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Abstract— This paper presents a novel data-driven polytopic
approach to event-triggered consensus control of unknown
leader-following multi-agent systems (MASs). A distributed
data-driven event-triggered consensus control protocol is pro-
posed that utilizes noisy input-state data to enable all follow-
ers to track the leader while reducing communication and
computational burden. Unlike previous research that relies on
quadratic matrix inequalities to characterize system uncertain-
ties, this paper devises a data-based polytopic representation
for MASs, which enables addressing the consensus control
problem without using explicit system matrices. Based on this
representation, a data-based criterion is established, utilizing
matrix polytopes to ensure the asymptotic stability of the closed-
loop MAS. Moreover, a co-design method is presented for the
distributed controller gain and the triggering matrix, using
only data and expressed in terms of linear matrix inequalities.
Finally, numerical simulations are conducted to demonstrate the
validity and effectiveness of the proposed data-driven approach.

I. INTRODUCTION

Consensus control of multi-agent systems (MASs) has
been a popular research topic for the past two decades, partic-
ularly leader-following consensus control, where distributed
control algorithms are developed through local information
exchange between agents. Significant progress has been
made in this area, as evidenced by numerous studies such
as [1]–[3] and references therein.

Effective communication among agents is critical for
achieving consensus control. However, continuous commu-
nication may not be feasible due to energy constraints and
limited bandwidth shared by individual agents. To address
this issue, researchers have investigated resource-efficient
control strategies that reduce transmission frequency while
maintaining consensus. Event-triggered control, in which
measurements are taken, transmitted, and used to update the
controller only when a certain event occurs, has been shown
to be a promising approach to save communication resources
[4]. This method has been extensively studied in MASs, as
seen in [5]–[7].
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Most previous research on event-triggered control has
been developed under the model-based control paradigm,
which relies on explicit knowledge of system models or
matrices. However, constructing an accurate system model
is often challenging or even impossible in some engineering
scenarios such as power and biological systems. Moreover,
system identification-based control may result in unreliable
performance due to uncertainties introduced by the iden-
tification process [8]. Consequently, data-driven methods
that directly design control laws from measured data have
received much attention in recent years [9], [10]. Indeed,
various data-driven control approaches have been reported,
including robust control [11], [12], state feedback control
[13], [14], model predictive control [15], [16], quantized
control [17], and control of complex networks [18]–[22].

One of the main challenges in data-driven control is
building a data-based system representation, particularly
when unexpected noise corrupts the offline data collection
process. A general data-based representation, expressed as
quadratic matrix inequalities (QMIs), was introduced in
[23] and has been widely used to address theoretical and
practical problems [24]. This paper proposes a data-driven
polytopic approach for event-triggered consensus control of
unknown leader-following MASs, taking into account more
general forms of noise during the data acquisition phase. The
proposed approach introduces a data-based polytopic repre-
sentation for MASs, enabling the consensus control problem
to be addressed without using explicit system matrices. Using
this representation, a data-based criterion is established for
the closed-loop system through the use of matrix polytopes,
ensuring that all followers asymptotically track the leader.
Moreover, a co-design method for the distributed controller
gain and the triggering matrix is presented, expressed in
terms of linear matrix inequalities, using only data. The pro-
posed data-driven method provides a more effective approach
compared to the system identification-based method, which
is illustrated through a comparison study.

Our main contributions can be summarized as follows.

1) We propose a data-based polytopic representation of
leader-following MASs, which is based on locally col-
lected offline input-state data;

2) We develop a data-based stability condition using ma-
trix polytopes, which guarantees asymptotic consensus
while reducing computation frequency;

3) We offer a data-driven polytopic approach to co-
designing the distributed controller gain and the trig-
gering matrix using only input-state data.
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Notation. Let N (R) denote the set of all non-negative
integers (real numbers). For integers a < b, let N[a,b] :=
N ∩ [a, b]. For vector x ∈ Rn, x > 0 is understood
entrywise. Symbols (·)> and ⊗ represent the transpose and
the Kronecker product. For symmetric matrix P , P � 0
(P � 0) means that P is positive (semi-)definite. Sym{P}
takes the sum of P> and P . Finally, we use I (0) to denote
the identity (zero) matrix of appropriate dimensions.

