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Abstract— Engineered biological systems fail when mutations
arise that inhibit their intended function. Such mutations
introduce uncertainty into the system parameters, making
negative feedback control an attractive strategy to improve
the evolutionary longevity of synthetic gene circuits. Here we
propose three classes of controller that improve evolutionary
performance in repeated batch culture. Each controller takes
a different biological input: (i) the gene product in the cell, (ii)
the host growth rate and (iii) the total population output. Using
a multi-scale model of host-circuit interactions, we demonstrate
that these different modes of action differentially influence the
growth dynamics between mutant strains, driving significant
differences in the long-term performance of gene circuits. We
show that population-based feedback is least effective and that,
whilst direct feedback inhibition is effective in the short-term,
growth-based feedback can enhance long-term performance to
a greater degree. We propose a novel control strategy which
combines two of the strategies and improves both short- and
long-term performance.

I. INTRODUCTION

The goal of synthetic biology is to engineer living sys-
tems with novel and useful functionalities. Genetic programs
(commonly referred to as “gene circuits”) can be encoded in
DNA molecules and engineered into “host” cells where they
are “executed” using the host’s existing metabolic resources
and gene expression machinery. In doing so, resources are
diverted away from essential host processes, such as growth,
and towards gene circuit expression. As a result, engineered
host cells typically exhibit reduced growth compared with
their non-engineered counterparts. This reduction in growth
rate is often referred to as “burden” [1], [2]. In the long
term, burden results in the loss of circuit function through
evolution; error-prone DNA replication leads to the emer-
gence of new, variant “mutant” strains, and where such mu-
tations reduce circuit resource utilisation, burden is relieved,
increasing their growth rate and giving them a competitive
advantage over their functional ancestors. Over time, strains
carrying mutated circuits come to dominate the population
and circuit function is inevitably lost [3].

Negative feedback confers synthetic biological systems
with robustness in the face of parametric uncertainty and en-
vironmental perturbation [4]. It has been demonstrated both
experimentally and theoretically that negative feedback has
the potential to confer gene circuits with robustness against
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Fig. 1. A block diagram outlining the model and the three control inputs:
intramodule control (blue), growth-based control (orange) and population-
based control (purple).

mutation and improve their performance over evolutionary
timescales [5]–[7].

Here we consider the design of negative feedback con-
trollers which maintain the population-level output of a
simple gene circuit (i.e. the sum of circuit output across all
cells in a population) over evolutionary time. We investigate
three primary classes of controller based on their input (Fig.
1). The first (blue) corresponds to sensing the circuit output
at the single cell level. As circuits mutate and synthetic
protein production falls, inhibition is relieved, enabling the
production level to rise again so cells can maintain output
despite disturbances/uncertainties. This can be implemented
using repressive transcription factors or small RNAs [8], [9].
The second class (orange) involves sensing the host cell’s
growth rate. In the presence of burden (i.e. low growth),
native genes are activated which can be used to drive circuit
repression, creating a burden-based feedback system [10].
In response to mutations which reduce circuit function,
burden is alleviated and the host growth rate increases. This
increased growth rate relieves inhibition so that production
can be maintained. The third class integrates negative feed-
back using the total population-wide protein output (purple)
and could be implemented experimentally using cell-cell
communication systems such as quorum sensing [11].

In this paper we compare these approaches using a multi-
scale model of circuit gene expression, host physiology and
mutation. In Section II, we outline a mathematical model
of an evolving population of engineered cellular processes
and simulate a simple open-loop gene circuit in repeated
batch conditions. In Section III, we develop phenomeno-
logical models of the three controllers and investigate their
performance. In Section IV, we use a parameter sampling
approach to compare performance at the topological level.
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In Section V, we discuss the short- and long-term dynamics
of the controllers to understand differences in controller
performance. Finally, in Section VI, we propose a new
control system that combines two of the control inputs to
achieve greater improvements in evolutionary longevity.

