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Armin Gießler, Pol Jané-Soneira, Albertus Johannes Malan and Sören Hohmann

Abstract— In this paper, we propose a hierarchical control
structure comprising three layers which is able to (i) achieve
economic dispatch for islanded DC microgrids, (ii) compensate
load and generation disturbances with batteries performing
power sharing and (iii) stabilize non-passive constant power
loads. The batteries are charged economically optimally by the
third layer controller such the state of charges (SOCs) remain
constant. The proportional power sharing of the batteries is
achieved by employing a novel control law which solves the
linearized steady-state power flow equations in real time. The
microgrid is stabilized by using voltage controllers for batteries
and active damping elements. A numeric method to verify
closed-loop asymptotic stability is derived. The power sharing
of the batteries and stability achieved with the proposed control
is demonstrated in a simulation.

I. INTRODUCTION

Driven by environmental concerns, power systems are
undergoing a major transformation towards the integration
of more and more volatile renewable energy sources (RESs),
such as photovoltaic and wind generation units. The rapid
deployment of these distributed generation units (DGU)
creates two challenges: the volatility of energy supply and
the low inertia in emerging power grids [1], e.g. in DC
microgrids. This can lead to instabilities in the power grid
and economic inefficiencies. Microgrids have been postulated
as a conceptual solution to overcome these challenges by us-
ing advanced control methods to coordinate DGUs, storages
and loads [2], [3]. In order to withstand the power balance
deviations due to load and generation prediction errors, a
resilient control method is needed which utilizes storage
units, e.g. batteries, flexible loads or emergency reserves.

Literature review: Using an energy management systems
(EMS) is a common approach to achieve optimal resource
scheduling [4]–[6]. The EMS optimizes an objective over
a discrete control horizon by using generation and load
predictions to obtain the optimal scheduling for the next
time step. The power flow equation and technical constraints
are considered in the optimization problem. Furthermore,
energy storages within the power grid improve its flexibility,
economic efficiency and reliability by compensating the
volatile energy production of RESs [7], [8]. Typically, the
EMS generates the optimal scheduling with the assumption
that all loads and generators consume and inject constant
power over a period of time.

It is known that constant power (P) loads can be respon-
sible for voltage oscillations leading to instability within
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the microgrid [9]–[12]. Therefore, it is questionable whether
EMSs can be directly applied to real world microgrids. In [9],
[10], the authors present a plug-and-play approach based on
passivity to stabilize any type of load. The proposed voltage
controllers ensure strict passivity for every type of load.
However, these works do not include any economic con-
sideration. In [13], the authors present a hierarchical control
architecture comprising three layers which combines an EMS
and stabilizing voltage controllers. However, only passive
ZIP (constant impedance, constant current, and constant
power) loads are considered and the EMS neglect network
losses. Furthermore, prediction errors or disturbances can
lead to a loss of economic optimality.

Proportional power sharing is a common objective in
microgrids which allows generators to counteract distur-
bances cooperatively (see e.g. [14]–[16]). The authors of
[15], [16] achieve power sharing by considering a highly
simplified dynamic model of a microgrid, e.g. the time
derivative of the power flow equations or just the resistive
part of the microgrid. In [14], the authors postulate a four-
stage distributed controller which achieves power sharing by
using a realistic dynamic model for DGUs and transmission
lines. However, no economic consideration is made and no
interface to the EMS is provided.

Contributions: We propose a three layer control archi-
tecture which achieves economic dispatch within the mi-
crogrid while compensating load and generation imbalances
by proportional power sharing among batteries. The main
contributions of the paper at hand are:

1) The three layer controller which ensures the exact
scheduling for optimal power flow (OPF) to a realistic
dynamic model of an islanded DC microgrid. The OPF
problem is extended to charge the batteries in an eco-
nomically optimal fashion since the work performed
by batteries, e.g. the change in SOCs, is considered.

2) The second layer which counteracts the suboptimal
economics arising from load and generation distur-
bances not considered in DC-OPF. This is achieved
through proportional power sharing among the bat-
teries, with a novel real-time control law based on a
linearized version of the power flow equation.

3) The first layer which stabilizes nonpassive P-loads and
P-generators with batteries and active damping ele-
ments. Sufficient conditions for closed-loop asymptotic
stability are derived.
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Paper Organisation: The introduction ends with some
notation and preliminaries on power grids as graphs and on
DC-OPF. In Section II, we present the modelling of the DC
microgrid and the architecture as well as the design of our
three layer controller. Next, we derive sufficient numerical
conditions for closed-loop asymptotically stability in Section
III. Finally, in Section IV, we demonstrate the asymptotic
stability of the closed loop and the power sharing among the
batteries. The paper ends with a conclusion in Section V.

