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Abstract— A computationally efficient model predictive con-
trol scheme is proposed for constrained nonlinear processes
with inherent slow and fast dynamics. Specifically, the nonlinear
process is approximated by a surrogate model, whose slow
state is sampled with a larger time interval than the fast
one. This reduces optimization variables and, on the other
hand, introduces prediction errors and henceforth may induce
constraint violation without further treatments. To mitigate
these issues, we tighten constraints by leveraging Robust
Control Contraction Metrics. Furthermore, a back-up strategy
is employed to ensure feasibility over time. The numerical
efficiency of this proposed scheme is illustrated with a crops
growth process, e.g., in indoor farming.

I. INTRODUCTION
Model Predictive Control (MPC) solves an optimal con-

trol problem in a receding-horizon fashion. It is nowadays
a prevalent approach to compute optimal control actions
accounting for input and state constraints. The accuracy
of models used for MPC plays a crucial role in closed-
loop performance and constraint guarantees. However, high-
fidelity models emerging from real applications, e.g. green-
house cultivation [1] and chemical engineering [2], can be
very complex, which renders real-time implementation chal-
lenging. In response to this challenge, tremendous research
progress have been made in past decades, e.g. non-uniformly
spaced horizon [3], move blocking [4], just to name a few.

Specially for multi-timescale systems, hierarchical MPC
[5] appears promising and found numerous successful appli-
cations, e.g. [6], [7]. In this method, the system is approx-
imately decomposed into slow and fast timescale reduced
order models and used by higher and lower level MPCs op-
erating in different timescale. However, the design methods
tailored on specific practical problems lack control-theoretic
guarantees. Indeed, as for state constraints, model errors
arsing from model decomposition are not considered in [6],
[7]. Another promising method is the decentralized approach
proposed in [8], where multiple controllers operates with
different timescale and reduced order models in decentralized
fashion. Although stability is guaranteed, state constraints are
not considered. Apart from decentralized and hierarchical
control approaches, a centralized control framework with
slow reduced order model in [9] emerges as an appealing
approach, which rigorously guarantees constraints satisfac-
tion, albeit limited to linear systems.
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In the presence of model errors, constraint satisfaction is
typically ensured by means of tubes around arbitrary nominal
trajectories. Among existing approaches for continuous-time
systems, Control Contraction Metrics (CCM) [10] originat-
ing from contraction theory [11] is particularly befitting for
this task, as it studies convergence between pairs of arbitrary
trajectories and boils design problem down to convex semi-
definite programming, see e.g. [12], [13]. In [14], CCM was
extended to Robust CCM (RCCM) to consider disturbance
rejection property into feedback controller design, and then
used in [16] for rigid tubes construction. Recently, CCM was
conceptualized for discrete-time system in [15]. However,
results on RCCM are still lacking for discrete-time system.

Accounting for the aforementioned limitations, for a non-
linear discrete-time process with multi-timescale behavior,
we propose a tube-based MPC using a coarse surrogate
model, which is similar in spirit to [9], but employing
other approach instead of model order reduction to reduce
model complexity. Specifically, the two-timescale nonlinear
process is approximated by a surrogate model, whereby the
slow state updates with larger time interval than the fast
one. To enforce state and input constraints, we leverage
RCCM, as inspired by [16] for continuous-time systems.
This permits jointly synthesizing homothetic tubes [17], i.e.,
non-rigid tube scaled depending on prediction steps, and
feedback controllers with property of disturbance rejection
against model approximation errors. Problems arsing from
recursive infeasibility are circumvented by the auxiliary
back-up strategy motivated by [18] for stochastic MPC.

The paper is organized as follows. We first clarify the
problem setting in Section II. In Section III, the proposed
MPC formulation with the back-up strategy is presented
following preliminary results in terms of RCCM. The virtue
of the proposed method is validated on a crop growth
process in the Section IV, followed by conclusive remarks
in Section V.

