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Abstract— This paper presents a kernel-based learning ap-
proach for black-box nonlinear state-space models with a
focus on enforcing model stability. Specifically, we aim to
enforce a stability notion called convergence which guarantees
that, for any bounded input from a user-defined class, the
model responses converge to a unique steady-state solution that
remains within a positively invariant set that is user-defined and
bounded. Such a form of model stability provides robustness of
the learned models to new inputs unseen during the training
phase. The problem is cast as a convex optimization problem
with convex constraints that enforce the targeted convergence
property. The benefits of the approach are illustrated by a
simulation example.

I. INTRODUCTION

Given the complexity of today’s engineering systems,
deriving dynamic models from first-principle laws can be
a challenging task. Data-driven modeling approaches offer
an alternative by using data to construct dynamic models
directly. Classically, system identification methods identify
black-box linear time-invariant (LTI) models from system
data [1]. For most of the widely used LTI identification
methods, the stability property of the identified models is not
guaranteed [2] and, therefore, dedicated methods have been
developed to enforce stability, see, e.g., [3], [4]. To further
increase model flexibility, data-driven black-box nonlinear
modeling has become increasingly popular in recent years
[5], [6], [7]. However, nonlinear models can exhibit complex
dynamics (e.g., multiple attractors) which makes it more
challenging to guarantee stability as, e.g., even a small input
perturbation can lead to a wildly different, possibly even
unbounded, response. Such learned models do not generalize
well to input variations and can be dangerous in safety-
critical applications. Consequently, there is an increasing
need for reliable learning of black-box nonlinear models
with stability guarantees [8], [9], [10], [11], [12], [13].
Such stability properties provide robustness of the learned
nonlinear model to inputs unseen during training and are
instrumental for system analysis and control design [8], [9].
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Kernel-based methods [14] are a particular class of learn-
ing methods for black-box nonlinear state-space modeling.
These methods include regularization networks [15], support
vector machines [16], and Gaussian process regression [17],
and are, under certain conditions, universal approximators
[15], [18]. However, the complex function description of
kernel-based nonlinear state-space models complicates the
analysis of model properties, such as stability. For example,
the fixed points of state-space models whose dynamics are
described by the widely used squared-exponential kernel can,
in general, not be found analytically [19].

Kernel-based learning methods that enforce some form of
model stability during the learning process are proposed in
[20], [21] for the autonomous case, i.e., models without ex-
ternal (time-varying) inputs. For models with external inputs,
[8] proposes a method that enforces global contraction for
kernel-based nonlinear input-output models. Methods that
enforce model stability for other model classes, such as
recurrent equilibrium network models [6], polynomial state-
space models [22], [23], and Lur’e-type models [9], [12],
have also been proposed. However, none of these methods
is directly applicable to kernel-based state-space models.
Furthermore, all of these methods enforce a global form of
model stability, i.e., for any bounded input and the complete
state space. In practice, however, measured system data does
not cover the entire input and state space and the implicit
assumption that stability properties hold globally is often not
true or cannot be verified. Therefore, enforcing a regional
stability form rather than a global one can be beneficial
for two reasons. Firstly, it allows for the observed stability
property to be preserved exactly. Secondly, it increases the
modeling flexibility, since global stability constraints can be
more stringent than region-based ones.

This paper presents a learning method for non-autonomous
kernel-based discrete-time state-space models that enforces
the convergence stability property, thereby providing robust-
ness to changes in the initial condition and the input. This
stability notion guarantees the boundedness, uniqueness, and
asymptotic stability of the steady-state solution [24], [25],
[26]. Our proposed approach uses a region-based version of
convergence, namely convergence on compact invariant sets,
see Figure 1 for a graphical illustration. This is conceptually
different from current methods in the literature, e.g., [8],
[6], [22], [23], [9], [12], as it gives the user the freedom to
enforce the stability property only in a desired region of the
input and state space, and is naturally suitable for learning
as the system data is observed only in (compact) sets. The
compact invariant set can be chosen to be larger than the
region in which the system data is collected to enable safe
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Fig. 1. Illustration of the convergence in compact sets property for a two-
dimensional discrete-time state-space model. Top: the phase plane where
the positively invariant set is represented by the grey area, the measured
data by the black crosses and the time series of model simulations with two
different initial conditions by the red circles and blue diamonds. Bottom:
time series of the measured data in the black crosses and time series of
model simulations with two different initial conditions in the red circles
and blue diamonds. It can be seen that the effect of the initial conditions
fades out thanks to the convergence property. There are no guarantees for
solutions starting outside the positively invariant set.

model extrapolation. The learning problem is to minimize
the regularized equation error criterion constrained to the
set of models that are convergent in a user-defined compact
set. Crucially, we show that this optimization problem is
jointly convex in the criterion and the constraints. Using a
simulation example, we explicitly show that learning without
enforcing such model stability can lead to unstable model
responses. Such unfavorable scenarios are prevented by the
approach proposed in this paper.