II. MODELLING GENE CIRCUIT EVOLUTION

A. A model of a simple gene circuit

We consider a simple gene circuit consisting of a sin-
gle gene A that produces protein pA, the cellular circuit
output. The circuit dynamics follow an ordinary differential
equation (ODE) model tracking three variables: mRNA mA,
translation complexes cA (i.e. ribosomes actively translating
mRNA A) and protein pA, each measured in molecules per
cell (mc). mRNA molecules mA are spawned according to
the transcription rate TXA(e, u), dependent on the energy
supply e and the control input of choice u. The mRNA binds
host ribosomes R at a binding rate bA to form translating
complexes cA, and decays at a rate δmA

. The translating
complexes can either dissociate (at rate uA to produce mRNA
mA without completing translation) or successfully translate
a protein, producing pA alongside mA at the translation rate
TLA(cA, e), dependent on the energy supply e and number
of translating complexes cA. The model exploits the host’s
supply of ribosomes R and energy e. All variables are diluted
by the host growth rate λ. The model is defined as follows:

ṁA = TXA
(e, u) + TLA

(cA, e)− bARmA + uAcA

− (λ+ δmA
)mA,

(1)

ċA = −TLA
(cA, e) + bARmA − uAcA − λcA, (2)

ṗA = TLA
(cA, e)− λpA. (3)

The transcription and translation rates are given by:

TXA
(e, u) =

ωAe

πA + e
ΘA(u), (4)

TLA
(cA, e) =

cA
nA

γmaxe

Kγ + e
, (5)

where ωA is the maximal transcription rate and πA is the
transcription energy threshold. nA is the protein length, γmax
is the maximum rate of protein elongation and Kγ is the
elongation energy threshold. Control is enacted through the
regulatory function ΘA(u) which impacts the transcription
rate. For an open-loop system, ΘA(·) = 1. In Section III, we
choose the control input u and regulatory function ΘA(u)
to maximise evolutionary longevity. Throughout, we fix the
following parameters, based on the parameterisation of host
genes in the host model [12]: πA = 4.38 mc, nA = 300
aa (average length of E. coli gene), bA = 0.1 mc min−1,
uA = 0.01 min−1, δmA

= 0.1 min−1. We vary ωA between
10−1 and 103 mc min−1 representing a wide, biologically
feasible range of gene expression.

B. Modelling interactions between host and circuit

This simple three-state gene circuit model is embedded
into an established model of E. coli physiology [12]. The
combined host-circuit model contains 19 ordinary differential
equations (ODEs) that explicitly capture the dynamics of

cell metabolism, gene expression and dynamic growth. In
addition to synthetic protein pA, the model tracks a coarse-
grained proteome consisting of transport proteins pT , en-
zymes pE , ribosomal protein pR and other host “housekeep-
ing” proteins pH . Growth is calculated dynamically as a
function of the total number of translating complexes:

λ =
γmaxe

M(Kγ + e)

∑
x

cx, (6)

where M defines the total mass of proteins in the cell. The
model contains a simplified metabolism with the following
dynamics:

ṡI = vimp(pT , sX)− vcat(pE , sI)− λsI (7)

ė = ϕevcat(pE , sI)−
∑
x

[nxTLx
(cx, e)]− λe. (8)

Here, sX is the external substrate which is consumed by
the cell. It is imported (i.e. converted to internal substrate
sI ) at a rate vimp(pT , sX) and metabolised (i.e. converted
to energy e) at a rate vcat(pE , sI) with the nutrient effi-
ciency ϕe determining the amount of energy produced per
molecule of substrate. Both vimp and vcat have a Michaelis-
Menten form. The energy e is assumed to influence both
the transcription rate TXx(e, u) and the translation rate
TLx(cx, e), but is consumed only through translation [12].
The energy consumption by translation is scaled by the
protein length nx. The transcription and translation rates for
host protein types obey the same form as those for synthetic
protein (Eq. 4, 5). Housekeeping proteins self-regulate via
ΘH(pH) = k4H/(k4H + p4H) with kH = 152219 mc [12]. All
other protein types are unregulated (Θx(·) = 1).