II. PRELIMINARIES AND PROBLEM SETUP

A. Graph theory

A weighted graph Ḡ = (V̄, Ē) defines over a nonempty
node set V̄ = {v0, v1, . . . , vN} and an edge set Ē ⊆ V̄ × V̄
describes the interaction between agents. If node vj can
obtain information from node vi, then the link (vi, vj) ∈
Ē . The induced subgraph G = (V, E) obtained from Ḡ
represents the information interaction relationship between
followers, where V = {v1, . . . , vN} and E ⊆ (V × V). A =
[aij ] ∈ RN×N is the adjacency matrix with aii = 0, aij > 0
if (vj , vi) ∈ E ; and aij = 0, otherwise. The Laplacian matrix
L = [lij ] ∈ RN×N associated with the subgraph G has
lii =

∑
j 6=i aij and lij = −aij . Let the diagonal matrix

P = diag{a10, . . . , aN0} ∈ RN×N describe the accessibility
of the leader to followers. Concretely, a0i > 0 if follower
i has access to the information of the leader; and a0i = 0
otherwise. In addition, define the matrix H := L + P . A
directed graph contains a directed spanning tree if there exists
a root node that has directed paths to all other nodes. To
proceed, we need the following assumption.

Assumption 1 (Communication graph): The graph Ḡ con-
tains a directed spanning tree with the leader as the root node.
Besides, only a subset of followers have direct access to the
leader’s information.

B. Distributed event-triggered control of MASs

Consider a discrete-time leader-following MAS with a
leader indexed by 0 and N followers by 1, 2, . . . , N . For
t ∈ N, the dynamics of each agent are described by{

xi(t+ 1) = Atrxi(t) +Btrui(t), i = 1, 2, . . . , N,

x0(t+ 1) = Atrx0(t),
(1)

where xi(t) ∈ Rn and x0(t) ∈ Rn denote the state of
follower i and the leader, respectively, and ui(t) ∈ Rp
denotes the control input of follower i. In the following,
we assume that the true system matrices Atr ∈ Rn×n and
Btr ∈ Rn×p are unknown, but the dimensions n and p are
known and the pair (Atr, Btr) is stabilizable.

The problem of interest is the leader-following consensus
phrased as designing a distributed event-triggered protocol
that renders all followers tracking the leader asymptotically
over a fixed directed communication network Ḡ.

Regarding this problem, we commence by adopting the
following distributed event-triggered controller for (1)

ui(t) = K

N∑
j=1

aij (x̄i(t)− x̄j(t)) + ai0 (x̄i(t)− x̄0(t)) (2)

where aij denotes the ijth entry of the adjacency matrix A,
K ∈ Rp×n is the feedback gain matrix to be designed. Let tik
denotes the kth (k ∈ N) triggering time of agent i, dictated
by an event-triggering mechanism to be designed later. For
t ∈ N[tik,t

i
k+1−1], x̄i(t) := xi(t

i
k), where xi(t

i
k) is the last

broadcast state at tik. On the other hand, the leader transmits
the state at every time, i.e., x̄0(t) = x0(t0k) = x0(t).

Without loss of generality, assume that ti1 = 0 for i =
1, . . . , N . Letting tik designate the most recent triggering
time, the subsequent triggering time tik+1 is given by

tik+1 = tik + inf
t≥tik

{
t
∣∣fi(ei(t), zi(t), t) ≥ 0

}
(3)

with the following triggering function

fi(ei(t), zi(t), t) = e>i (t)Φei(t)− σz>i (t)Φzi(t)

where Φ ∈ Rn×n is a positive definite matrix to be
designed, σ is a positive constant balancing between the
transmission frequency and the system performance, ei(t) :=
x̄i(t) − xi(t) denotes the measurement error between the
last broadcast state at tik and the current state at t, and
zi(t) :=

∑N
j=1 aij (x̄i(t)− x̄j(t)) + ai0 (x̄i(t)− x̄0(t)).