Notation: The set of (strictly positive) real numbers is
denoted by R (R+). The transpose of a matrix A (a vector B)
is denoted by AT (BT ). A symmetric positive definite (semi-
definite) matrix A is denoted by A > 0 (A ≥ 0). The operator
◦ stands for the Hadamard Product. The diagonal matrix of
the vector x is denoted by diag(x). The k-dimensional vector
of ones (zeros) is defined as 1k (0k). The identity matrix
with dimension k is denoted by Ik and 0k×n represents a
k × n matrix filled with zeros. A directed graph is denoted by
G(N , E), where V and E ⊆ N ×N are the sets of nodes and
edges, respectively. The set Ni denotes the set of neighboring
nodes of node i ∈ N or edge i ∈ E .

A. Preliminaries

1) Power Grids as Graphs: The topology of power grids
can be modelled as a directed graph G(N , E) in which nodes
represent the buses and edges represent the transmission
lines. The set of buses is defined as N = {1, . . . , N} and the
set of edges as E = {1, . . . ,M}. The direction of the edges
of the directed graph is arbitrarily chosen and determines
the positive current direction over the line. The incidence
matrix B ∈ {−1, 0, 1}N×M of a directed graph is defined
as B = (Bij) with Bij = −1 if (i, j) ∈ E , Bij = 1 if
(j, i) ∈ E and Bij = 0 otherwise. The nodal admittance
matrix Y ∈ RN×N of a DC power grid can be calculated
by Y = Bdiag(Yl)B

T , where Yl = [Yl1, . . . , YlM ]T denotes
the transmission line conductances for which the entries of
Yl are in the same order as the columns of B [17, Eq. (1)].

2) DC-OPF: In this work, the economic dispatch OPF
problem is considered, in which the cost of the total power
generation is minimized subject to the given loads and
technical constraints [18]. Using Kirchhoff’s laws, the power
flow equation in Bus i ∈ N can be obtained and is described
by

Pi = PG
i − PL

i =
∑
j∈Ni

Yij(V
2
i − ViVj), (1)

where Pi is net power injection at Bus i, PG
i ≥ 0 is the

generated power flowing into Bus i, PL
i ≥ 0 is the demand

power flowing out of the Bus i, and Vi and Vj are the voltages
at Bus i and j, respectively. The power flow equations (1)
of the power grid can be written in network variables [18,
Eq. 32]

P = PG − PL = V ◦ Y V, (2)

where P = [P1, . . . , PN ]T , and PG, PL and V are defined
equivalently.

Definition 1: The economic dispatch DC-OPF problem is
defined by the following optimization problem:

min
PG,V

∑
i∈N

ci(P
G
i )

s.t. PG − PL = V ◦ Y V

0 < Vmin ≤ Vi ≤ Vmax ∀i ∈ N \ {1}
V1 = V ∗

ref

0 ≤ PG
i ∀i ∈ N ,

where ci(P
G
i ) : R+ → R describes an assumed monotoni-

cally increasing cost function of the generator of Bus i and
Bus 1 represents a slack bus with predefined voltage V ∗

ref.

II. MODELLING AND CONTROLLER DESIGN

In this section, we describe the microgrid as well as the
hierarchical control architecture in Subsection II-A and the
three layers of the controller in Subsections II-B to II-D.

A. Microgrid and Hierarchical Control Architecture

We consider islanded DC microgrids with a topology
described by a directed graph G = (N , E).

Assumption 1: The set of buses N is partitioned into two
sets NB = {1, . . . , NB} and ND = {NB + 1, . . . , NB +
ND}, where N = NB ∪ ND and NB ∩ ND = ∅. The
sets NB and ND represent buses with batteries and damping
elements, respectively.
The buses NB contain a battery with a state-feedback con-
troller which tracks the bus voltage to a reference voltage
whereas the buses ND contain a damping element which
improves the overall grid stability. Both types of buses can
additionally contain a constant power generator and/or a
constant power load. In the following, these are abbreviated
as P-generator PG and P-load PL and are summarized as
P-injection P = PG−PL as in (2). In order to keep the bus
voltages inside the feasible region Vmin ≤ Vi ≤ Vmax, Bus
1 represents a slack bus and is responsible for forming the
voltage levels in the microgrid.

