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Abstract— We verify safety of a nonlinear continuous-time
system controlled by a neural network controller. The system
is decomposed into low-dimensional subsystems connected in
a feedback loop. Our application is a rocket landing, and
open-loop properties of the two-dimensional altitude subsystem
are verified using worst-case simulations. Closed-loop safety
properties (crash-avoidance) of the full system are obtained
from composition of contracts for open-loop safety properties
of subsystems in a fashion analogous to the small-gain theorem.

I. INTRODUCTION

Following in the footsteps of impressive applications using
neural networks to control dynamical processes, verification
of nonlinear controllers has seen progress in recent years [1].

Worst-case simulations [2] can give reachability bounds
for general nonlinear systems, and techniques specialized for
neural networks have been studied by several groups [3], [4],
[5], [6], [7].

One issue with verification of neural network systems
is the computational complexity of the method when the
numbers of parameters and of nonlinear components in the
neural network are large.

We use a computationally simpler method to verify a
system with a given nonlinear controller. Our application is a
rocket landing, schematically shown in Fig. 1. The system is
decomposed into a closed loop shown in Fig. 2 with altitude
and attitude subsystems, each controlled by its own neural
network controller.
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Fig. 1. Schematic view of the neural network controlled rocket landing
scenario, indicating altitude and attitude (rotational) dynamics. We verify
robust crash-avoidance via decomposition into subsystems.
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Fig. 2. Closed loop block diagram connecting attitude and altitude
dynamics. Model uncertainties and the external disturbance d lead to
deviations from nominal dynamics within one subsystem perturbing the
other through w and x.

Similar decompositions have been used before, and we
mention one study [8] decoupling satellite control into atti-
tude control and momentum control. The study found near
optimal performance and good robustness compared to using
a single controller for all degrees of freedom.

Our model for the altitude subsystem takes the form of a
double integrator with nonlinear terms and disturbances,

ẋ =

[
0 1
0 0

]
x+

[
0

f(x)

]
+ w, (1)

where f(x), representing altitude dynamics and neural net-
work controller, contains model uncertainties. The distur-
bance w represents the effects of non-nominal attitude dy-
namics.

We obtain reachability bounds on the two-dimensional
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Fig. 3. Three curves are shown, the middle curve showing the nominal
trajectory, and the upper and lower curves showing reachability boundaries.
Where the three curves are very close, the bounds confine all trajectories
to a narrow corridor through state space. (Parameters as in Fig. 6 with
wmax

2 = 3.0.)
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state-space of the altitude subsystem using worst-case sim-
ulations. Fig. 3 shows an example of good reachability
bounds. The reachability bounds allow formulating a contract
satisfied by the altitude subsystem in open loop, and we
use a formalism [9] for composition of contracts to obtain
closed-loop guarantees from open-loop safety properties of
subsystems.

The next section describes the background of this work
and a conceptual overview of our workflow for verification.
We then present our worst-case simulation and composition
of contracts, before discussing the details of the model,
numerical implementation and results.

II. BACKGROUND

This work builds on our experiences working within the
AI4GNC project [10] funded by the European Space Agency.
Within that project, neural network controllers were trained
using reinforcement learning to perform safe landing in
simulation with nonlinear models. One case modeled only
altitude dynamics, while other cases included both altitude
and attitude dynamics with a single controller for all states.
Within the project, we used verification techniques describ-
ing nonlinearities using quadratic forms (similar to [3], [5]).
Issues with computational complexity and conservativeness
limited our successes. The work presented here is our fol-
lowup work using computationally cheaper techniques.

We view altitude dynamics of a neural network controlled
rocket in upright orientation as our nominal model for alti-
tude dynamics. Deviations from nominal attitude dynamics
are seen as disturbance inputs on altitude dynamics, and vice
versa.

The altitude model reads (with y denoting altitude)

mÿ = mf(y, ẏ)

= Tmaxu(y, ẏ)−mg0
R2

(R+ y)2
+ cẏ2 exp(−y/H),

(2)
where the right-hand-side terms denote control, gravity and
air resistance1. We treat mass as an uncertain parameter, with
a nominal mass of 80 tonnes. Our numerical results assume
a mass between 40 and 100 tonnes.

The state vector is x =
[
y ẏ

]⊤
, and we add disturbances

w to both states, giving us the model of Eq. (5).
The AI4GNC project did not work with a separate model

and controller for attitude dynamics only, and we do not
analyze attitude dynamics in detail, but only formulate the
open-loop contract it is required to satisfy to ensure closed-
loop safety.

