf).

Second, consider the convergence problem under the IE
condition for k ≥ ka, i.e., there exist ka, σ ∈ R+ such that
σc(ka) ≥ σ. It follows from (10) that[

I − γ

2
M−1

f (k)Φf(k)Φ
T
f (k)−

γ

2
M−1(ke)Q(ke)

]2
≤
[
I − γ

2
M−1(ke)Q(ke)

]2
=
[
I − γ

2

(
I + γQ(ke)

)−1
Q(ke)

]2
=
[(
I + γQ(ke)

)−1(
I + γQ(ke)−

γ

2
Q(ke)

)]2
=[I + γQ(ke)]

−2
[
I +

γ

2
Q(ke)

]2
=[I + γQ(ke)]

−2
[1
2

(
I + γQ(ke)

)
+

1

2
I
]2

=
1

4

[
I +

(
I + γQ(ke)

)−1
]2
.

As Q(ke) ≥ σc(ka)I ≥ σI according to (4), one has

V (k + 1) ≤ 1

4

(
1 +

1

1 + γσ

)2

θ̃T (k)θ̃(k)

=
1

4

(
1 +

1

1 + γσ

)2

V (k)

with 0 < 1
4

(
1 + 1

1+γσ

)2
< 1, implying that θ̃(k) converges

exponentially to 0 for k ≥ ka.
Third, consider the parameter convergence under partial IE

for k ≥ kb. From Definition 3, there are kb, σ ∈ R+ such that
Qν(kb) ≥ σI . Choose a Lyapunov function candidate

Vν(k) = θ̃
T
ν (k)θ̃ν(k). (11)

The proof of parameter convergence under partial IE is similar
to that under IE, so we follow the similar steps as above to
obtain Vν(k + 1) based on (11) as follows:

Vν(k + 1) ≤ θ̃Tν (k)
[1
2

(
I +

(
I + γQν(kb)

)−1
)]2

θ̃ν(k).

It follows from Qν(kb) ≥ σI and the above result that

Vν(k + 1) ≤ 1

4

(
1 +

1

1 + γσ

)2

θ̃Tν (k)θ̃ν(k)

=
1

4

(
1 +

1

1 + γσ

)2

Vν(k)

with 0 < 1
4

(
1 + 1

1+γσ

)2
< 1, implying that θ̃ν(k) exponen-

tially converges to 0 for k ≥ kb.
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