Based on the settings above, define the tracking error by
δi(t) := xi(t) − x0(t). It follows from (1) and (2) that the
dynamics of δi(t) satisfies

δi(t+ 1) = Atrδi(t) +BtrK

×
N∑
j=1

aij(δ̄i(t)− δ̄j(t))− ai0δ̄i(t),
(4)

where δ̄i(t) := x̄i(t) − x0(t). By stacking the vectors
in matrices δ(t) = [δ>1 (t), δ>2 (t), . . . , δ>N (t)]> and δ̄(t) =
[δ̄>1 (t), δ̄>2 (t), . . . , δ̄>N (t)]>, the closed-loop system (4) can
be written as

δ(t+ 1) = (IN ⊗Atr)δ(t) + (H⊗BtrK)δ̄(t). (5)

It can be inferred that the consensus problem of the leader-
following MAS (1) is converted to the stability problem
of the closed-loop system (5) under the event-triggered
consensus control protocol. Although existing solutions have
demonstrated success in tackling this problem, they all
require prior knowledge of the matrices, see, e.g. [3], [5],
[6], [25]. To overcome this issue, we focus on preforming a
distributed event-triggered control directly from data in this
paper.

C. Pre-collected noisy data

To compensate for the lack of true system matrices, it is
assumed that a T -long stream of input-state data {xi(k)}Tk=0,
{ui(k)}T−1k=0 of all followers from the following purterbed
system can be collected through some offline experiments

xi(k + 1) = Atrxi(k) +Btrui(k) + wi(k), (6)

where k ∈ {0, 1, . . . , T} and wi(k) ∈ Rn is unknown noise
satisfying the following assumption.
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Assumption 2 (Polytopic noise): For every k and i =
1, · · · , N , the noise wi(k) ∈ Pwi , where Pwi is a known
polytope given by

Pwi
=
{
wi|wi =

γi∑
ρ=1

β
(ρ)
i ŵ

(ρ)
i , β

(ρ)
i ≥ 0,

γi∑
ρ=1

β
(ρ)
i = 1

}
,

with γi and ŵ(ρ)
i the number of vertices, and the ρth vertex

of polytope Pwi
, respectively. Moreover, 0 ∈ Pwi

.
Imitating the definition of the tracking error δi(t), the

system (6) can be transformed into the ensuing linear system

δi(k + 1) = Atrδi(k) +Btrui(k) + wi(k). (7)

Based on the collected data {xi(k)}Tk=0, {ui(k)}T−1k=0 , we
then compute and collect the tracking error measurements
{δi(k)}Tk=0 per agent over time step k ∈ {0, 1, . . . , T}. Store
these data vectors into the following matrices

Ui := [ui(0) ui(1) · · · ui(T − 1)] ,

∆i := [δi(0) δi(1) · · · δi(T − 1)] ,

∆i+ := [δi(1) δi(2) · · · δi(T )] .

To guarantee that these matrices are sufficiently represen-
tative of the MAS [11], the following assumption is made.

Assumption 3 (Rank guarantee): rank
[
∆i

Ui

]
= n+ p.

Furthermore, we denote the sequence of unknown noise
{wi(k)}T−1k=0 by Wi := [wi(0) wi(1) · · · wi(T − 1)]. Here,
Wi ∈MWi

, and MWi
is a matrix polytope described by

MWi =
{
Wi|Wi =

γiT∑
ρ=1

β
(ρ)
W,iŴ

(ρ)
i , β

(ρ)
W,i ≥ 0,

γiT∑
ρ=1

β
(ρ)
W,i = 1

}
which results from the concatenation of multiple noise poly-
topes Pwi as

Ŵ
(1+(k−1)ρ)
i =

[
ŵ

(k)
i 0ni×(ρ−1)

]
,

Ŵ
(m+(k−1)ρ)
i =

[
0ni×(m−1) ŵ

(k)
i 0ni×(ρ−m)

]
,

Ŵ
(ρ+(k−1)ρ)
i =

[
0ni×(ρ−1) ŵ

(k)
i

]
,

for all k = {1, 2, . . . , γi}, m = {2, 3, . . . , T − 1}, and i =
1, 2, . . . , N .