The remainder of this paper is organized as follows.
Section II formally introduces the learning problem. Sec-
tion III presents the proposed learning approach. Section IV
describes the results of a simulation study. Finally, Section V
presents the conclusions of the paper.

Notation: The symbols R,R+,C, and Z denote the set of
real numbers, non-negative real numbers, complex numbers,
and integers, respectively. The symbol In denotes the n× n
identity matrix and the symbol 0n denotes the zero vector of
dimension n × 1. A symmetric matrix A ∈ Rn×n is called
positive (negative) definite, denoted as A ≻ 0 (A ≺ 0), if all
its eigenvalues are strictly positive (negative). For a vector
x ∈ Rn, its Euclidean norm is denoted by |x|. Given a matrix
P ≻ 0 and a vector x ∈ Rn, |x|P denotes

√
x⊤Px.

II. PROBLEM STATEMENT

A. Data-generating system

Consider the discrete-time data-generating system repre-
sented by the following set of nonlinear difference equations:

x̃k+1 = f(x̃k, uk), (1a)
ỹk = h(x̃k, uk) + ek, (1b)

where, at time instance k ∈ Z, the state is denoted by
x̃k ∈ Rn, the input by uk ∈ Rm, and the output by ỹk ∈ Rl.
The noise ek ∈ Rl, is assumed to be independent and
identically distributed white noise with a zero-mean normal
distribution which has a finite diagonal covariance matrix
Σe. This corresponds to an output error (OE) type of noise
structure for (1). The mapping f is called the state-transition
map and the mapping h is called the output map. Without
loss of generality, we assume that the origin is a fixed point
for the zero input, i.e., 0n = f(0n, 0m). The class of bounded
inputs Uc is defined as follows for any constant c ∈ R+:

Uc := {{uk}k∈Z | uk ∈ Uc, ∀ k ∈ Z} (2)

with Uc being a ball around the origin defined as follows:

Uc := {u ∈ Rm | |u| ≤ c} . (3)

Solutions of the system (1a) for inputs u ∈ Uc are all
sequences {x̃k, uk}∞k=k0

∈ Rn+m that satisfy (1a) with
x̃k0

∈ Rn. If no confusion arises, such a solution is denoted
by x̃.

It is assumed that the data-generating system (1a) exhibits
a strong form of model stability for any input from an a
priori known input class Uc. Hereto, the notion of global
convergence, defined in [27], is adapted to convergence on
compact sets and is defined as follows.

Definition 1: The discrete-time nonlinear system (1a) is
said to be exponentially convergent in a set X ⊂ Rn for a
class of inputs Uc if, for every u ∈ Uc,

• there exists a solution x̄, called the steady-state solution,
that is defined and lies in X for all k ∈ Z;

• the steady-state solution x̄ is exponentially stable for
any initial condition in X , i.e., there exist scalars τ ∈
R+ and 0 ≤ ρ < 1 such that for any x̃0 ∈ X , the
solution x̃ satisfies:

|x̃k − x̄k|2 ≤ τρk|x̃0 − x̄0|2, ∀ k ≥ 0. (4)

Assumption 1: The data-generating system (1a) is expo-
nentially convergent on the user-defined convergence region
X for the user-defined class of inputs Uc.

For the zero input, i.e., uk = 0, for all k ∈ Z, the origin of
an exponentially convergent system (1) is an exponentially
stable fixed-point for any initial condition in X . Furthermore,
for any non-constant input sequence from Uc, e.g., periodic
input, the exponentially stable steady-state solution x̄ is in
general also non-constant, e.g., periodic. Consequently, the
effect of initial conditions fades out, which can be exploited
in a learning setting that uses steady-state response data to
avoid the dependency on initial conditions, as is done in [9].