III. WORKFLOW

This section outlines the conceptual steps required, while
details are left for later sections.

1) We decompose the system so that our subsystem
validation is limited to models with state-space in

1The velocity will always be negative, and air resistance will always be
positive.

R2. Subsystems are connected using feedback and our
closed loop system is shown in Fig. 2.

2) In the two-dimensional state space of a single sub-
system, we locally define “worst-case” behaviors of
uncertainties and disturbances, and form a “worst-
case” ODE whose solutions act as reachability bounds
for the subsystem dynamics. A conceptual description
and implementation details are given in sections V and
VIII, respectively.

3) Reachability bounds are formulated as open-loop con-
tracts on subsystems, capturing the subsystem prop-
erties of interest. Specifics for our application are
discussed in sections IX and XI.

4) Results on composing contracts [9], as discussed in
section VI, give a closed-loop contract from open-loop
contracts.

5) Our closed-loop contract implies the system safety (for
us, crash avoidance), and our verification is successful.

IV. NOTATION

We write x⊤ for the transpose of x, and x⊤n for the inner
product between x and n. A dotted letter, as in ẋ, is used to
denote the time-derivative of a function. The sign function
is denoted sgn(x).

V. WORST-CASE SIMULATION

This section introduces our low-dimensional worst-case
simulations. Model and implementation details will be de-
scribed in later sections.

In RN trajectories are 1-dimensional and reachability
boundaries are N − 1-dimensional. In R2 both trajectories
and boundaries are 1-dimensional curves, and reachability
boundaries can be obtained from a “worst-case” ODE. If
two trajectories of our model cross, it is due to uncertainties
or disturbances. At each point in state space, we characterize
worst-case values of uncertainties and disturbances, making
our safe landing most difficult. This leads us to a “worst-
case” ODE whose solutions show “worse” behavior than any
trajectory compatible with our altitude dynamics2.

More precisely, we assume a dynamical system given as
a differential inclusion with trajectories x satisfying ẋ(t) ∈
F (x(t)) for a given function F : R2 −→ R2.

A boundary is a curve z : [a, b] −→ R2 with outward
direction specified by a set of normal vectors n : [a, b] −→
R2 satisfying |n(t)| > 0 and ż(t)⊤n(t) = 0. The curve z is
a boundary to our dynamical system if x(t) = z(t′) implies
ẋ(t)⊤n(t′) < 0 for any system trajectory x.

The additional property required to ensure that no trajec-
tory crosses z in the outward direction is (for all t)

ż(t)⊤n(t) > max
δz∈F (z(t))

δz⊤n(t) (3)

2Our model includes only additive noise. With disturbances on the input
to a neural network, a “worst-case” ODE would require reachability bounds
on the neural network.
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For any trajectory x, boundary curve z and crossing point
x(t) = z(t′), it follows that

ẋ(t)⊤n(t′) ≤ max
δx∈F (x(t))

δx⊤n(t′)

= max
δz∈F (z(t′))

δz⊤n(t′)

< ż(t′)⊤n(t′) = 0

(4)

showing that ẋ(t)⊤n(t′) < 03

In words, at any state z(t), the tangent ż of the boundary
curve z points “more” outward than the tangent ẋ of the
“worst-case” solution x to the differential inclusion. There-
fore no trajectory can cross it in the outward direction.

We thus arrive at reachability bounds via a first order ODE
in R2 in which the neural network appears as a deterministic
nonlinear function in our model. Our verification scheme
scales well with the size of the neural network involved.

As an example of reachability bounds, Fig. 3 shows the
nominal trajectory together with two boundary curves. The
boundary curves are valid for some specified uncertainty
bounds and no trajectory compatible with the uncertainty
bounds can cross the upper or lower boundary curves in
the outward direction. The boundary curves show that tra-
jectories are restricted to a narrow corridor, providing good
reachability bounds for the model and controller used here.

VI. CONTRACTS FOR CLOSED LOOP GUARANTEES

In this section, we discuss the assume-guarantee frame-
work [9] used to obtain closed loop guarantees.

The block-diagram in Fig. 2 shows our interconnected
system, and will formulate subsystem contracts that hold in
open-loop for the two subsystems.

Our constraints will be specified by set-inclusions of the
form d(t) ∈ D, w(t) ∈ W and x(t) ∈ X (∀t), for the
external input d, and the internal inputs w and x, shown in
Fig. 2. The sets W and D will be boxes, and the set X ⊂ R2

will contain the points between upper and lower boundary
curves in graphs like Figs. 3 and 9.