Notation: Let the set of integers in the interval [a,b]⊂R be
denoted by [a : b] and the set of non-negative real numbers
by R≥0. We use ∥ · ∥ to denote the 2-norm of a vector or
matrix. The notation ⌊x⌋ (⌈x⌉) denotes the greatest integer
less (larger) than or equal to x. For r > 0, the set {x ∈
Rn : ∥x∥2 < r} is denoted by Bn(r). For any matrix valued
function F(·), we term Fi j(·) as the function positioned at i-th
row and j-th column. The Minkowski(Pontryagin) difference
is represented by ⊖. Finally, I and O denote the identity and
zero matrices of appropriate sizes respectively. Given two
functions g : X → Z and f : Z → Y, the composition f ◦ g
assigns to each p ∈ X the value f (g(p)) ∈ Y.
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II. PROBLEM STATEMENT

We consider a discrete-time nonlinear system

x f ((i+1)∆t) = f
(
x f (i∆t),xs(i∆t),u(i∆t),w(i∆t);∆t

)
(1)

xs ((i+1)∆t) = g
(
x f (i∆t),xs(i∆t),u(i∆t),w(i∆t);∆t

)
(2)

with the time index i ∈N0, ∆t ∈R≥0 as sample time, online
measurable states x f (i) ∈ Rn and xs(i) ∈ Rm governed by
the fast and slow dynamics respectively, as well as the
control inputs u(i) ∈ Rp. The exogenous input w(i) known
from current time i∆t till (i+N)∆t lies in a compact set
W ⊂ R p̂. We assume that, for each fixed ∆t , f (·;∆t) and
g(·;∆t), defined on some open subsets of Euclidean space,
are continuously differentiable and continuous respectively.
For simplicity, we assume w.l.o.g. ∆t = 1 and drop ∆t in
the dynamics whenever sample time is 1. To streamline the
presentation, in what follows, we assume that control inputs
u appear only in the fast dynamic f .

The control task is to find u(·) to optimize some cost
J∞(x f (0),xs(0),u(·)) = ∑

∞
i=1 l(xs(i),x f (i),u(i− 1)) with the

stage cost subject to the system dynamic (1)-(2), input con-
straint u∈U and state constraints x f ∈X f and xs ∈Xs, where
U, X f and Xs are convex compact sets. This intractable
infinite-time optimal control problem with disturbance fore-
casts available over finite time period is approximately solved
by the below optimization problem within each sample time,

min
u(·|i),x f (·|i);

xs(·|i)

N

∑
k=1

l(xs(k|i),x f (k|i),u(k−1|i)),

s.t. x f (k+1|i) = f (x f (k|i),xs(k|i),u(k|i),w(k+ i)),

xs(k+1|i) = g(x f (k|i),xs(k|i),w(k+ i)),

x f (0|i) = x f (i), xs(0|i) = xs(i),

u(k|i) ∈ U, k ∈ [0 : N −1],

xs(k|i) ∈ Xs, x f (k|i) ∈ X f , k ∈ [1 : N −1],

(x f (N|i),xs(N|i)) ∈ ZN ,
(3)

with the terminal set ZN ⊂ X f ×Xs defined with a termi-
nal controller κN as follows, ∀(x f ,xs) ∈ ZN and ∀w ∈ W,(

f (x f ,xs,κN(x f ,xs),w),g(x f ,xs,w)
)
∈ ZN and κN(x f ,xs) ∈

U. Recursive feasibility of MPC is hence ensured by the
terminal controller and terminal set, see e.g. [19].

In practice, finding optimal inputs amounts to solving a
static nonlinear optimization problem with state and input
variables as optimization variables. If the number of vari-
ables within the prediction horizon is large, the computation
complexity can be very demanding. Considering the slow
dynamic associated with xs, it is reasonable to adopt a larger
sample time only for xs, which reduces the number of op-
timization variables while still yields small states prediction
errors. Employing multiple sampling intervals for the system
(1)-(2) motivates the following surrogate model

x̂ f (i+1) = f (x̂ f (i), x̂s(σn̄(i)),u(i),w(i)), (4)

x̂s(σn̄(i)+ n̄) = g(x̂ f (σn̄(i)), x̂s(σn̄(i)),w(σn̄(i)); n̄), (5)

with the time scaling factor n̄ ∈ {n̄ ∈ [2 : N] : N/n̄ ∈ N} and
the operator σn̄(i) = ⌊ i

n̄⌋n̄, which maps the time index i from
the time scale with ∆t to the slower time scale with n̄∆t .

Based on the surrogate model (4)-(5), we reformulate
problem (3) in such a way that the true process (1)-(2)
still satisfies input and state constraints, but at reduced
computational costs.