Gene expression of most protein types is modelled identi-
cally to synthetic protein (Eq. 1, 2, 3). Ribosomes, composed
of rRNA r and proteins pR, undergo biogenesis via the multi-
step process discussed in detail elsewhere [12]. The dynamics
of the free ribosome pool is:

Ṙ = −
∑
x

[TXx
(cx, e)− bxRmx + uxcx]

+βrpRr − µrR︸ ︷︷ ︸
Ribo. biogenesis

−λR

(9)

The dynamics of the host and circuit are interlinked, with
interactions in both directions, capturing the phenomenon of
burden. The host influences the circuit by supplying energy
and ribosomes, and diluting all circuit components according
to its growth rate (Eq. 1, 2, 3). The circuit influences the host
by altering the growth rate (Eq. 6) and the division of energy
and ribosomes between protein types (Eq. 8, 9).

C. Modelling a population of evolving circuit-bearing cells

To model an evolving population of circuit-bearing cells,
we extend the approach we used in [6], similar to one
recently proposed by Ingram and Stan [13]. Simulations of
chemostat growth (as in [6]) limit the exploration of the
design space; if a given circuit has a growth rate slower
than the chemostat dilution rate, all population dynamics
collapse to zero. We therefore model population dynamics
in a batch setting. To simulate a heterogeneous population
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Fig. 2. The mutation scheme used for the model. Each circle represents
a “mutation state” - a strain of cells distinguished by different maximal
transcription rates ωA. Percentages describe the level of ωA relative to
the designed level. Mutations are represented by arrows between states,
with labeled values describing the rate of transition between states. Only
mutations which reduce function are allowed. Here, σ = 10−6 min−1.

without a combinatorial explosion in complexity, we define a
population N comprised of five discrete “mutation states” so
that N =

∑5
j=1 Nj . These mutation states represent distinct

mutant strains (here defined as percentages of the designed
transcription rate of synthetic protein ωA: 100%, 75%, 50%,
25%, 0%). The 100% state represents a fully functional
circuit and the 0% state represents a non-functional circuit.
Mutation is modelled via transitions between mutation states.
The population of an engineered strain i follows:

Ṅi = λiNi +

5∑
j=1,j ̸=i

[
σjiNj − σijNi

]
, (10)

where λi is the growth rate of state i and σij is the transition
rate from state i to state j. Transition rates are defined in
reference to a single parameter σ = 10−6 min−1, with more
extreme mutations assumed to be less frequent (Fig. 2). All
mutation states consume the extracellular substrate sX :

˙sX = −
5∑

j=1

[
vimp(pTj , sX)Nj

]
, (11)

where pTi
is the transporter of the ith state. The combined

model consists of 101 ODEs, 20 per state in addition to
sX . Host parameters are consistent with previous work [6],
[12], although we alter the nutrient efficiency (ϕe = 20) and
elongation energy threshold (Kγ = 8× 108 mc) so that the
population reaches steady state within 24 hours [14].

D. Quantifying circuit performance over evolutionary time

To verify the ability of the model to capture evolutionary
dynamics, we simulate an open-loop system in the absence
of control with ωA = 5 mc min−1 (Fig. 3). To resemble a
realistic laboratory study, external substrate is replenished
(sX = 1012 molecules) every 24 hours and the population
size is reset to 1000, maintaining the ratio between mutation
states (as in [14]) (Fig. 3a). We consider the total process
output across the combined population over time:

P =

5∑
j=1

(
NjpAj

)
.

Fig. 3. Time-series outputs of an open-loop process with maximal
transcription rate ωA = 5 mc min−1. (a) Population size N and external
substrate sX for the first three days of the simulation. Every 24 hours, the
population size is reduced to 1000 cells and substrate is replenished. (b)
Total population-wide circuit output P , plotted in full (blue) and at the end
of each simulation day (red). The grey dashed line shows how a theoretically
ideal system would perform. (c) Population size N , distributed according to
mutation state. (d) Output per cell pA according to mutation state, measured
once per day. (e) Growth rate λ according to mutation state, measured once
per day. (e) Left axis: A snapshot of the entire growth dynamics for a single
day of the simulation. Right axis: External substrate sX .

An ideal system would maintain P over long time scales. To
quantify evolutionary performance, we define three metrics:

1) The initial population-wide protein output P0.
2) The 90%-life τ90, the time taken for P to fall to 90%

of its initial value.
3) The 50%-life τ50, the time taken for P to halve.