With the preliminaries above, the problem to be addressed
in this paper is formally stated as follows.

Problem 1: For the unknown closed-loop system (5), un-
der Assumptions 1-3, design a distributed event-triggered
consensus control protocol from noisy input-state data us-
ing matrix polytopes to save transmissions while ensuring
limt→∞ ‖xi(t)− x0(t)‖ = 0, ∀i = 1, 2, . . . , N.

III. DISTRIBUTED DATA-DRIVEN EVENT-TRIGGERED
CONTROL OF MASS

This section proposes a data-driven event-triggered con-
sensus control protocol to address Problem 1 for unknown
MASs (1). The main challenge can be attributed to three
factors: c1) How to accurately characterize an MAS using
pre-collected input-state data and the polytopic noise descrip-
tion? c2) How to establish theoretical consensus guarantees

Fig. 1. Distributed data-driven event-triggered consensus control.

for the resulting data-based event-triggered MAS? c3) How
to obtain a consensus controller and a triggering mechanism
based solely on data instead of system matrices?

To overcome the first challenge, we construct a data-based
polytopic representation for MASs. Subsequently, data-based
stability conditions are derived using matrix polytopes to
ensure the asymptotic consensus, thereby solving c2). Fi-
nally, we provide a data-driven co-design approach for the
controller gain and the event-triggering matrix to address c3).
See Fig. 1 for a pictorial description of the distributed data-
driven event-triggered consensus controller.

Note that the correspondence between the trajectories
(Ui,∆i,∆i+) and the true system model is not unique
in general, particularly in light of the fact that the noise
sequences are unknown. We denote this set by Σi as follows

Σi := {[A, B]|∆i+ = A∆i +BUi +Wi,Wi ∈MWi} .

To provide stability analysis guarantees of the MAS (1)
with unknown Atr, Btr, we need to derive a stability criterion
for all [A, B] that are consistent with the input-state data and
the given noise bound. For this purpose, inspired by previous
works using zonotope [26], a data-based representation of
system matrices [A, B] is constructed via matrix polytopes
in the following lemma.

Lemma 1 (Data-based polytopic representation of MASs):
Suppose Assumptions 2-3 hold. Given input-state data
(Ui,∆i,∆i+) of the MAS (7), then Mi ⊇ Σi for each
i = 1, 2, . . . , N , where Mi is a matrix polytope defined as

Mi = (∆i+ −MWi
)

[
Ui
∆i

]†
. (8)

Note that different with the general quadratic form in
existing works [20], [21], [23], [24], Lemma 1 provides
a more precise characterization of MASs, resulting in less
conservative data-based stability conditions in the subsequent
analysis.

Consider that the tracking error δi(t) belongs to a well-
defined polytope Pδi,t, i.e., δi(t) ∈ Pδi,t for i = 1, 2, . . . , N .
Let Pδi,0 = δi(0). It follows from (4) that the polytope Pδi,t
is described as

Pδi,t = AtrPδi,t−1 +BtrKzi(t), i = 1, 2, . . . , N. (9)

We are now ready to advocate a data-driven solution for
achieving the consensus of (1) with unknown matrices Atr,
Btr under the event-triggered consensus control protocol (2)-
(3). The core idea is to guarantee the stability of the tracking
error polytope Pδi,t for i = 1, 2, . . . , N using input-state
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data. Following this line, a data-based stability condition is
obtained based on Lemma 1.