III. TUBE-BASED MPC WITH RCCM

In this section, we formulate the tube-based MPC scheme
using surrogate models. To this end, we first present the
preliminary result on RCCM for a general discrete-time
process in Theorem 1. Then we derive homothetic tubes for
slow states in Proposition 2. Based on these and Theorem 1,
homothetic tubes for fast states are constructed in Corol-
lary 3. In Lemma 4, we analyze the open-loop and closed-
loop property of process controlled by the reformulated MPC
with the backup strategy.

A. RCCM for discrete-time process

We first recall some definitions and results from ge-
ometry theory [20]. A Riemannian metric on Rn is a
smooth symmetric valued function M(x) ∈ Rn×n, which is
positive definite for all x, and defines a structure for any
two tangent vectors through the inner product. A metric
is called uniformly bounded if there exists scalars a2 ≥
a1 > 0, such that a1I ≺ M(x) ≺ a2I for all x ∈ Rn. Let
Γ(a,b) :=

{
c ∈C1([0,1],Rn

∣∣ c(0) = a,c(1) = b)
}

be the set
of smooth paths from a to b and cs := ∂c

∂ s . The energy of
a path c ∈ Γ(a,b) for a uniformly bounded metric M(x)
is defined as E(c) :=

∫ 1
0 cs(s)⊤M(c(s))cs(s)ds. The minimal

energy of a path joining a and b is defined as E⋆(a,b) :=
minc∈Γ(a,b) E(c), and the path achieving the minimal energy
is geodesic, denoted by c⋆, which exists following Hopf-
Rinow theorem and uniform boundedness of metrics, cf. [10].

Consider a nonlinear discrete-time system

x(i+1) = f (x(i),u(i),d(i)),

y(i) = h(x(i),u(i)), i ∈ N0
(6)

with continuously differentiable f and h, where states x(i),
control inputs u(i) and disturbances d(i) lie in convex
bounded sets X, U and D respectively. Similar to [14] and
[15], we then define matrix functions A = ∂ f

∂x , B = ∂ f
∂u ,

Bd =
∂ f
∂d , C = ∂h

∂x , D = ∂h
∂u and Dd =

∂h
∂d as partial derivatives

of f and h along arbitrary trajectory (x,d,u) associated with
(6).

In the presence of disturbance errors, we will design a
feedback controller with disturbance rejection property and
then analyze output deviations of controlled system. To this
aim, let us consider a uniformly bounded metric W , a matrix-
valued function L, and scalars α ∈ (0,1), ν and γ satisfying W ◦ f AW +BL Bd

(AW +BL)⊤ (1−α)W O
B⊤

d O νI

≻ 0, (7)
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 αW O (CW +DL)⊤

O (γ −ν)I O
CW +DL O γI

≻ 0 (8)

for all (x,d,u) ∈ X× D× U. Given any (x̂, û, d̂, ŷ) as a
nominal trajectory of the system (6), we then design a
feedback control law as u(i) = κ(û(i), x̂(i),x(i)) = υ(i,1),
where

υ(s; i) = û(i)+
∫ s

0
K(c⋆(s; i))

∂c⋆(s; i)
∂ s

ds, K(·) = L(·)W (·)−1,

c⋆(s; i) = argmin
c∈Γ(x̂(i),x(i))

E(c), M(·) =W (·)−1.

(9)
Theorem 1: Consider (6). Given α ∈ (0,1), and let W ,

L, ν and γ satisfy (7) and (8) for all (x,d,u) ∈ X×D×U
and (c⋆,υ) be defined by (9). For each i ∈ N0, assume that
(c⋆(s; i),υ(s; i)) ∈X×U for all s ∈ (0,1) if it holds at s = 0
and s = 1. Then, for any trajectory (x̂, û, d̂, ŷ) satisfying (6),
the state and output trajectories x and y of the system (6)
driven by u = κ(û, x̂,x) and d are confined to

E⋆(x̂(i+1),x(i+1))< (1−α)E⋆(x̂(i),x(i))+ν∥d(i)− d̂(i)∥2

(10)
and

∥ŷ(i)− y(i)∥2 < γαE⋆(x̂(i),x(i)). (11)
Proof: Let A := A + BLM and C := C +DLM. By

applying congruence transformation to (7) and (8) with
diag(I,M, I) and diag(M, I, I) respectively, and then perform-
ing Schur complement, we get(