Our open-loop contracts for the subsystems are

Contract 1 (Altitude Dynamics)
Assume: Under specified model uncertainties, and with
w(t) ∈ W (∀t).
Guarantee: Until we reach an altitude of 15 meters, we have
x(t) ∈ X (∀t). We eventually reach 15 meters altitude, and
we do so with a safe downward speed.

Contract 2 (Attitude Dynamics)
Assume: Under specified model uncertainties, and with
d(t) ∈ D and x(t) ∈ X (∀t).
Guarantee: We have w(t) ∈ W (∀t)

Our desired closed-loop contract is

Contract 3 (Closed Loop)
Assume: Under specified model uncertainties and with
d(t) ∈ D (∀t).

3We use strict inequalities to avoid crossings where the tangents of x and
z are parallel at the crossing.

Guarantee: We will eventually reach 15 meters altitude and
we will do do with a safe speed.

We remark on two properties of the contracts.
Firstly, we note that the structure of the open-loop con-

tracts match the structure of the block-diagram. Each open-
loop contract for a subsystem assumes bounds on its inputs
and provides guarantees on its outputs. The assumptions on
internal inputs in the subsystem contracts, (w and x in the
altitude and attitude contracts, respectively) are guaranteed
by the other subsystem contract. Remaining assumptions, on
model uncertainties and the external input d, are assumptions
in the closed lop contract. The guarantee in the closed loop
contract is an immediate consequence of guarantees in the
subsystem contracts.

Secondly, the wording of the assumptions and guarantees
in the three contracts are chosen to suit our subsystem
verification method and our closed-loop safety criterion.
The formalism for composition of contracts i agnostic to
the formulations of the clauses in the contracts and to the
verification method.

Following Theorem 2 of the paper [9] presenting the
assume-guarantee framework, the closed-loop contract is
valid in closed loop if all subsystems satisfy their open-
loop contracts in open loop, and two additional technical
assumptions hold. The first requires a one-sided continuity
property, stating that if a contract is valid for all times less
than t, it is also valid at time t. The second is a property of
extending the time interval of validity, and is only required
for one block per cycle in the block diagram (we choose our
altitude block). If the altitude contract is valid until time t,
then the guarantee clause is valid until some (slightly) later
time t′.

Our subsystem state x(t) does not jump, and our contracts
are formulated using set inclusion with closed sets. A first
violation of a contract can therefore only happen at some
specific time t, ensuring the first property. The second
property is ensured by our worst-case simulation actually
being slightly “worse” than “worst-case”. This is easy to
implement and ensures that we always have a margin. With
continuous dynamics (without jumps), if a contract with a
margin is valid until a time t, there is a later time t′ up until
which the guarantee clause of the contract also holds.

VII. MODEL FOR ALTITUDE CONTROL

While our method is applicable for more general cases, our
verification work is based around a simple model of altitude
control.

Our model has a state x(t) ∈ R2 and disturbances w(t) ∈
R2 and reads

ẋ(t) ∈
[
0 1
0 0

]
x(t) +

[
0

f(x(t))

]
+ w(t) = F (x(t)) (5)

The function f(x) = f(x1, x2) as introduced in Eq. (2) is
a set-valued function due to the uncertain mass, and the

disturbances w =

[
w1

w2

]
are also set-valued with ∞-norm

bounds |w1(t)| < wmax
1 , |w2(t)| < wmax

2 (∀t), for fixed
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values wmax
1 and wmax

2 . In the nominal model, with nominal
mass and w = 0, F (x) takes a single value and our nominal
model is an ODE.

VIII. NUMERICAL IMPLEMENTATION

The model as presented in Eq. (5) is a first order differen-
tial inclusion with state in R2 and uncertainties parameterized
by m and w, and therefore matches the discussion in section
V. We now describe our numerical implementation of the
worst-case simulation.

Our notion of boundary requires knowing the tangent of
the boundary. We estimate the local tangent along a curve
z(t) using an exponentially decaying average of the values
of ż(t). We introduce an additional state v(t) ∈ R2, with the
dynamics

v̇(t) = −λv(t) + ż(t) (6)

The timescale 1/λ is chosen to be much shorter than those
of our model dynamics, but much longer than the step-sizes
used by our ODE solver4

Given the estimate v of the local tangent, the local outward
normal n(t) is obtained by rotating v(t) by 90 degrees. We
use clockwise and counterclockwise rotations for the upper
and lower bounds in Fig. 3, respectively.