Remark 2: With some adaptations, the approach proposed
in this paper can be extended to include systems with process
noise. In that setting, the approach in [28] enables the
estimation of the noise realization e and a sample-based
estimate of the covariance matrix Σe directly from the input-
output data. Consequently, the noise sequence can be treated
as an additional input during the subsequent estimation of f
and h. However, in this paper, we focus on enforcing stability
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and due to space limitations this extension is not presented.

B. Model class

For the estimation of f and h, a reproducing kernel Hilbert
space (RKHS) based modeling approach is taken, where
basis functions are defined by a so-called kernel function.
Consider the following model class:

Exk+1 = f̂(xk, uk) :=

Ns∑
i=1

αiK
α
i (xk, uk),

yk = ĥ(xk, uk) :=

Ns∑
i=1

βiK
β
i (xk, uk),

(5)

where the functions Kα
i (xk, uk) : Rn × Rm → R and

Kβ
i (xk, uk) : Rn × Rm → R are kernel slices, generated

by symmetric, positive definite kernel functions. The weights
αi ∈ Rn, βi ∈ Rl, for all i ∈ {1, . . . Ns}, with Ns the number
of kernel slices used, and the matrix E ∈ Rn×n, which is
restricted to be non-singular, are model parameters. These
parameters are collected in a parameter vector θ ∈ Rnθ with
nθ := n2 + (n + l)Ns. An example of a kernel function is
the squared-exponential (SE) kernel function [14]:

Kα(za, zb) := exp

(
−|za − zb|2

2ℓ

)
, (6)

where the kernel width ℓ > 0 is a tuneable hyper-parameter
and za, zb ∈ Rp and p is a positive integer. For the problem
at hand, the kernel slices in (5) are then defined as follows:

Kα
i (x, u) := Kα

([
xsi
usi

]
,

[
x
u

])
, (7)

where xsi ∈ Rn, usi ∈ Rm, i = 1, . . . , Ns, are so-called
pseudo inputs [29] or inducing variables [30]. The pseudo
inputs facilitate efficient sparse implementation [29], [30]
and are also part of the tuneable hyper-parameters. Note
that the model parametrization θ is linear. As we will show
later, the proposed approach in Section III guarantees that
the matrix E in (5) is non-singular and exploits this matrix
for the convexification of the proposed approach.

The choice of the kernel function defines the resulting
function space in which f̂ and ĥ are searched. The approach
in this paper can be applied to almost any kernel function,
e.g., the linear, polynomial, spline, and wavelet kernels [14],
or the SE kernel function as in (6). The only requirement is
that the kernel Kα is differentiable with respect to x over
the convergence region X . Furthermore, the kernel functions
that generate the kernel slices in f̂ and ĥ in (5) can be
selected independently. The kernel functions, together with
their hyper-parameters and pseudo input locations define a
possibly infinite set of basis functions [31].

C. Learning problem

The dataset, denoted by D, contains N samples of the
input ũ, the output ỹ, and the state x̃ of the data-generating
system (1), and is defined as follows:

D = {uk, ỹk, x̃k}Nk=1. (8)

It is assumed that the data is generated from zero initial con-
dition. The availability of the state sequence x̃ is exploited
in the proposed solution in Section III. In practice, however,
full-state measurements are not always available. A compat-
ible state sequence can then be estimated using a kernelized
version of canonical correlation analysis (CCA), as outlined
in [32], [28]. Because this estimated state sequence comes in
an unknown state basis that may be nonlinearly transformed,
a nonlinear output mapping ĥ should also be learned. It is
also worth noting that, under certain conditions, the state
estimation approach in [28] is statistically consistent.

The convergence region X to be enforced during learning,
is defined as the convex hyperellipsoidal set:

X := {x ∈ Rn | x⊤Xx ≤ 1}, (9)

characterized by the user-defined matrix 0 ≺ X ∈ Rn×n.
Note that the matrix X can always be chosen such that X
contains the state sequence x̃ in the dataset D such that
{x̃k}Nk=1 ∈ X . However, the set X can be chosen larger
to allow for extrapolation without instability problems.