A ⊤(M ◦ f )A − (1−α)M A ⊤MBd
B⊤

d MA B⊤
d MBd −νI

)
≺ 0 (12)

and (
αM− γ−1C⊤C O

O (γ −ν)I

)
≻ 0, (13)

with M defined in (9). In virtue of uniform boundedness
of W , M is also uniformly bounded, which can be used as
Riemannian metric to construct minimal energy E(x̂(i),x(i))
yielding a smooth unique geodesic c⋆(s; i) for each fixed i
with s ∈ [0,1]. For each i, similar to [16], we parameterize
disturbance as ω(s; i) = (1 − s)d̂(i) + sd(i), and then use
geodesic c⋆(i,s) to parameterize control inputs, outputs,
and states at i and i+ 1, which are given by, υ(s; i) from
(9), ξ (s; i) := h(c⋆(s; i),υ(s; i),ω(s; i)), c⋆(s; i), c(s; i+1) :=
f (c⋆(s; i),υ(s; i),ω(s; i)) jointing x̂(i + 1) and x(i + 1) re-
spectively. By assumption and due to convexity of D, the
conditions (12)-(13) parameterized by these paths still hold
for s ∈ (0,1). Differentiating these paths with respect to s
yields

cs(s; i+1) = A cs
⋆(s; i)+Bdωs

ξs(s; i) = C cs
⋆(s; i)+Ddωs

(14)

with ωs = d(i)− d̂(i) and υs = K(c⋆(s; i))cs
⋆(s; i), where

subscript s denotes the partial derivative with respect to s.
By multiplying (12) and (13) by (c⋆s

⊤,ω⊤
s ), inserting (14)

into the resulting inequalities and then integrating them over
s from 0 to 1, we get

E(c(i+1, ·))< (1−α)E⋆(x̂(i),x(i))+ν∥d(i)− d̂(i)∥2 (15)

and (11) for all i. Since E⋆(x̂(i+1),x(i+1))≤ E(c(i+1, ·))
by definition of the minimal energy, the left side of (15) can
be replaced by E⋆(x̂(i+1),x(i+1)), which gives (10).
Given bounds on errors of initial states and disturbances, the
output error can be characterized point-wisely by invoking
(10) together with (11) yielding homothetic tubes. Note that,
conditions (7) and (8) are parameter dependent LMIs, which
can be evaluated efficiently by the gridding technique or
relaxation techniques, see [22] and the references therein.

B. Homothetic tubes for two-timescale processes
In what follows, we systematically derive tubes for

states and inputs within horizon, i.e., x f (k)− x̂ f (k), xs(k)−
x̂s(σn̄(k)) and u(k)− û(k) for k ∈ [0 : N] subject to the surro-
gate model (4)-(5) and the true process (1)-(2) controlled by
the feedback control law κ with same exogenous inputs w
and initial conditions. To this end, we treat slow and fast
dynamics individually and first analyze the error of slow
states, as presented in the following,

Proposition 2: Consider both slow submodels (2) and (5)
with the initial approximation error

ē0 := ∥x̂s(σn̄(0))− xs(0)∥2 = 0. (16)

Assume that x̂ f (k),x f (k) ∈ X f , xs(k) ∈ Xs for k ∈ [0 : i−1]
with a fixed i> 0. We further assume that x̂s(σn̄(i− ln̄))∈Xs
for l ∈ [1 : ⌊i/n̄⌋] in case of i ≥ n̄. Then

∥xs(i)− x̂s(σn̄(i))∥2 ≤ (iε + ⌊i/n̄⌋ε̂)
2
=: ēi (17)

for i∈N0, where ε and ε̂ are maximum of ∥g(x1,x2,x3)−x2∥
and ∥g(x1,x2,x3; n̄)−x2∥ respectively over (x1,x2,x3)∈X f ×
Xs ×W.

Proof: To alleviate notations, we use subscript i to
indicate the time dependency of x f ,xs as well as w and use
x̂s

i and x̂ f
i to denote x̂s(σn̄(i)) and x̂ f (σn̄(i)) respectively. We

also denote g(·; n̄) by ĝ(·). For j ∈ Z and i ∈ N0 satisfying
i+ jn̄ ≥ 0, we have

x̂s(σn̄(i+ jn̄)) = x̂s(σn̄(i)+ jn̄), (18)

since ⌊(i+ jn̄)/n̄⌋= ⌊i/n̄⌋+ j.
Let us consider the trajectory of (2), we have

xs
i − xs

i−1 = g(x f
i−1,x

s
i−1,wi−1)− xs

i−1

≤ max
x1∈X f ,x2∈Xs,xe∈W

∥g(x1,x2,x3)− x2∥=: ε, (19)

where the above maximum exists due to continuity of
function g and compactness of X f ×Xs ×W.