Theorem 1 (Data-based stability condition): Consider
the MAS (1) under the event-triggered consensus control
protocol (2)-(3) over graph Ḡ. Suppose Assumptions 1-3
hold. Given scalars σ > 0 and ε > 0, the tracking error
polytope Pδi,t of follower i is asymptotically stable for
any Pδi,0 with t ∈ N[tik,t

i
k+1−1], i = 1, 2, . . . , N , if there

exist matrices P � 0, Φ � 0, F , KG, such that for any
M ∈MF

K the following LMI is satisfied

Ω + Ψ + Sym{M} ≺ 0 (10)

where

Q := [(IN ⊗ L1)>, (H⊗ L3)>]>,MF
i := (IN ⊗ FMi)Q,

Ω := L>2 (IN ⊗ P )L2 − L>1 (IN ⊗ P )L1,

Ψ := Sym{−(IN ⊗ FL2)} − σ(L>3 (H⊗ Φ)L3)

+ (L3 − L1)>(IN ⊗ Φ)(L3 − L1),

Lκ :=
[
0n×(κ−1)n, In, 0n×(3−κ)n

]
, κ = 1, 2, 3.

Proof: Consider the following Lyapunov function

V (δ, t) = δ>(t)(IN ⊗ P )δ(t) (11)

where P � 0. The forward difference of the function V (t)
along the closed-loop system (5) is given by

∆V (δ, t) = ξ>(δ, t)
[
L>2 (IN ⊗ P )L2 (12)

− L>1 (IN ⊗ P )L1

]
ξ(δ, t) (13)

where ξ(δ, t) := [δ>(t), δ>(t+ 1), δ̄>(t)]>.
Leveraging the descriptor method [27], for t ∈

N[tik, t
i
k+1−1], the system (5) can be expressed as follows

2(IN ⊗ F )
[
(IN ⊗Atr)δ(t) + (H⊗BtrK)δ̄(t)− δ(t+ 1)

]
=2ξ(δ, t)>

[
(IN ⊗ FAtrL1) + (H⊗ FBtrL3)

− (IN ⊗ FL2)
]
ξ(δ, t) = 0

where F ∈ R3n×n. Evidently, in light of the triggering
mechanism (3), when an event has not been triggered, it
yields

ξ>(δ, t)
[
(L3 − L1)>(IN ⊗ Φ)(L3 − L1)

− σ
(
L>3 (H⊗ Φ)L3

) ]
ξ(δ, t) ≥ 0.

(14)

By summing up (12)-(14), ∆V (δ, t) is bounded by

∆V (δ, t) ≤ ξ>(δ, t)Υξ(δ, t) (15)

where Υ := Ω + Ψ + Sym
{

(IN ⊗ FAtr, IN ⊗ FBtr)Q
}
.

It follows from the data-based polytopic representation
of MASs proposed in Lemma 1 that (IN ⊗ FAtr, IN ⊗
FBtr)Q ∈ MF

i , where MF
i := (IN ⊗ FMi)Q is a well-

defined matrix polytope.
Finally, for any M ∈MF

i , inequality Ω+Ψ+Sym{M} ≺
0 implies that ∆V (δ, t) < 0 holds for all [A, B] ∈Mi. It is
immediate that the LMI (10) guarantees the stability of the
tracking error polytope Pδi,t, i.e., δi(t) ∈ Pδi,t is asymptot-
ically stable for any δi(0). Therefore, we conclude that the

MAS (1) achieves leader-following consensus asymptotically
for any [A, B] ∈Mi. This ends the proof.

Theorem 1 allows us to analyze stability properties of the
closed-loop system under event-triggered consensus control
protocol, without any model knowledge. Based on this re-
sult, a data-driven method for co-designing the distributed
controller gain and the triggering matrix will be derived in
the subsequent. To this end, we proceed by defining δi(t) =
Gsi(t), where G ∈ Rn×n is assumed nonsingular. Then, for
t ∈ N[tik, t

i
k+1−1], an algebraically equivalent system to (5)

is established by

s(t+ 1) = (IN ⊗G−1AtrG)s(t) + (H⊗G−1BtrKG)s̄(t)
(16)

where KG = KG, s(t) = [s>1 (t), s>2 (t), . . . , s>N (t)]>, and
s̄(t) = [s̄>1 (t), s̄>2 (t), . . . , s̄>N (t)]> with s̄i(t) = si(t

i
k). Sys-

tem (16) exhibits the same characteristics as (5) in terms of
stability and performance. According to Theorem 1 and the
equivalent system expression (16), the following theoretical
result is proposed.