τ50 is a widely-used measure of longevity [15]. τ90 quan-
tifies the duration of “good” performance, useful in applica-
tions where maintaining high production is key. The output P
fluctuates widely in repeated batch conditions. Therefore, we
calculate these metrics by interpolating between the output
values at the end of each day. Likewise, to track long-
term protein production and growth dynamics, we measure
outputs pA and growth rates λ once per day at the instant
where substrate runs out. (Minor variations over time as in
Fig. 3d,e are therefore possible as perturbation to substrate
consumption may lead to it running out at different times
of day.) The initial/nominal circuit design has τ90 = 20.5
days and τ50 = 32.2 days, and function is completely
eradicated within 50 days (Fig. 3b). This loss of function
corresponds to a transition of the population distribution
from one initially comprised entirely of cells with fully
functional circuits to one comprised entirely of cells with
non-functional circuits, with intermediate mutation states
arising and dying out during the simulation (Fig. 3c). This
transition occurs because states with reduced transcription
produce less synthetic protein and have lower burden/faster
growth than states with greater production (Fig. 3d,e,f).
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III. PHENOMENOLOGICAL MODELS OF FEEDBACK
CONTROLLERS

We develop phenomenological models of controllers
which act to influence the circuit transcription rate via dif-
ferent control inputs u and regulatory functions ΘA(u) (Eq.
4). We consider three forms for ΘA(u) which correspond
to distinct biological inputs. We call them (i) intramodule
feedback, (ii) growth-based feedback and (iii) population-
based feedback (Fig. 1). In each case, we implement schemes
which act where burden is high in order to reduce the
selective advantage of mutants.

A. Intramodule feedback
Intramodule feedback arises from feedback inhibition by

the process’s protein product pA on a per-cell basis. This
approach is analogous to control designs proposed by e.g.
Shopera et al. [8] and Huang et al. [9], where each cell senses
a proxy for its own output. Self-inhibition of pA production
is implemented using a Hill function:

ΘA(pA) =
kA

2

kA
2 + pA2

(12)

We simulate the action of this controller for three nominal
processes with various burdens generated by maximal tran-
scription rates ωA set as 25, 5 and 1 mc min−1 (correspond-
ing to ancestral growth rates of 0.0223, 0.0242 and 0.0253
min−1). Increasing the controller strength by decreasing kA
across its biologically feasible range increases both τ90 and
τ50 at a loss of initial output P0 (Fig. 4a,d,e).

B. Growth-based feedback
Since the rate of function loss in an engineered population

is primarily determined by the difference in growth rates
between functional and non-functional strains, using control
to explicitly react to growth rates is an appealing strategy.
In [10], Ceroni et al. proposed a burden-activated controller
that exploits native promoters that are upregulated when cells
experience burden. This controller acts to inhibit synthetic
protein production at low growth and relieves repression at
high growth. We model this function as:

ΘA(λ) =
λ2

kλ
2 + λ2

. (13)

Nominal controller designs successfully improve both τ90
and τ50 at a loss of initial output P0 as controller strength
increases (Fig. 4b,d,e).

C. Population-based feedback
Since our goal is to maintain population-wide output

P over time, we consider using this as the input for a
negative feedback controller. A population-sensitive system
like this could be implemented biologically using cell-cell
communication systems such as quorum sensing.

ΘA(P ) =
kP

2

kP
2 + P 2

(14)

We again simulate a range of controllers by varying kP and
see an improvement in both τ90 and τ50 at the expense of
initial output P0 as controller strength increases (Fig. 4c,d,e).

Fig. 4. Three open-loop processes are considered with maximal tran-
scription rates ωA = 25, 5, 1 mc min−1. (a,b,c) For the process with
ωA = 5 mc min−1, time-series outputs are presented with increasing
control strengths for each controller: (a) intramodule, (b) growth-based, (c)
population-based. Line colour indicates the strength of control, determined
by varying the dissociation parameters kA, kλ, kP over biologically feasible
ranges and normalised to be on a scale from 0 to 1. (d,e) Grey circles mark
the initial outputs P0 of the three open-loop processes against (d) 90%-life
τ90 and (e) 50%-life τ50. Lines indicate how this relationship changes as
controller strength is increased for each control scheme.