Similarly, for the submodel (5) with i ≥ n̄, we have

x̂s
i − x̂s

i−n̄
(18)
= ĝ(x̂ f

i−n̄, x̂
s
i−n̄,w(σn̄(i− n̄)))− x̂s

i−n̄

≤ max
x1∈X f ,x2∈Xs,xe∈W

∥ĝ(x1,x2,x3)− x2∥=: ε̂.
(20)

In the end, we can conclude that

∥xs
i − x̂s

i∥ ≤ ∥xs
i − xs

0 + x̂s
0 − x̂s

i∥+∥xs
0 − x̂s

0∥
(18),(16)
≤ ∥

i

∑
j=1

(xs
j − xs

j−1)+
⌊i/n̄⌋

∑
j=1

(x̂s
i− jn̄ − x̂s

i−( j−1)n̄)∥

(19),(20)
≤ iε + ⌊i/n̄⌋ε̂, i ≥ n̄,
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together with

∥xs
i − x̂s

i∥= ∥xs
i − x̂s

0∥
(16)
= ∥xs

i − xs
0∥

(19)
≤ iε, i ∈ [0 : n̄−1],

which lead to (17).
The error bound of slow states ēi obtained above can be

treated as disturbance error bound for the fast submodel (4).
With this in mind, we will derive homothetic tubes for fast
states and control inputs in the following Corollary deduced
from Theorem 1 together with stricter conditions on W and
L. To this end, we first redefine matrix functions A= ∂ f

∂ x̂ f , B=
∂ f
∂ û , Bd =

∂ f
∂ x̂s with f as the vector field of the fast submodel

(4). Then, we consider a constant metric W ≻ 0, a matrix L
and scalars ν , γx > ν ,γu > ν satisfying (7),(

αW W⊤

W γxI

)
≻ 0,

(
αW L⊤

L γuI

)
≻ 0, (21)

for all (x̂ f , x̂s, û,w) ∈ X f ×Xs ×U×W.
Corollary 3: Let the assumption in Proposition 2 hold.

Consider the fast submodel (4). Given α ∈ (0,1), and assume
that there exist a constant metric W ≻ 0, a matrix L and
scalars ν , γx > ν ,γu > ν satisfying (7) and (21) for all
(x̂ f , x̂s, û,w) ∈ X f ×Xs ×U×W. Then, for any trajectory
(x̂ f , x̂s, û,w) of the model (4)-(5), the fast state x f of the true
process (1)-(2) driven by w and u(i) = κ(û(i), x̂ f (i),x f (i)) =
υ(i,1) with

υ(s; i) = û(i)+ sK(x f − x̂ f ), K = LW−1 (22)

satisfies

E(x̂ f (i),x f (i))≤
i−1

∑
j=0

ν(1−α)i− j ē j =: ei, (23)

for i ∈N with error bounds of slow states ē j defined in (17).
Furthermore,

∥x f (i)− x̂ f (i)∥2 ≤ αγ
xei =: ex

i , (24)

∥u(i)− û(i)∥2 ≤ αγ
uei =: eu

i , i ∈ N. (25)

Proof: For a constant metric W , the geodesic c⋆(i,x)
in (9) is a straight line adjoining x̂(i) and x(i), see e.g.
Section 16.1 in [21]. Hence, for constant L, (9) is reduced
to (22), which is also a straight line. Consequently, the paths
υ(s; i) and c⋆(s; i) stay in convex sets U and X f for s∈ (0,1),
if both ends, i.e., s ∈ {0,1}, do. Since the assumption in
Prop. 2 holds, the error of slow states is bounded by (17).
Finally, (23)-(25) follow from the same line of argumentation
as in the proof of Theorem 1.