The hierarchical control architecture contains three layers
as shown in Fig. 1. The third and highest layer contains the

Third layer:
DC-OPF

Second layer:
Power sharing

First layer:
Battery & Damping controllers

Microgrid

cost functions
ci(P

G
i )

real consumption PL∗

predicted
consumption PL

V ∗
ref

Vref,i

Vti Vi, Iti

work of
batteries WB

generation
PG

V, It

Fig. 1. Control architecture and structure of the closed-loop system
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DC-OPF which generates an economically optimal schedul-
ing of the generators in discrete time steps. This layer
gets the predicted power demands at each node PL and
the measurements of the work performed by the batteries
WB , e.g. the change of the state of charge (SOC) of the
batteries. To ensure robustness against load and generation
disturbances, it is desirable to keep the batteries at a con-
stant SOC between 0% and 100%. Thus, the third layer
controller recharges or discharges the batteries in the next
time step depending on the work performed by batteries.
The second layer is independent of the third layer and
compensates any disturbances that the third layer has not
considered within the current time step. For this purpose, the
controller of the second layer generates reference voltages
Vref in real time for the state-feedback controllers of the
batteries such that proportional power sharing is achieved.
The first layer contains voltage controllers for the batteries
and the active damping elements to track the bus voltages
to the reference voltages and stabilize P-injections. The
physical DC microgrid interacts with all three layers by
providing measurements of bus voltages V , filter currents
It and performed work of the batteries WB and receiving
generations PG and voltages references Vref for the voltage
sources Vt. There are two control loops in Fig. 1: a discrete-
time loop between the third layer and the microgrid and a
continuous-time loop between the first and second layers and
the microgrid. All three layers and the microgrid components
are explained in the following three subsections.

B. First Layer Controller and Microgrid Elements

In this subsection, the microgrid elements: batteries, damp-
ing elements and transmission lines, and the voltage con-
trollers are explained. The first layer controller comprises
the local voltage controllers of the batteries and the damping
elements which track the bus voltages Vi, i ∈ NB to the
reference voltages Vref and improve the stability of the
microgrid.

1) Transmission line: Transmission lines are modelled
with the π-equivalent model [19, Subsec. 3.1.1]. The line
capacitances Cl

2 are grouped with the filter capacitance
Cfi as in [12] and the sum of capacitance is denoted by
Cti = Cfi +

Cl

2 (see Fig. 2). At every bus, there is a filter
capacitance because of Assumption 1. The dynamics of a
power line l ∈ E is described by [12, Eq. (11)]

İl = −Rl

Ll
Il +

∑
i∈Nl

BilVi, (3)

where Rl > 0 denotes the line resistance and Ll > 0 denotes
the line inductance.

2) Battery with or without P-injection: The battery is
modelled as a controllable voltage source and a series RLC
filter (see Fig. 2). The net P-injection P ∗

i by the P-generators
and/or P-loads at Bus i are modelled as an ideal current
source with IP,i = P ∗

i /Vi. The predicted P-injections P
in the third layer are denoted without the star (see (2)).
The battery voltage Vti is controlled by the state-feedback
controller from [11] which allows the bus voltage Vi track

−
+

Vti

Rti Lti Iti

Cti Vi
P∗

i

Vi

Il
Rl Ll

Vj

Battery i with P-injection Transmission line l

Ki vi
Vref,i+-

Local voltage controller

Fig. 2. Circuit diagram of the battery with P-injection and local voltage
controller at Bus i, and transmission line l [12, Fig. 3]

the reference voltage Vref,i provided by the second layer
controller. To this end, an integrator state v̇i = Vref,i − Vi

is introduced, yielding the controller

Vti = Kixi =
[
k1,i k2,i k3,i

] [
Vi Iti vi

]T
,

where xi = [Vi, Iti, vi] ∈ R3 is the state of the Bus
i ∈ NB and k1,i, k2,i, k3,i ∈ R+ are control parameters.
The dynamics of the closed-loop subsystem consisting of
the battery and the P-injection is given byV̇i

İti
v̇i

 =

 1
Cti

Iti +
1

Cti
V −1
i P ∗

i − 1
Cti

Ii
αiVi + βiIti + γivi

−Vi + Vref,i

 , (4)

where αi = 1
Lti

(k1,i − 1), βi = 1
Lti

(k2,i − Rti) and γi =
1

Lti
k3,i.