In the worst-case ODE, we compute n(t) at every step in
time, and select the values of F (z(t)) maximizing the inner
product with n, allowing all uncertainties and disturbances
to take on worst-case values. Componentwise, the increment
żi(t) should be maximal if ni(t) > 0 and minimal otherwise.
We additionally add a small value ε to ensure that our
boundary curve is “worse” than “worst-case”.

Starting from the nominal initial condition xinit, we now
perform simulations of the nominal model with state x and
w = 0, as well as two simulations in the worst-case model
with extended state [z, v]. The two simulations differ in the
direction of rotation to obtain n from v.

If our two boundary trajectories reach a state with z1 = 15,
we stop our simulations there and connect the endpoints of
the upper and lower boundary trajectory by a line at z1 = 15.

Worst-case simulation with the two different normal direc-
tions give us bounding trajectories that will not be crossed
by any trajectory of our uncertain system. Trajectories are
therefore guaranteed to stay within the region until they exit
at z1 = 15, between the upper and lower bound5.

IX. ROBUSTNESS

In the present work, we discuss two questions
• For specified initial altitude and downward speed, how

large disturbances from non-nominal attitude dynamics
can we tolerate?

4The actual numerical curve produced by the ODE solver we use contains
unphysical fluctuations on timescales of the solver step size, which is much
shorter than the timescales of the physical dynamics. The vector v(t) is a
good approximation to the tangent of the physical trajectory, without being
sensitive to the unphysical fluctuations in the ODE-solver.

5As already remarked, the model and controller were intended to be used
for altitudes above 15 meters, and our characterization of crash-avoidance
therefore depends on the velocity it has when reaching an altitude of 15
meters.

• For specified initial altitude and bounds on disturbances
from non-nominal attitude dynamics, how large initial
downward speed can we tolerate?

This section will only concern open-loop bounds on al-
titude dynamics, and contract composition will be used to
ensure that the conclusions for the open-loop properties of
the altitude subsystem also hold in closed loop.

Our robustness analyses focus on xinit, containing initial
altitude and velocity, wmax

1 , wmax
2 bounding our disturbances,

and the velocity at 15 meters altitude.
We require reachability boundaries to ensure negative

velocity throughout (to ensure that we reach 15 meters
eventually), and to ensure that we have a safe velocity at
15 meters altitude (crash-avoidance). Concretely, we require
that

• the upper boundary satisfies z2(t) < −ε (∀t) for some
ε > 0,

• the lower boundary reaches z1(t) = 15 for some t with
a safe final velocity z2(t).

We assume that a safe velocity is given, such that if
the rocket reaches an altitude of 15 meters with a higher
velocity6, the controller that takes over for the last 15 meters
is guaranteed to land safely.

The first question posed in this section is answered by
asking for the largest wmax

1 and wmax
2 that still ensure the

two requirements on boundary curves for specified xinit.
The second question is answered by asking for the most

negative ẋinit
2 that still ensures the two properties for speci-

fied wmax
1 , wmax

2 and xinit
1 .

In all cases, the corresponding contract on attitude dynam-
ics, as discussed in section VI must be fulfilled and additional
technical assumptions satisfied. Without those additional
requirements, we could only discuss open-loop robustness
of altitude dynamics. The additional requirements allow us
to conclude that the closed-loop contract holds, guaranteeing
the same safety properties in closed loop.

X. NUMERICAL RESULTS

Our numerical results use xinit = [5000,−80]⊤, except
for Figs. 8 and 9.

We first set wmax
2 = 0, and consider how the impact

velocity varies with wmax
1 . Figs. 4 and 5 show the impact

of wmax
1 on the final velocity. The effect is small for small

values of wmax
1 , and there is a very sharp change to a very

large impact around wmax
1 = 0.11.

In our closed loop, our altitude dynamics is driven by
deviation from nominal attitude dynamics affecting the ac-
celeration in altitude dynamics. Acceleration is determined
by a disturbance in x2, and we now set wmax

1 = 0 and
plot final velocity vs. wmax

2 . Results shown in Figs. 6 and
7 show a gradual increase in the effect of disturbances on
acceleration.