C. MPC framework with backup strategy

We present the tube-based MPC framework using the
surrogate model, which admits less computation costs than

standard MPC (3). The optimization problem of MPC reads

min
û(·|i);

x̂ f (·|i),x̂s(·|i)

N

∑
k=1

l(x̂s(σ k
n̄ |i), x̂ f (k|i), û(k−1|i))

s.t. x̂ f (k+1|i) = f (x̂ f (k|i), x̂s(σ k
n̄ |i), û(k|i),w(i+ k)),

x̂s(σ k
n̄ + n̄|i) = g(x̂ f (σ k

n̄ |i), x̂s(σ k
n̄ |i),w(i+σ

k
n̄ ); n̄),

x̂s(σ0
n̄ |i) = xs(i), x̂s(σ k

n̄ |i) ∈ Xs ⊖Bm(ē
σ k

n̄+n̄−1),

x̂ f (0|i) = x f (i), x̂ f (k|i) ∈ X f ⊖Bn(ex
k),

û(k|i) ∈ U⊖B p(eu
k), k ∈ [0 : N −1],

(x̂ f (N|i), x̂s(σN
n̄ |i) ∈ ZN ⊖ (B(ex

N)×B(ēN)) ,
(26)

with σ k
n̄ denoting σn̄(k), ex

k and eu
k taken from (24)-(25) for

k ∈ N and ex
0 = eu

0 = 0. The optimal input sequence û⋆(·|i)
together with its associated state trajectory x̂ f (·|i) are used
to construct an input sequence

u(·|i) = κ[0,N−1](û
⋆(·|i), x̂ f (·|t),x f (·|i)),

where

κ[i, j](û
⋆(·|i), x̂ f (·|i),x f (·|i)) := (κ(û⋆(i|i), x̂ f (i|i),x f (i|i)),

. . . ,κ(û⋆( j|i), x̂ f ( j|t),x f ( j|i))), i, j ∈ [0 : N −1], i < j,

with κ specified in (9). The prediction x f (k|i) denoted by
x f

k|i, is subject to

x f
k+1|i = f (x f

k|i,x
s
k|i,κ(û

⋆
k|i, x̂

f
k|i,x

f
k|i),w(i+ k))

xs
k+1|i = g(x f

k|i,x
s
k|i,w(i+ k)), xs

0|i = xs(i), x f
0|i = x f (i).

Since x̂ f (0|i) = x f (i), the applied closed-loop input u0|i =

κ(û⋆0|i, x̂
f
0|i,x

f
0|i) coincides with û⋆0|i.

As inferred from (17) in Proposition 2, the error bound on
the slow state grows in time, which precludes from ensuring
recursive feasibility of (26) using terminal ingredients as
done, e.g., in [19]. Inspired by [18], we devise a backup
strategy to generate an input sequence for the problem (3)
without enforcing the recursive feasibility of (26) via

u(·|i) =

{
κ[0,N−1](û⋆(·|i), x̂ f (·|t),x f (·|i)), (26) is feasible
(u[1,N−1](i−1),uN(i)), otherwise

(27)
with shorthand notations u[l, j](i) :=(u(l|i), . . . ,u( j|i)), ∀l, j ∈
[0 : N − 1], l < j, and uN(i) := κN(x f (N − 1|i),xs(N −
1|i),w(N + i − 1)). The states x f (N − 1|i) and xs(N − 1|i)
are predictions of the true process (1)-(2) driven by input
sequence u[1,N−1](i−1) under initial conditions xs(i),x f (i).

D. Open-loop and closed-loop constraints satisfaction

As indicated by the assumption related to Proposition 2
in Corollary 3, the validity of tubes for problem (26),
which is crucial for ensuring constraint satisfaction of the
true process (1)-(2), hinges on the assumption that the true
process satisfies prescribed constraints. This in turn should
be guaranteed by (26). Despite of such a seeming causality
dilemma, we show that the proposed MPC scheme with the
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back-up strategy can still guarantee open-loop and closed-
loop constraints satisfaction.

Lemma 4: Let problem (26) be feasible at i = 0. The con-
trol input sequence u(·|0) = κ[0,N−1](û⋆(·|0), x̂ f (·|0),x f (·|0))
constitutes a feasible solution of MPC problem (3) at i = 0.
Furthermore, the input sequence constructed recursively in
accordance with the backup strategy (27) ensure open-loop
and closed-loop constraints satisfaction over time.