3) Damping Element with P-injection: Inspired by the
robust passifying voltage controller in [10, Theorem 3], we
propose an active damping element which comprising a
voltage source and a series RLC filter (see Fig. 3) to coun-
teract the voltage destabilizing effects of P-loads. Damping
is achieved through a state-feedback controller that utilizes
two additional states. The state ei adds damping to the
filter current Iti which counteracts fast changes in the bus
voltage Vi and increase overall grid stability. The state qi

−
+

Vti

Rti Lti Iti

Cti Vi
P∗

i

Vi

Damping element i with P-injection

Ki

ζi

ηi

qi
ei +

+ +-

Local voltage controller

Fig. 3. Circuit diagram of the damping element with P-injection and local
voltage controller at Bus i
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with nonlinear dynamics represents the overall work of the
damping element WD

i =
∫∞
t0

ViIt,idt. Negative feedback on
qi is introduced with the aim of damping the work WD

i to
zero. The linear state-feedback control law is given by

Vti = Kixi

=
[
1− k2,i −k1,i k1,i −k3,i

] [
Vi Iti ei qi

]T
,

where k1,i, k2,i, k3,i ∈ R+ are control parameters. The dy-
namics of the closed-loop system consisting of the damping
element and the P-injection are given by

V̇i

İti
ėi
q̇i

 =


1

Cti
Iti +

P∗
i

CtiVi
− 1

Cti
Ii

αiVi + βiIti + δiei + εiqi
ζiIti + ηi(Vi − ei)

ViIti

 , (5)

where αi = − 1
Lti

k2,i, βi = 1
Lti

(−R − k1,i), δi =
1

Lti
k2,i, εi = − 1

Lti
k3,i, ζi = τik1,i and ηi = τik2,i. The

time constant τ > 0 is a tuning factor.

C. Second Layer Controller

The second layer controller solves a linearized version
of the power flow equation (2) in real-time and generates
voltage references Vref for the first layer controller such that
the desired power sharing among the batteries is achieved.

Lemma 1: The derivative JP : RN×N → RN of the
power flow equations (2) with respect to the voltages V is
given by

JP (V ) =
∂

∂V
P = diag(V )Y + diag(Y V ). (6)

Proof: The power flow equations can be rewritten as

P = V ◦ Y V = Y V ◦ V
= diag(V )Y V = diag(Y V )V. (7)

Applying the product rule to (7) results in

JP (V ) = V ◦ ∂

∂V
(Y V ) + Y V ◦ ∂

∂V
(V ) ,

which directly yields the result in (6).
Definition 2: The real-time control law of the second layer

controller is defined by the voltage reference Vref(V, It) :
RN × RN → RNB ,

Vref(V, It) =

[
V ∗

ref[
0NB−1×1 INB−1 0NB−1×ND

]
Z

]
with (8)

Z =
[
−F JP,2:N (V )

]−1

·
(
−diag(It)V − JP (V )

([
V ∗

ref
0N−1

]
− V

))
,

(9)

where V ∗
ref denotes the time-invariant slack bus voltage,

F =
[
F1 . . . FNB

0TND

]T
, Fi ∈ R+ ∪ {0} for i ∈ NB

represents a weighting vector and JP,2:N denotes the second
to the last columns of the Jacobian matrix JP (6).

Theorem 1: The control law of Definition 2 compen-
sates load and generation disturbances while achieving exact
power sharing of all batteries at steady state. Proportional
power sharing of the batteries is realized by choosing differ-
ent weighting factors Fi for i ∈ NB .

Proof: We derive the control law of Definition 2 by
solving the linearized power flow equation with desired
proportional power sharing. The net power injection of all
buses P can be calculated out of voltages V by

P = V ◦ Y V = PP + PB,D = PP + diag(It)V (10)

which we partition into two parts, the injection by P-loads
and P-generators PP = PG − PL, and the injections by
batteries and damping elements PB,D. The linearized power
flow equation around the operation point V are given by

P ′ = P +
∂

∂V ′ (V
′ ◦ Y V ′)

∣∣∣∣
V ′=V

(V ′ − V )

= P + JP (V )(V ′ − V ), (11)

where JP (V ) can be directly calculated by using Lemma 1.
Equation (11) is solved with respect to the voltages V ′

such the power PB,D is provided by proportional power
sharing among the batteries FPbat, where Pbat ∈ R rep-
resents a power which is scaled by the weighting vector
F . From the linear system of equations (11) with P ′ =
PP + FPbat, V ′ = [V ∗

ref, V
′
2 , . . . , V

′
N ] and (10), the vector

Z =
[
Pbat, V

′
2 , . . . , V

′
N

]T
can be obtained through matrix

manipulations:

PP + FPbat = PP + diag(It)V + JP (V )


V ∗

ref − V1

V ′
2 − V2

...
V ′
N − VN

 (12)

⇔ −diag(It)V − JP (V )


V ∗

ref − V1

−V2

...
−VN

 = JP (V )


0
V ′
2

...
V ′
N

− FPbat

=
[
−F JP,2:N (V )

]
Z,

which directly yields (9). The reference vector
for the controllers of the batteries Vref(V, It) =[
V ∗

ref V ′
2 . . . V ′

NB

]T
can be calculated by (8). The

error of the linearization of the power flow equations (11) is
zero at steady state because of the permanent linearization
around the operating point V . Combined with the desired
proportional power sharing in (12), the voltage reference
Vref achieves exact proportional power sharing in steady
state.

Remark 1: In order to obtain a unique solution to the
linear system of equations (12), it is necessary to have exactly
one slack bus with voltage reference V ∗

ref. This balances the
unknown variables with the number of equations in (12).

Remark 2: The weighting vector F of Theorem 1 can be
chosen such that the entries correspond to the costs of the
energy of the two batteries. This way, disturbances of the
P-injections can be compensated economically optimal.

Because the control law of Theorem 1 does not consider
voltage constraints, e.g. Vmin ≤ Vi ≤ Vmax, the following
assumption is made.

Assumption 2: The disturbances of loads and generators
are sufficiently small such that the applied reference voltages
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Vref by Theorem 1 generate feasible voltage trajectories with
Vmin ≤ Vi ≤ Vmax for all i ∈ N and t ∈ R+.

Remark 3: Even though the control law (9) is provided in
real-time, exact power sharing cannot be guaranteed in the
transient case, because the dynamics of the microgrid are not
considered.

The control law (9) includes an inversion of the time-
variant matrix

[
F JP,2:N

]
∈ RN×N , which may be com-

putationally expensive for large power grids. Therefore, we
provide a linearized time-invariant version of the controller
in Definition 2.

Definition 3: The linearized control law Vref(V, It) of Def-
inition 2 around the operation point (V0, It,0) is defined as

Vref,lin(V, It) = Vref(V0, It,0) +
∂

∂V
Vref(V, It)

∣∣∣∣ V =V0
It=It,0

(V − V0)

+
∂

∂It
Vref(V, It)

∣∣∣∣ V =V0
It=It,0

(It − It,0)

= G0 +G1V +G2It, (13)

where G0 ∈ RNB represents a constant offset and G1, G2 ∈
RNB×N are the gains for the feedback of voltages V and
filter currents It.

Even though the linearized control law of Definition 3
cannot be stated explicitly for systems of arbitrary dimension,
it does provide a time-invariant, closed form control law
which can be easily obtained for smaller microgrids.

Remark 4: The time-invariant control law of Definition 3
achieves in general approximate proportional power sharing
among the batteries, since there is a linearization error at
steady state if the steady-state states (V, It) are different to
(V0, It,0).

D. Third Layer Controller

The third layer controller solves the economic dispatch
DC-OPF (see Definition 1) with a finite control horizon
kmax ≥ 1 and sampling time T ∈ R+. It receives predictions
of the loads PL(k) for all time steps k ∈ K = {k0, . . . , k0+
kmax − 1} of the control horizon, where k0 is the current
time step. Furthermore, the controller receives the work
WB = [WB

1 , . . . ,WB
NB

, 0TND
] done by the batteries within

the last sampling period. In order to charge or discharge the
batteries such that its SOCs are kept at a constant value,
PB = 1

T W
B is added on the left side of the power flow

equations (2) during the first time step k0. Hence, the third
layer controller injects the correct amount of power such that
the SOCs remain constant. The third layer controller solves
at every time step the following optimization problem

min
PG(k),V (k)

∑
k∈K

∑
i∈N

ci(P
G
i (k))

s.t. PG(k0)− PL(k0)− PB = V (k0) ◦ Y V (k0)

PG(k)− PL(k) = V (k) ◦ Y V (k) ∀k ∈ K \ {k0}
0 < Vmin ≤ Vi(k) ≤ Vmax ∀i ∈ N \ {1}
V1(k) = V ∗

ref

0 ≤ PG
i (k) ∀i ∈ N

and applies PG(k0) to the P-generators of the microgrid.

III. STABILITY ANALYSIS

In this section, we study the stability of the microgrid
controlled by the three layer controller. First, we provide the
controlled state space for the entire microgrid and proceed
with deriving a numerical criterion for closed-loop stability.