IV. PERFORMANCE COMPARISON OF CONTROLLERS

We now study controller performance by varying both
process activity (via the maximum transcription rate ωA) and
controller strength (via dissociation parameters kA, kλ, kP )
to compare their topological behaviour (Fig. 5). In each case,
controller performance is determined by comparison with an
open-loop system of equal initial output P0, generated by
separately varying ωA.

Intramodule feedback always outperforms open-loop with
improvements versus open-loop of up to 100% for τ50 and
an even greater 128% for τ90. Across samples of equiv-
alent output, those with the highest process activity and
strongest control provide the largest improvement, although
continually increasing control strength beyond a certain point
offers diminishing returns (Fig. 5a,b). When control is very
weak, while τ50 is unchanged versus open-loop, τ90 can still
noticeably improve, particularly in systems with large initial
outputs. Directly maximising controller strength significantly
reduces the range of possible initial outputs achievable.
For this reason, when designing such a controller, it is
recommended to first maximise the base transcription rate
via ωA, then adjust the controller strength to achieve the
preferred initial output.

While intramodule feedback is still effective at very large
initial outputs (> 1010), growth-based feedback is unable to
yield improvement in this range. However, for the major-
ity of the performance space, growth-based feedback does
improve both τ90 and τ50 (Fig. 5c,d). Unlike intramodule
feedback, the potential improvement in τ90 (up to 99%) is
exceeded by that of τ50 (up to 145%). Among systems of
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Fig. 5. All plots show the relationship between initial output P0 and
90%-life τ90 or 50%-life τ50 for various process-controller systems. Each
marker represents the output of a simulation with a different parameterisa-
tion. Dotted black lines indicate open-loop relationships. Markers indicate
different process-controller parameterisations, where marker colour indicates
the strength of the controller (kA, kλ, kP ) and marker size indicates the
activity of the process (ωA). (a,c,e) τ90, (b,d,f) τ50. (a,b) Intramodule
feedback, (c,d) Growth-based feedback, (e,f) Population-based feedback.

equivalent initial output, the strongest controllers provide the
largest improvement, though again there is little to separate
controller performance once the strength passes a certain
point. While the weakest controllers have little impact at high
initial outputs, they are capable of improving both the τ90
and τ50 when P0 is low. Contrary to intramodule feedback,
a wide range of P0 is achievable with all but the strongest
controllers. Therefore, it is recommended to first choose
a strong controller, and then adjust the process activity to
achieve the preferred initial output.

For population-based feedback, the majority (536/900 for
τ90 and 526/900 for τ50) of samples perform worse than
open-loop. Further, across systems of equal initial output,
controllers with the strongest action actually yield the worst
performance. When improvement is possible, performance
is instead maximised at some intermediate control strength
(Fig. 5e,f).

V. UNDERSTANDING DIFFERENCES IN CONTROLLER
PERFORMANCE

Our results suggest that, at the topological level,
population-based feedback is vastly outperformed by in-
tramodule feedback and growth-based feedback. Intramod-
ule feedback particularly excels at extending the 90%-life,
whereas growth-based feedback is most effective at extend-
ing the 50%-life. To better understand these differences in
performance and their mechanistic cause, we consider the

Fig. 6. Time series outputs for five individual systems: (i) Open-loop,
(ii) Strong intramodule feedback, (iii) Strong growth-based feedback, (iv)
Medium-strength population-based feedback, (v) Strong population-based
feedback. All quantities are measured once per day. (a) Total output P , (b)
Population N distributed according to mutation state, (c) Protein output per
cell pA according to mutation state, (d) Growth rate λ for each mutation
state.

dynamics of a series of individual controller designs, whose
maximal transcription rates ωA have been tuned so that their
initial outputs P0 align with the original open-loop system
(Fig. 3). In total, we compare five systems:

(i) Open-loop (ωA = 5 mc min−1).
(ii) Strong intramodule feedback (ωA = 390 mc min−1,

kA = 1000 mc).
(iii) Strong growth-based feedback (ωA = 21 mc min−1,

kλ = 0.02 min−1).
(iv) Medium-strength population-based feedback,

which outperforms the open-loop system
(ωA = 8.5 mc min−1, kP = 108molecules).