Proof: Since problem (26) is feasible at i = 0, we
have (x̂ f (k|0), x̂s(σ k

n̄ |0)) ∈X f ×Xs for all k ∈ [0 : N −1] and
xs(0|0) = xs(0) = x̂s(0|0) ∈ Xs, x f (0|0) = x f (0) = x̂ f (0|0) ∈
X f . As for an arbitrarily chosen but fixed k̄ ∈ [0 : N−2], if we
assume (x f (k|0),xs(k|0))∈X f ×Xs for all k ∈ [0 : k̄], then we
have ∥xs(k+1|0)− x̂s(σ k+1

n̄ |0)∥2 ≤ ēk+1 for all k ∈ [0 : k̄] by
applying Proposition 2. Due to monotonicity of ēk, we have
ēk+1 ≤ ēσn̄(k+1)+n̄−1. By invoking Corollary 3, we further
have ∥x f (k + 1|0)− x̂ f (k + 1|0)∥2 ≤ ex

k+1 and ∥û⋆(k|0)−
u(k|0)∥2 ≤ eu

k with u(k|0) = κ(û⋆(k|0), x̂ f (k|0),x f (k|0)) as
the input of the true process (1)-(2) for all k ∈ [0 : k̄]. Hence-
forth, besides u(k|i) ∈ U for k ∈ [0 : k̄], we can guarantee
that (x f (k|0),xs(k|0))∈X f ×Xs for k ∈ [0 : k̄+1]. Proceeding
similarly as above and assuming (x f (k|0),xs(k|0))∈X f ×Xs
for all k ∈ [0 : N−1], we get (x f (N|0),xs(N|0))∈ZN . Finally,
based on assume-guarantee reasoning, we can conclude that
the input sequence u(·|0) is feasible for problem (3) at i = 0
under the assumption in Lemma 4.

Since u[0,N−1](0) = κ[0,N−1](û⋆(·|0), x̂ f (·|0),x f (·|0)) is fea-
sible for (3) at i = 0, by shifting this input sequence and
exploiting the terminal controller κN associated with the
terminal set ZN , we can construct a feasible control input
sequence (u[1,N−1](0),uN(1)) according to the back-up strat-
egy (27) for i = 1. The statement then follows by induction.

IV. SIMULATION STUDY

To illustrate the benefit of the proposed method, we apply
standard MPC (sMPC) formulated in (3) and the proposed
tube-based MPC (tbMPC) to a case study on a crop growth
process adapted from [23]. Consider the discrete-time system

xs
d, j(i+1) = xs

d, j(i)+∆t
(
αd1, jφp, j(i)−αd2, jφr, j(i)

)
,

x f
C(i+1) = x f

C(i)+∆t

(
−αc1

2

∑
j=1

φp, j(i)+αc2

2

∑
j=1

φr, j(i)

)
+∆t

(
αc3(dC(i)− x f

C(i))uv(i)+αc4uc(i)
)
,

x f
T (i+1) = x f

T (i)+∆t

(
αT 1uh(i)−αT 2

(
x f

T (i)−dT (i)
)

uv(i)
)
,

with j ∈ {1,2} where φr, j(i) = xs
d, j(i)2

0.1x f
T (i)−2.5 and φp, j =

(1− e−ξ jxs
d, j(i))φ(i) with

φ(i) =
100θ0(x

f
C(i)−θ4)(−θ1x f

T (i)
2 +θ2x f

T (i)−θ3)

100θ0 +(x f
C(i)−θ4)(−θ1x f

T (i)2 +θ2x f
T (i)−θ3)

.

The sample time ∆t = 60, i.e.,, 1 min. The slow states
xs

d, j represent dry weight of two different types of crop in
kg·m−2. The fast states x f

C and x f
T represent the inside CO2

concentration in kg·m−3 and the inside air temperature in
◦C respectively, see [23]. Physical limitations on the control
input (uv,uh,uc) is normalized to U = [0,1]3 ⊂ R3. Outside
temperature dT and CO2 concentration dC are assumed to
be predicted based on weather forecasts. For simplicity,
we assume dC(i) = 6 × 10−4, whereas dT ∈ W = [2,10].
The model parameters appearing also in [23], are chosen
same as [23], while the other parameters are chosen as
ξ2 = 55, αd1,2 = 0.57 and αd2,2 = 2.5×10−7. The fast states
(x f

C,x
f
T ) are subject to box constraints X f = [0,0.00275]×

[5,35], whereas the slow states (xs
d,1,x

s
d,2) are unconstrained.

However, for the parameterization of the tubes, we choose
Xs = [0.08,0.15]2, which is sufficiently large in the sense
that, under constrained inputs and fast states, the slow states
of the true process and the surrogate model remain feasible.