A. MG in Network Variables
The dynamics of the entire DC microgrid can be obtained

by interconnecting the dynamics of the lines (3), batteries
(4) and damping elements (5), and by observing that Ii =∑

j∈N BijI where I = [I1, . . . , IM ] is the current into the
buses. The dynamics of the microgrid are given by

V̇ = C−1
t

(
It + diag(V )−1P ∗ −BI

)
, (14a)

İt = αV + βIt + SBγv + SDδe+ SDεq, (14b)

v̇ = Vref(V, It)− ST
BV, (14c)

ė = ST
DIt + η(ST

DV − e), (14d)

q̇ = ST
Ddiag(V )It, (14e)

İ = L−1BTV − L−1RI, (14f)

where
Ct = diag(Ct1, . . . , CtN ), L = diag(L1, . . . , LM )

SB =

[
INB

0ND×NB

]
, SD =

[
0NB×ND

IND

]
, α = diag(α1, . . . , αN ),

β = diag(β, . . . , βN ), γ = diag(γ1, . . . , γNB
),

δ = diag(δNB+1, . . . , δNB+ND
), ε = diag(εNB+1, . . . , εNB+ND

),

ζ = diag(ζNB+1, . . . , ζNB+ND
), η = diag(ηNB+1, . . . , ηNB+ND

),

and Vref(V, It) implements either the time-variant (Def. 2) or
the time-invariant (Def. 3) control law of the second layer
controller. The actual P-injections at the busses are denoted
by P ∗ = [P ∗

1 , . . . , P
∗
N ]T and P ∗ is a continuous function

of time. In the following, the stability is investigated for the
time-invariant version (13) of second layer controller.

B. Numerical Verification of Stability
In this subsection, we shift the variables to an arbitrary

feasible equilibrium point and derive a numerical stability
criterion which verifies asymptotic stability for the closed
loop. We note that the steady state of (14) yields the power
flow equation (2) which has in general more than one solu-
tion [20]. Because there are many potentially valid equilibria
which are unknown, we define an arbitrary equilibrium point
of (14) as

x =
[
V

T
I
T

t vT eT qT I
T
]T

and define new error variables x̃ = x− x.
Proposition 1: For voltages Vi > 0, i ∈ N , the system

(14) with the time-invariant control law of Definition 3 can
be represented in shifted variables by

˙̃x =


Ã11 C−1

t 0 0 0 −C−1
t B

α β SBγ SDδ SDε 0
G1 − ST

B G2 0 0 0 0
ηST

D ζST
D 0 −η 0 0

0 ST
Ddiag(Ṽ + V ) 0 0 0 0

L−1BT 0 0 0 0 −L−1R


︸ ︷︷ ︸

=:Ã(Ṽ ,V ,P∗)∈RÑ×Ñ

x̃,

(15)
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where Ã11 = C−1
t diag

(
(Ṽ + V ) ◦ V

)−1

diag(P ∗) and

Ñ = 2N +NB + 2ND +M .
Proof: Since Vi > 0,∀i ∈ N , the following steady-state

values are obtained from (14):

Iti = 0 ∀i ∈ ND, V i = Vref,i ∀i ∈ NB , ei = V i ∀i ∈ ND.

For the linear equations (14b), (14d) and (14f), the variable
shift is trivial. The nonlinear equations (14a), (14e) result in

Ct
˙̃V = Ĩt + It + diag(Ṽ + V )−1P ∗ −B(Ĩ + I)

= Ĩt + diag(Ṽ + V )−1P ∗ −BĨ − diag(V )−1P ∗

= Ĩt + diag
(
(Ṽ + V ) ◦ V

)−1

diag(P ∗)Ṽ −BĨ, (16)

˙̃q = ST
Ddiag(Ṽ + V )(Ĩt + It) (17)

It=0
= ST

Ddiag(Ṽ + V )Ĩt. (18)

By using the time-invariant control law of Definition 3, the
dynamics of ˙̃v are given by

˙̃v = Vref,lin(Ṽ + V , Ĩt + It)− ST
B(Ṽ + V )

= (G1 − ST
B)Ṽ +G2Ĩt +G0 +G1V +G2It − ST

BV︸ ︷︷ ︸
=0

. (19)

The equation (15) can be obtained with (16), (17), (18) and
(19).