Theorem 2 (Data-based co-design): Consider the MAS
(1) under the event-triggered consensus control protocol (2)-
(3) over graph Ḡ. Suppose Assumptions 1-3 hold. Given
the same scalars σ, ε as in Theorem 1, the leader-following
consensus is achieved asymptotically for any initial states,
if the following LMIs are feasible for any [A, B] ∈ Mi,
i = 1, 2, . . . , N , and returns the solutions Φ̄, G, and KG

Ω + Ψ̄ + Sym

{[
IN ⊗RΘi

[
∆i

Ui

]† ]
T
}
≺ 0 (17)

where

R := (L1 + εL2)>, T := [(IN ⊗GL1)>, (H⊗KGL3)>]>,

Ψ̄ := Sym{−(IN ⊗RGL2)} − σ(L>3 (H⊗ Φ̄)L3)

+ (L3 − L1)>(IN ⊗ Φ̄)(L3 − L1),

Θi := ∆i+ −
γwi

T∑
ρ=1

β
(ρ)
W,iŴ

(ρ)
i .

Moreover, the controller gain is given by K = KGG
−1 and

the triggering matrix is co-designed as Φ = (G−1)
>

Φ̄G−1.
Proof: We construct a Lyapunov function V (s, t) =

s>(t)(IN ⊗ P )s(t) for system (16) by substituting δ of
the function V (δ, t) in (11) with s. Similar to the proof of
Theorem 1, it can be obtained that

∆V (s, t) = ζ>(s, t)
[
L>2 (IN ⊗ P )L2

− L>1 (IN ⊗ P )L1

]
ζ(s, t)

with ζ(s, t) := [s>(t), s>(t+ 1), s̄>(t)]>.
Using the descriptor method again, (16) is represented as

0 = 2ζ(s, t)>(IN ⊗R)
[
(IN ⊗AtrGL1) + (H⊗BtrKGL3)

− (IN ⊗GL2)
]
ζ(s, t).

In addition, it can be deduced by imitating (15) that
∆V (s, t) ≤ ζ>(s, t)Ῡζ(s, t), where Ῡ := Ω + Ψ̄ +
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Sym
{

(IN ⊗RAtr) + (IN ⊗RBtr)T
}

. Recalling the data-
based polytopic representation in Lemma 1 again, one gets

Mi =

(
∆i+ −

γwi
T∑

ρ=1

β
(ρ)
W,iŴ

(ρ)
i

)[
∆i

Ui

]†
.

Thus, it is easy to verify that we have Ῡ ≺ 0 for any
[A B] ∈Mi, if the following LMI holds

Ω + Ψ̄ + IN ⊗
[
R
(

∆i+ −
γwi

T∑
ρ=1

β
(ρ)
W,iŴ

(ρ)
i

)] [∆i

Ui

]†
T ≺ 0.

Observing that the above LMIs are equivalent to LMIs
(17), this provides a sufficient guarantee similar as that in
Theorem 1, and hence ensuring asymptotic consensus of
the MAS (1) under the event-triggered consensus control
protocol (2)-(3). Moreover, this guarantee is established with
the desired K = KGG

−1 and Φ = (G−1)
>

Φ̄G−1. The proof
is completed by observing that system (16) exhibits the same
stability behavior as (1).

Note that Theorem 2 provides a data-driven tool to co-
design the distributed controller gain and triggering matrix,
while guaranteeing the asymptotic consensus and therefore
tackling Problem 1. In order to solve the LMIs (17), one
only needs to take the vertices of Mi into account. This
is due to the fact that the polytope is convex. Hence, if the
LMIs are addressed at all the vertices of the polytope, then it
covers the inside of polytope [28]. As a result, our approach
eliminates the need on system models and can potentially be
adopted in a wider range of practical applications.

IV. SIMULATION

To demonstrate the correctness and numerical effective-
ness of the proposed data-driven event-triggered control
method, a comparative experiment is provided in this section.