Consider the regularized equation error criterion:

J(θ,D) :=
γf

2(N − 1)

N−1∑
k=1

∥∥∥Ex̃k+1 − f̂(x̃k, uk)
∥∥∥2
2

+
γh
2N

N∑
k=1

∥∥∥ỹk − ĥ(x̃k, uk)
∥∥∥2
2

+
1

2

n∑
i=1

∥∥∥f̂(i)∥∥∥2
H
+

1

2

p∑
i=1

∥∥∥ĥ(i)∥∥∥2
H
,

(10)

where ∥·∥2H = ⟨·, ·⟩ is the squared Hilbert-space norm,
defined for functions in an RKHS, and f̂(i) : Rn × Rm → R
is the i-th element of the vector-valued function f̂ : Rn ×
Rm → Rn (and ĥ(i) is defined similarly). The RKHS is
defined through the kernel function and its hyper-parameters,
see [31] for details. Essentially, (10) is the one-step-ahead
prediction error criterion with additional regularization terms
(the last two terms in (10)) to avoid overfitting and to control
the bias-variance tradeoff via the regularization-parameters
γf , γh ∈ R+. The criterion in (10) is quadratic and, thanks
to (5) and the properties of the RKHS norm, it is convex in
the model parameter vector θ characterizing f̂ and ĥ. Based
on the criterion (10), the convergence region X , and the input
class Uc, the learning problem is formalized as follows.

Problem 3: Consider the data-set D in (8), the conver-
gence region X in (9), and the class of inputs Uc in (2).
Find a model of the form (5) such that the regularized
equation error criterion J in (10) is minimized and such
that the learned model (5) is exponentially convergent on
the convergence region X for the class of inputs Uc.

In practice, checking whether the true system is convergent
is a non-trivial task. Therefore, Problem 3 can be interpreted
in two different ways. Firstly, if the data-generating system
is convergent, e.g., inferred by analyzing its responses, then
Problem 3 preserves this property for the learned model.
Secondly, if it is unknown whether the data-generating sys-
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tem is convergent, then Problem 3 enforces the convergence
property because it is a favorable model property for using
the model, e.g., for reliable model simulation for new inputs.

III. CONVERGENT MODELS BY CONVEX LEARNING

In this section, the learning problem is formulated as
a constrained optimization problem for a given, fixed set
of kernel hyper-parameters, regularization parameters, and
pseudo-input locations. The constrained optimization prob-
lem is formulated jointly convex in the error criterion and
the constraints that enforce the convergence property.

Using the convex convergence region X defined in (9), a
test for the convergence property on X for models of the
form (5) is presented in the next theorem using the notation:

A(x, u) :=

Ns∑
i=1

αi
∂Kα

i

∂x
(x, u). (11)

Theorem 4: Consider the model (5), the convergence re-
gion X in (9), and the class of inputs Uc in (2) defined
through Uc in (3). Assume that A(x, u) exists for all (x, u) ∈
(X ,Uc). If there exists a matrix P ∈ Rn×n such that:

P ≻ 0, (12a)[
E+E⊤−P A⊤(x, u)
A(x, u) P

]
≻ 0, (12b)[

E+E⊤−X f̂(x, u)

f̂⊤(x, u) 1

]
⪰ 0, (12c)

for all (x, u) ∈ (X ×Uc). Then, the matrix E is non-singular
and the model (5) is exponentially convergent in the set
X under any input from Uc. As a consequence, any two
solutions starting from xa0 , x

b
0 ∈ X , with the same input

u ∈ Uc will remain in X , i.e., xak, x
b
k ∈ X , ∀ k ≥ 0.

Furthermore, there exist scalars τ ∈ R+ and 0 ≤ ρ < 1,
such that any two solutions starting from xa0 , x

b
0 ∈ X with

the same input u ∈ Uc remain in X for k ≥ 0 and converge
exponentially to each other, i.e.,

|xak − xbk|2 ≤ τρk|xa0 − xb0|2, ∀ k ≥ 0. (13)

Proof: The proof is omitted for the sake of brevity.
The condition (12b) enforces (exponential) incremental

stability on (X ,Uc), while the condition (12c) enforces
positive invariance of the set X for inputs from Uc. The
latter property of the set X for the model (5) implies that
there exists a solution x̄ that lies in X for all k ∈ Z, see
[33, Lemma 2]. As a consequence, (exponential) convergence
according to Definition 1 is guaranteed. The conditions of
Theorem 4 are convex in the matrix P and the parameter
vector θ as these appear linearly in the conditions (12).