Assumption 3: The feasible subspaces of voltage errors
Ṽ , voltage equilibrium points V and P-injections P ∗ for
safe operation are assumed as convex polytopes Ṽ,V and
P , which are described by the linear inequalities

Ṽ = {Ṽ ∈ RN | aTj Ṽ ≤ 1, j = 1, . . . , N},
V = {V ∈ RN | bTj V ≤ 1, j = 1, . . . , N},
P = {P ∗ ∈ RN | cTj P ∗ ≤ 1, j = 1, . . . , N}.

Theorem 2: Any equilibrium

x ∈ X = {x ∈ RÑ |
[
IN 0N×Ñ−N

]
x = V ∈ V}

of the closed-loop system (15) is asymptotically stable for
all Ṽ ∈ Ṽ, P ∗ ∈ P if there exists a symmetric matrix M ∈
RÑ×Ñ such that

M > 0 (20)

Ã(Ṽ , V , P ∗)TM +MÃ(Ṽ , V , P ∗) < 0 (21)

is feasible for all Ṽ ∈ Ṽ, V ∈ V and P ∗ ∈ P .
Proof: Consider the Lyapunov candidate V : D →

R, x̃ → x̃TMx̃ with

D = {x̃ ∈ RÑ |
[
IN 0N×Ñ−N

]
x̃ = Ṽ ∈ Ṽ}.

The function V fulfills V (0Ñ ) = 0 and V (x̃) > 0 in D−{0}
since M > 0. Furthermore, V̇ (x̃) = x̃T (ÃTM +MÃ)x̃ < 0
is ensured in D−{0} by (21) [21, Theorem 3.7]. From [21,
Theorem 3.3], it follows that the equilibrium points x ∈ X
are asymptotically stable.

Remark 5: The conditions of Theorem 2 can be easily
verified by solving a semi-definite program (SDP) with
uncertain parameters Ṽ ∈ Ṽ, V ∈ V and P ∗ ∈ P [22].

Remark 6: An ensured region of attraction of the equilib-
rium points x of Theorem 2 is given by the largest ellipsoid
E = {x̃ ∈ RN | x̃TMx̃ ≤ c} which is contained in the
convex polytope Ṽ [21, Theorem 3.5].

The ellipsoid E is contained in Ṽ if and only if [23, Eq.
5.35]

max{aTj x̃ | x̃ ∈ E} ≤ 1 for j = 1, . . . , N.

IV. SIMULATION RESULTS

In this section, we illustrate the stability and the power
sharing of our three layer controller. We consider the meshed
DC microgrid with N = 5 buses shown in Fig. 4. P-
generators are placed at Buses 1 and 5, batteries are placed
at Buses 1 and 2, P-loads are located at Buses 3 and 4, and
damping elements are placed at Buses 3, 4 and 5. The third
layer controller generate values for P-generation PG every
T = 2 s and has a control horizon of kmax = 2 steps. The
predicted constant loads during the sampling time T are

PL
3 (k = 1, . . . , 5) =

[
10e3 10e3 10e3 18e3 10e3

]
W,

PL
4 (k = 1, . . . , 5) =

[
8e3 5e3 8e3 10e3 8e3

]
W,

where k indicates the time step. The P-generations produced
by the third layer controller and the actual P-loads are shown
in Fig. 5. Disturbances of +1kW and −1 kW occur during
the time spans 0.5 s to 1.5 s and 6.5 s to 7.5 s, respectively,
and are highlighted in gray in Fig. 5 and the following
figures. These disturbances are not known by the third
layer controller. The costs of the P-generators are c(PG

1 ) =
0.995PG

1 and c(PG
5 ) = PG

5 . Because the cost of the power
injection of Generator 1 is lower than Generator 5, generator
PG
1 feeds more than twice the power PG

5 into the grid (see
Fig. 5). The electrical parameters and control parameters of
the microgrid are listed in Table I. The numerical values of

1PB
1

PG
1

4

PL
4

PD
4

3PL
3

PD
3

5 PG
5

PD
5

2 PB
2

Fig. 4. Graph G(N , E) of the simulated DC microgrid with 5 buses
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Fig. 5. Power injections by P-loads (P3 = PL
3 , P4 = PL

4 ) and P-
generators (P1 = PG

1 , P5 = PG
5 ) at the five buses

1560



TABLE I
PARAMETERS OF THE DC MICROGRID

Filter parameter Rti = 0.2Ω Lti = 2mH Cfi = 2mF

Line parameter Rl = 0.1Ω Ll = 2 µH Cl
2

= 20nF
Battery controller k1,i = 0.5 k2,i = 0.1 k3,i = 50
Damping controller k1,i = 10 k2,i = 20 k3,i = 0.005