(v) Strong population-based feedback, which does not out-
perform the open-loop system (ωA = 705 mc min−1,
kP = 1.4× 109molecules).

To explain the differences in their performance, we look at
dynamics over the long term (with quantities measured once
per day) and in the short term (considering quantities over
the course of one day).

A. Long-term dynamics explain intramodule 90%-life per-
formance and accelerated population-based loss-of-function

We have previously demonstrated that intramodule feed-
back is capable of improving both the 90%-life and 50%-life
of a simple system in a chemostat, with the improvement in
90%-life being more significant because the fully functional
(100%) state endures for longer but the non-functional (0%)
state dominates quickly when it arises [6]. Results are
consistent in the repeated batch setting (Fig. 6a,b, blue), with
τ90 and τ50 improving by 122% and 79% versus open-loop.
When intermediate states arise, they produce less output per
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cell pA than the fully functional (100%) state. Correspond-
ingly, control is alleviated, so pA rises and remains closer to
the designed level (Fig. 6c(ii)). This means that mutation into
intermediate states provides only a small growth advantage,
but mutation into the non-functional (0%) state provides a
larger growth advantage (Fig. 6d(ii)). Intramodule feedback
would therefore be even more effective under alternative
mutation schemes where complete loss-of-function mutations
are less likely, and vice versa.

Despite having a smaller 90%-life, the growth-based con-
troller outlasts the intramodule controller, with improvements
versus open-loop of τ90 by 89% and τ50 by 125% (Fig.
6a, red). This corresponds to a more steady transition in
population distribution through the intermediate states, as
opposed to a sudden rise in the non-functional (0%) state
(Fig. 6b, red). The long-term protein production and growth
dynamics do not appear to change significantly versus open-
loop (Fig. 6c(iii),d(iii)).

The medium-strength population-based feedback con-
troller improves τ90 by 30% and τ50 by 26% versus open-
loop, with a steady transition in population distribution
(Fig. 6a,b, purple). The strong population-based controller
significantly worsens both metrics, corresponding to a sharp
transition in population distribution from fully functional
(100%) to non-functional (0%) (Fig. 6a,b, green). As the
population distribution changes over the course of the simu-
lation, the control input P , which is the same for all mutation
states, falls. This means that the internal dynamics of cells
change even if they haven’t mutated. Since P decreases over
time, the strength of control reduces over time. Thus, for
each state, the per-cell production rate increases and growth
rate decreases (Fig. 6c(iv),c(v),d(iv),d(v)). This means that
functional circuits are put at an even greater selective dis-
advantage than non-functional circuits, accelerating loss-of-
function.

B. Short-term dynamics drive enhanced growth-based per-
formance and poor population-based performance

We now consider the first day of the simulations from
Section V-A. Here, mutation has negligible influence, and the
whole population dynamics can be captured by considering
only the fully functional (100%) mutation states. In response
to external substrate being replenished, there is a spike
in the per-cell production of pA. This protein production
overshoot damps growth. The best performing controllers
reduce the height of this spike, with growth-based feedback
capable of flattening it altogether. The strong population-
based controller actually heightens this overshoot (Fig. 7a).

By avoiding this spike in protein production, the growth-
based controller is able to divert more resources towards
growth, leading to a faster-growing population. On the other
hand, the strong population-based controller diverts more
resources away from growth, leading to a slower-growing
population (Fig. 7b). As a result, the population-based con-
troller is able to produce more protein in the first 3 hours,
using a small number of high-producing cells. However,
production by the growth-based system then overtakes it,

Fig. 7. Time series outputs from a single day of simulation for five indi-
vidual systems: (i) Open-loop, (ii) Strong intramodule feedback, (iii) Strong
growth-based feedback, (iv) Medium-strength population-based feedback,
(v) Strong population-based feedback. (a,b,c) First day of simulation. Only
100% (fully functional) mutation states are plotted. (a) Protein output per
cell pA, (b) Growth rate λ (dotted grey lines show growth rates of 0% (non-
functional) mutation states), (c) Total output P . (d,e,f) Day of simulation
when τ50 is reached. Analogous to (a,b,c) with all mutation states displayed.

making the most of its increased population size to produce
output from a larger number of less burdened cells (Fig. 7c).
Similar dynamics are observed across the simulation in the
presence of mutation. (The day when systems reach their
50%-life is shown in Fig. 7d,e,f.)