For most kernel choices, the function f̂ in (5) is non-
convex in x and u. Consequently, the conditions of Theo-
rem 4 must be verified for all (x, u) ∈ (X ,Uc). For some
specific parametrization of the state-transition map f̂ in (5),
the conditions of Theorem 4 can be verified efficiently,
for example using a polynomial basis function expansion
for f̂ and the sum-of-squares programming techniques, see
[22], [23]. Unfortunately, that approach does not apply to

kernel-based modeling using a generic class of kernels, as
is the case considered in this paper. To make the conditions
computationally tractable, the verification is performed on a
grid where the sets X g,Ug

c denote the gridded version of the
convergence region X and the input space Uc, respectively.
This is further motivated by the observation that the matrices
in the conditions of Theorem 4 depend continuously on
(x, u) and the observation that many kernels, including the
SE kernel in (6), are smooth, i.e., infinitely many times
differentiable. The grid density trades off the risk of violating
the constraints (12) for some (x, u) ∈ (X ,Uc) against
numerical complexity.

In addition to the parameter vector θ, another parameter
vector is introduced that contains all the remaining param-
eters. This vector is denoted by ϕ ∈ Rnϕ with nϕ :=
nhyp +2+ (n+m)Ns, and contains (i) the nhyp number of
kernel hyper-parameters; (ii) the regularization parameters
γf , γh in (10); and (iii) the Ns number of pseudo input
locations (xsi , u

s
i ), i = 1, . . . , Ns.

Given the conditions of Theorem 4 and the gridded sets
X g,Ug

c , the model set Θ(ϕ) is defined as follows:

Θ(ϕ) := {θ ∈ Rnθ | (12) is feasible
∀ (x, u) ∈ (X g,Ug

c )} .
(14)

The set Θ(ϕ) encodes the convergence property such that
any candidate model θ ∈ Θ(ϕ) satisfies the conditions of
Theorem 4 on the grid (X g,Ug

c ). It is assumed that this grid-
based test, for a sufficiently dense grid, gives exponential
convergence on the non-grid-based convergence region X
with the non-grid-based input space Uc. The dependence of
the set Θ on ϕ is via the constraints (12b) and (12c), both
of which are inherently dependent on ϕ.

With some abuse of notation, the equation error criterion
(10) is written as J(θ, ϕ) with arguments θ and ϕ. Using this
notation, the following constrained optimization problem is
formulated for any given fixed choice of parameters ϕ:

θ̂ϕ = argmin
θ∈Θ(ϕ)

J(θ, ϕ), (15)

which is jointly convex in the parameter vector θ in the
criterion as well as in its constraints for any fixed ϕ.

Remark 5: For any ϕ ∈ Rnϕ , and any selected kernel
function, the set Θ(ϕ) in (14) is non-empty because model
(5) with E = X ≻ 0, αi = 0n, βi = 0l, i = 1, . . . , Ns,
satisfies the conditions of Theorem 4 for P = X . In fact,
such a model is globally convergent.

Remark 6: A choice of the vector ϕ can be interpreted
as a choice of the model class. For example, changing the
kernel hyper-parameters or the pseudo input locations will
result in different functions generated by the kernels. In
the RKHS literature, a variety of hyper-parameter tuning
approaches have been developed, i.e., for the tuning of ϕ,
see, e.g., [17], [29], [30]. The vector θ can be interpreted as
the parametrization of the specific model. The joint learning
of ϕ and θ could be cast as a two-level optimization problem
similar to [34]. However, in this paper, we focus on the
learning of θ only with guaranteed model stability.
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Remark 7: The computational complexity of the learning
problem depends on the dimensions of the LMIs in The-
orem 4 and the number of to-be-learned parameters nθ.
Consider the case where gx points are used for each of the n
state components and gu points are used for each of the m
input components. The dimension of the LMIs in Theorem 4
is gnxg

m
u (3n+ 1)× gnxg

m
u (3n+ 1) (note that the LMI (12a)

is implied by the satisfaction of (12b)). The number of
parameters to learn is nθ = n2 + (n + l)Ns, where Ns is
the number of pseudo input locations and l is the number
of outputs. In numerical case studies, the learning problem
for a second-order model (n = 2), for gx = 16, gu = 20
grid points (320 points in total), and Ns = 20 pseudo input
locations can be successfully solved within minutes on a
modern laptop. A topic for future study is to investigate the
implementation limits in terms of n, gx, gu, and Ns. We are
working on extensions that do not require gridding and are
therefore more computationally efficient.