The actual bound on the final velocity must be set based
on a value for the safe impact velocity, and we arbitrarily

6The velocities are negative and higher velocity corresponds to lower
downward speed.
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Fig. 4. Upper and lower bounds on final velocity for wmax
2 = 0 and

wmax
1 < 0.1. The figure shows that the impact of small disturbances on

the final velocity is small.
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Fig. 5. Upper and lower bounds on final velocity for wmax
2 = 0 as varying

wmax
1 . At wmax

1 ≈ 0.11, there is a transition to very large impact of the
disturbance on the final velocity.
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Fig. 6. Upper and lower bounds on final velocity for wmax
1 = 0 and

wmax
2 < 4. The figure shows that the impact of small disturbances on the

final velocity is small.
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Fig. 7. Upper and lower bounds on final velocity for wmax
1 = 0 and

varying wmax
2 . For wmax

2 > 4, we see a gradually growing impact of the
disturbance on the final velocity.
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Fig. 8. With wmax
1 = 0 and wmax

2 = 1, we plot initial velocity vs. final
velocity. We are within our safety limit for initial velocities down to −230.

choose -20m/s as our largest safe velocity at an altitude of
15 meters, for our numerical examples.

For our open-loop altitude subsystem, we numerically find

(w1(t) = 0 and |w2(t)| < 2.3) =⇒ safe landing. (7)

Turning to the second question posed in section IX, we
keep the initial altitude at 5000, set disturbance bounds
wmax

1 = 0 and wmax
2 = 1, and find the largest initial

downward speed we may still consider safe.
Fig. 8 shows initial velocity vs. final velocity, and we

see that the initial velocity can reach -230m/s without much
impact on the final velocity, but that the impact starts to
become large for larger deviations.

Allowing initial velocities in the interval [−230,−80], we
perform worst-case simulation with uncertain initial velocity,
in addition to the uncertainties discussed above. Upper
and lower boundaries are shown in Fig. 9 together with
the nominal trajectory. The upper boundary and nominal
trajectory are close, as the nominal initial velocity is the
upper bound on the allowed interval. The large range of
allowed initial velocities gives a large region between the
upper and lower boundaries, and this region will form the
assumptions in the contract attitude dynamics is required
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Fig. 9. Upper and lower boundary curves for the case in Fig. 8 with
uncertain initial velocity in the range [−230,−80]. The upper boundary and
the nominal trajectory nearly coincide, while the lower boundary deviates
strongly from the nominal curve due to the uncertain initial velocity.

to satisfy. While we still have a safe final velocity, we see
that the requirements on the attitude controller will be much
stricter than in previous cases, due to the large deviations
from nominal altitude dynamics allowed. This shows the
trade-off between the strictnesses of the contracts required
for the subsystems of altitude and attitude dynamics. This
trade-off is again analogous to the structure of the small-
gain theorem.

XI. REQUIREMENTS ON ATTITUDE DYNAMICS

In previous sections, We analyzed the altitude dynamics
appearing as the lower part of the block diagram Fig. 2. We
obtained bounds on the deviation x− xnominal from bounds
on w. The next step is to combine this with bounds on the
upper block in the block-diagram, our model for nominal
attitude dynamics. The model would describe nominal at-
titude dynamics with uncertainties for mass, and would be
driven by altitude dynamics via x − xnominal and by wind
disturbances via d.

From the contract forms discussed in section VI and our
numerical simulation for altitude dynamics, we find that the
requirement on attitude dynamics.7

Contract 4 (Attitude Dynamics)
Assume: d(t) ∈ D, 40000 < m(t) < 100000 and |x −
xnominal| < 15
Guarantee: w1 = 0 and |w2| < 2.3

We do not describe details of the attitude dynamics here,
but it is similar to an inverted pendulum controlled to behave
like a damped oscillator, driven by disturbances x−xnominal

and d.

XII. DISCUSSION

The verification presented here decomposes the full system
into subsystems, and uses worst-case simulation for sub-
systems with two-dimensional state-space. Composition of
contracts [9] is used to obtain guarantees in closed loop.

7The value 15 is the maximal distance between a point on the lower
bound curve and its nearest point on the nominal trajectory.

The essential feature enabling our analysis is the di-
mensionality of the subsystems, and we impose few other
requirements on their structure. In particular, our method
scales well with the size and complexity of the nonlinearity,
represented in our application by a neural network.

The result is enabled by two observations.
• Boundaries and trajectories have the same geometric

structure, as curves in R2, boundaries can be obtained
from numerically solving an ODE.

• Reachability bounds on subsystems can be combined
using assume-guarantee contracts in the spirit of the
small-gain theorem.
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