In the simulation, three MPCs are implemented: standard
MPC (sMPC) in (3), and the proposed tube-based MPC
(tbMPC) in (26) with time scaling factors n̄ = 5 and n̄ = 10.
The whole simulation is implemented on a PC with Intel i7-
12700K and 32GB RAM. We use IPOPT [24] and CasADi
[25] to implement MPC, and LMI solvers as well as opti-
mization toolbox from Matlab to compute tube parameters.

The metric W and associated parameters are computed by
solving the optimization problem with the conditions (7) and
(21) subject to state and control constraints. As (7) is affine
in (uv,uh,uc) and external inputs dT ,dC, but non-affine in
states (xs

d, j,x
f
C,x

f
T ), we leverage gridding technique to render

optimization problem numerically tractable. Since x f
C varies

in a significantly smaller scale range than x f
T , we treat them

separately in optimization by replacing the first inequality in
(21) with(

αW1 W⊤
1

W1 γ
x f
C I

)
≻ 0,

(
αW2 W⊤

2

W2 γ
x f
T I

)
≻ 0, W =

(
W1 0
0 W2

)
,

and modifying the cost to βCγ
x f
C + βT γx f

T + γu. Conse-

quently, the tube for states (x f
C,x

f
T ) becomes B(e

x f
C

k ) ×

B(ex f
T

k ) with e
x f
C

k = γ
x f
C αek and e

x f
T

k = γx f
T αek. By solving

the aforementioned optimization problem with (βC,βT ,α) =

(1.25× 105,0,0.9), we obtain ν = 0.0056, (γx f
C ,γx f

T ,γu) =
(0.0084,294.01,813.79). Resolving two optimization prob-
lems, (19) and (20) in Proposition 2, in terms of n̄ = 5 and
n̄ = 10 yields (ε, ε̂) = (1.4×10−5,7.2×10−5) and (ε, ε̂) =
(1.4×10−5,1.4×10−4), respectively.

For the MPC framework, the stage cost is chosen to be

l(xs(i),x f (i),u(i−1)) =−(xs
d,1 + xs

d,2)
2 +u⊤Ru

with R = diag(0.001,0.05,0.05). In view of slowly varying
dry weights xs

d, j, a long prediction horizon N is desired to
maximize the growth and penalize control effort. Here, we
choose N = 7200, i.e., 120 min, for sMPC and tbMPC. Since
the proposed tbMPC is already feasible during the simulation
without terminal constraints, which, together with Lemma 4,
indicates that the sMPC is meanwhile also feasible, we
henceforth drop the terminal set ZN for the implementation.
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The following table lists the computation time for the
online implementation and the closed-loop cost of each con-
sidered MPC simulated over 20 hours. It clearly shows the
computational efficiency of the proposed approach, whereas
the cost only marginally increases.

TABLE I: Summary of computation times and costs

Computation Time (s) Cost
sMPC 263.65 -71.71

tbMPC (n̄ = 5) 179 (−32%) -71.66 (+0.07%)
tbMPC (n̄ = 10) 174.64 (−34%) -71.6 (+0.15%)

The simulation results of the closed-loop system with
sMPC and tbMPC with n̄ = 10 are visualized in Fig. 1. The
result of tbMPC with n̄ = 5 is left out for better visibility. It
can be seen that, all constraints are satisfied. The inputs of
tbMPC are generally smaller than that of sMPC, as shown in
Fig. 1 (d) and (e). This is mainly attributed to the implicitly
changed weighting ration between control inputs and slow
states resulted from model errors within each prediction
horizon.
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Fig. 1: Closed-loop trajectories by tbMPC with n̄ = 10 and
sMPC. In (c) and (e), the dotted black lines represent the
lower bound constraint for states and control inputs.

V. CONCLUSIONS

In this paper, we propose a novel computationally efficient
MPC framework for two-timescale discrete-time nonlinear
processes using surrogate models with lower complexity. By
leveraging RCCM and constraints tightening, state and input
constraints are guaranteed.
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[24] Wächter, A., & Biegler, L. T. (2006). On the implementation of
an interior-point filter line-search algorithm for large-scale nonlinear
programming. Mathematical programming, 106, 25-57.

[25] Andersson, J. A., Gillis, J., Horn, G., Rawlings, J. B., & Diehl, M.
(2019). CasADi: a software framework for nonlinear optimization and
optimal control. Mathematical Programming Computation, 11, 1-36.

5532