IV. NUMERICAL CASE STUDY

This section presents a simulation case study that high-
lights the benefits of models learned using the strategy
proposed in this paper. The main contribution of this paper
is the learning of the state-transition mapping with the
convergence property enforced. Therefore, in this example,
we focus only on the learning of the state-transition mapping.
The predictive quality of the learned mapping is evaluated
using the best-fit rate (BFR) of the simulated model response.
The BFR is defined as follows:

BFR := 100% ·max

(
0, 1−

∥x̃− x∥2
∥x̃− mean(x̃)∥ 2

)
, (16)

where x̃ is the (measured) response of the data-generating
system and x is the model response computed by the forward
simulation. The BFR can be calculated for both the training
and test datasets.

Consider the following data-generating nonlinear system:

xk+1 =

 uk − 2x3⋆ + 3x2⋆xk if xk > x⋆,
uk + x3k if |xk| ≤ x⋆,
uk + 2x3⋆ + 3x2⋆xk if xk < −x⋆,

(17)

yk =xk, (18)

where x⋆ = 0.5. The dataset D of length N = 100 is
generated using an input sequence drawn from a normal
distribution and scaled such that |uk| ≤ 1, for all k ∈
{1, . . . , N}, thus u ∈ Uc with c = 1. Using this dataset,
two models are trained using the third-order polynomial
kernel and a number of Ns = 10 pseudo inputs. Firstly,
in a traditional manner, a model of the form (5) is learned
in an unconstrained manner according to [17] (containing
both θ and ϕ and using E = In), hence not guaranteed
to be convergent. This model is called the non-convergent
model with estimated parameters ψnc. Secondly, using the
proposed approach in this paper, a model of the form (5)
is learned for the set X in (9) with X = 1, i.e., X :=
{x ∈ Rn||x| ≤ 1}, and for the class of inputs Uc as in (2)
with c = 1. This model is called the convergent model with

Fig. 2. Response of the data-generating system and the simulation error
of the learned convergent and non-convergent models for the input in the
estimation dataset.

Fig. 3. Bounded response of the data-generating system for the test
input. The response of the learned convergent model remains within
|x| ≤ 1, while the response of the learned non-convergent model becomes
unbounded.

estimated parameters ψc. To implement the LMI constraints
characterizing the set Θ(ϕ) in (14), the input and state-
space are gridded equidistantly to give 11 and 10 points
in X and Uc, respectively. The responses of the learned
models to the input in the estimation dataset are depicted
in Figure 2. Although both models perform well, the non-
convergent model performs slightly better on the estimation
data, which is also evident by its BFR of 95.4% versus 91.0%
for the convergent model. This accuracy result is expected
as the proposed approach sacrifices accuracy for guaranteed
model stability.

Both models are subjected to a test input drawn from
the same distribution as the estimation input, i.e., from the
same class of inputs Uc with constant c = 1. Figure 3
shows that the response of the non-convergent model to this
new input becomes unbounded, even though the response of
the data-generating system remains bounded. However, the
response of the convergent model remains within X , i.e.,
within |x| ≤ 1, as enforced. The BFR for the convergent
model is 78.7% on the test data.

For scalar models, the conditions of Theorem 4 can
be guaranteed only if the Jacobian of the state-transition
mapping E−1f̂ with respect to x remains in absolute value
below 1 for all (x, u) ∈ (X ,Uc). Figure 4 shows that this
necessary condition is violated for the non-convergent model
for zero input, while it is satisfied by the convergent model.

This example illustrates the potential instability hazards
of learned models with traditional approaches, even in a
noiseless scenario. Furthermore, it shows that the proposed
approach guarantees bounded model responses inside the
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Fig. 4. The state-transition mapping (top panel) of the data-generating
system, the learned convergent model, and the learned non-convergent model
for zero input, together with their Jacobian (bottom panel) for zero input.

convergence region X for any input from the input class Uc.
The enforced convergence property thus provides robustness
of the learned model to new inputs.

V. CONCLUSIONS

This paper presents an approach for learning kernel-based
stable nonlinear state-space models. The solutions of the re-
sulting models are guaranteed to remain inside a user-defined
positively invariant set for a class of user-defined inputs.
Consequently, models learned by the proposed approach
safely generalize to unseen scenarios, which ensures the
robustness of the learned models to new inputs. The benefits
of the approach are illustrated by a simulation example, in
which the model learned using the proposed approach gen-
eralizes favorably to new inputs, while models learned using
traditional methods produce unstable, unbounded responses
for unseen scenarios.
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