VI. COMBINING INTRAMODULE AND GROWTH-BASED
FEEDBACK BOOSTS EVOLUTIONARY LONGEVITY

We have demonstrated that both intramodule feedback
and growth-based feedback can be effective at improving
evolutionary longevity, the first by “condensing” the growth
rates of the intermediate states so that they have less of a
selective advantage over the fully functional state and the
second by improving the growth rate of the fully functional
state in the short-term response to replenished substrate. We
propose a new controller which combines both intramodule
and growth-based feedback. We employ the following regu-
latory function:

ΘA(pA, λ) =

[
kA

2

kA
2 + pA2

] [
λ2

kλ
2 + λ2

]
. (15)

We sample a large number of controller designs by varying
ωA, kA and kλ over biologically feasible ranges. We select
those samples which simultaneously maximise initial output,
50%-life and 90%-life. This is equivalent to solving the
following multi-objective optimisation problem:

maximise
ωA, kA, kλ

(
P0, τ90, τ50

)
subject to

100 ≤ ωA ≤ 103 mc min−1

102 ≤ kA ≤ 106 mc

10−6 ≤ kλ ≤ 0.03 min−1.

(16)
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Fig. 8. Combining intramodule and growth-based control. (a,b,c,d,e)
Samples were generated by varying process activity (ωA) and control
strength (kA, kλ). Samples which simultaneously maximise initial output
90%-life τ90 and 50%-life τ50 are plotted with initial output P0 on the x
axis. (a,b) Percentage change in (a) τ90 and (b) τ50 versus open-loop. Other
controllers also presented for comparison. (c) Process maximal transcription
rate ωA. (d) Control strength from the intramodule component kA. (e)
Control strength from the growth-based component kλ. (f,g,h) A single
controller design was selected with quantities plotted over time. (f) Output
per cell pA, measured once per day. (g) Growth rate λ, measured once per
day. (h) Growth rate λ over the course of the first day.

This control topology significantly outperforms all pre-
vious systems, with improvements of up to 224% for τ90
and 275% for τ50 versus open-loop (Fig. 8a,b). Parameteri-
sations of optimal controllers suggest that process activity
and intramodule control strength should be large, while
growth-based control strength should be kept at a medium
value (Fig. 8c,d,e.) Excessively increasing the growth-based
control strength beyond this level significantly reduces the
initial output P0.

To understand the dynamics of this control scheme, we se-
lect a close-to-optimal parameterisation and tune the process
activity via ωA to align with the original open-loop system,
as in Section V-B (wA = 502 mc min−1, kA = 1000 mc,
kλ = 10−3 min−1). Versus open-loop, this controller im-
proves τ90 by 221% and τ50 by 243%. As expected, the
production rates and growth rates of intermediate states are
condensed (Fig. 8f,g). Furthermore, the growth rate of the
fully functional state is able to closely track that of the non-
functional state in response to fresh medium (Fig. 8h).

VII. CONCLUSION

In this work, we have developed a mathematical model to
compare the ability of controllers to improve the evolutionary
longevity of a simple gene circuit. When the strength of
control is maximised, population-based feedback actually

performs worse than open-loop. Even when optimised, it
performs far worse than the other two inputs considered. In-
tramodule feedback is particularly effective at improving the
90%-life, because it enables intermediate mutation states to
better maintain synthetic protein production and reduces their
selective advantage. Growth-based feedback is most effective
at improving the 50%-life, because it prevents burdensome
protein production from overshooting when extracellular
substrates are replenished. We demonstrate that differences
in controller performance are a result of differences in both
long- and short-term dynamics, with evolutionary perfor-
mance dictated by the relative growth rates of competing
strains. We propose a novel control strategy based on both
intramodule and growth-based feedback which significantly
improves evolutionary longevity. We are now investigating
the performance of biologically feasible controller designs
inspired by these theoretical comparisons. In particular, it
will be important to evaluate the extent to which the theo-
retical benefits provided by negative feedback remain if the
controller itself introduces additional burden.
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