Consider an MAS composed of six followers indexed by
1, 2, . . . , 6 and the leader indexed by 0; see Fig. 2. Each
agent is modeled by the linear dynamics adapted from [14].

ẋi(t) =

[
0 0
−1 −2

]
xi(t) +

[
1
0

]
ui(t), i = 1, 2, . . . , 6.

Here, we consider the discrete-time version of this system
with a sampling period of 0.02s. The proposed data-driven
event-triggered consensus control protocol (2)-(3) are then
applied to this MAS. The co-designed results are displayed
in the following part.

Fig. 2. Communication topology Ḡ between agents.

(Testing the proposed data-driven method) Since the true
system matrices Atr and Btr are unknown, we collect the
input-state measurements {xi(k)}Tk=0, {ui(k)}T−1k=0 for each

agent from the perturbed system (6) with T = 20. Besides,
the data-generating input is taken uniformly from a polytope
Pui =

{
ui|ui =

∑γui
ρ=1 β

(ρ)
u,i û

(ρ)
i , β

(ρ)
u,i ≥ 0,

∑γui
ρ=1 β

(ρ)
u,i =

1
}
. Set γui

= 2, and the two vertices are û
(1)
i = 1 and

û
(2)
i = −1 for i = 1, 2, . . . , 6. As stated in Assumption 2,

the noise wi(k) is sampled from the polytope Pwi
with four

vertices ŵ(1)
i = [1, 1]>, ŵ(2)

i = [1,−1]>, ŵ(3)
i = [−1, 1]>,

and ŵ(4)
i = [−1,−1]>. Select ε = 2 and σ = 0.2. By solving

the data-based LMIs (17) in Theorem 2, the controller gain
K and the triggering gain matrix Φ were co-designed as

K = [−0.2302 0.2950], Φ =

[
0.2463 0.1232
0.1232 0.0616

]
.

Let the initial state of each pendulum be x0(0) = [1, 1]>,
x1(0) = [2, −1]>, x2(0) = [1, −4]>, x3(0) = [−4, 2]>,
x4(0) = [4, 2]>, x5(0) = [5, 0]>, and x6(0) = [3, −1]>.
The tracking error trajectories between the leader and each
follower are depicted in Fig. 3. Obviously, leader-following
consensus is achieved, which validates the correctness of the
data-driven control design.

(Comparing with the identification-based method.) We
tested the identification-based STC on this multi-pendulum
system. The system identification step was proceeded by
using e.g., the subspace space system identification (n4sid)
technique [29], followed by the model-based STC design.
Specifically, we first estimated a discrete-time state-space
model for the system using the n4sid toolbox in MATLAB
based on the same set of data. The controller gain K in (2)
and the triggering matrix Φ in (3) were designed as

K = [−2.5565 − 1.9286], Φ =

[
0.4880 0.0010
0.0010 0.4827

]
.

We used the same parameters and initial states for both
data-driven and identification-based settings. Fig. 4 shows
the tracing error trajectories of each agent. Moreover, to
evaluate communication efficiency quantitatively, we counted
the numbers of triggering events across the entire MAS
within 10s for these two approaches, and reported them
in Fig. 5. By analyzing Figs. 3-5, it is evident that the
identification-based approaches require fewer settling steps
(t = 4s) to stabilize the system compared to the data-
driven method (t = 6s), while necessitating considerably
more frequent communication. It can be concluded that
the proposed data-driven method strikes a good trade-off
between control performance and communication efficiency,
particularly when dealing with finite and noisy data.

V. CONCLUSIONS

In this work, we have investigated the event-triggered con-
sensus control problem of unknown leader-following MASs.
By developing a novel data-based polytopic representation
of MASs, a distributed data-driven approach using matrix
polytopes was proposed to design an event-triggered control
protocol directly from pre-collected noisy data. Our data-
based stability criterion has enabled us to co-design the
controller gain and the triggering matrix while ensuring the
stability of the closed-loop system.
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Fig. 3. Tracking error trajectories under the data-driven method.
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Fig. 4. Tracking error trajectories under the identification-based method.
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