τ = 300

electrical parameters are based on [11, Appendix C]. The
control law of the linearized second layer controller (13)
around the operation point V = 400 · 1NV and It = 0NA is
given by

Vref =

[
V ∗

ref
400

]
+

[
0 0 0 0 0
−1 1 0 0 0

]
V +

[
0 0 0 0 0
7
80

− 7
80

1
16

1
80

3
80

]
It,

(22)

where V ∗
ref = 400V. The voltages of the five busses are

shown in Fig. 6. Because Bus 1 is the slack node, the
voltage V1 is controlled to V ∗

ref The voltage V2 is regulated
by the second layer controller which for example increases
the reference voltage Vref,2 during the disturbance from 0.5 s
to 1.5 s.
The power PB and the performed work WB of the batteries
are shown in Fig. 7. Both batteries compensate the load
disturbances from 0.5 s to 1.5 s and 6.5 s to 7.5 s and the
desired equal power sharing is achieved. Furthermore, the
batteries are (dis-)charged by the third layer controller during
the time spans 2 s to 4 s and 8 s to 10 s such that the SOCs
remain constant since the performed work WB is zero after
these time spans. The injected power PD and consumed
work WD of the damping elements are shown in Figs. 8
and 9. The damping elements inject power when changes in
the P-injections occur at the bus (see Fig. 5). Note that the
damping elements do not consume energy due to the state q
that ensures that the work done at steady state is zero (see
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Fig. 6. Bus voltages over time
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Fig. 7. Power and work of the two batteries over time

Fig. 9). The conditions of Theorem 2 has been verified by
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Fig. 8. Injected power of the three damping elements
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Fig. 9. Performed work of the three damping elements

solving an SDP with uncertain parameters (see Remark 5)

Ṽ ∈ Ṽ = {Ṽ ∈ R5 | −100 ≤ Ṽi ≤ 100},
V ∈ V = {V ∈ R5 | 350 ≤ V i ≤ 450},

P ∗ ∈ P = {P ∗ ∈ R5 | −15000 ≤ P ∗
i ≤ 15000}.

Hence, any equilibrium x ∈ X of Theorem 2 is asymptoti-
cally stable.

The power sharing error ∆PB = PB
1 − PB

2 between the
two batteries is plotted in a logarithmic scale in Fig. 10 for
three different controllers in the second layer. The power
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Fig. 10. Logarithmically scaled power sharing error ∆PB = PB
1 − PB

2
between the two batteries for the three different second layer controllers

sharing error of the time-invariant second layer controller of
Definition 3 plotted in yellow shows an error around ±2W
at steady state, e.g. at t = 1.45 s and at t = 7.45 s. The
controller of Definition 2 shown in red does not produce
any steady-state error. To benchmark our second layer con-
trollers, we replace the second level controller with a DC-
OFP which finds the exact solution of (12) every 1ms. Note
that this implementation is not real-time capable. Fig. 10
shows that the controller of Definition 2 achieves similar

1561



performance compared to the DC-OPF with a maximum
deviation between both sharing errors is 1W. Since all
three second layer controllers generate voltage references
for steady-state power sharing, it is worth comparing the
steady-state power sharing errors. The power sharing error
of the batteries at steady state t = 1.45 s is shown in
Table II for line resistances of 0.1Ω and 1Ω. With higher
line resistances, linearization errors have greater influence,
because the microgrid operates further from the linearization
point due to large voltage drops over the lines. The absolute
power sharing errors at t = 1.45 s are small compared to the
losses of the network of 67.3W and 594.2W for Rl = 0.1Ω
and 1Ω, respectively.

TABLE II
STEADY STATE POWER SHARING ERROR OF THE BATTERIES AT

t = 1.45 s

Case DC-OPF 2nd layer
controller (8)

2nd layer
controller (13)

Rl = 0.1Ω ∆PB = 41µW ∆PB = 62µW ∆PB = 1.693W
Rl = 1Ω ∆PB = 142µW ∆PB = −6.428mW ∆PB = 11.60W

V. CONCLUSION

In this paper, we proposed a hierarchical three layer
controller that achieves economic dispatch, compensates load
and generation disturbances with batteries performing power
sharing, and stabilizes the power grid. In particular, we
derived a novel control law for computing the voltages
references for the batteries. Furthermore, we stabilized the
microgrid containing P-generators and P-loads with voltage
controllers for batteries and for active damping elements. In
addition, we provided sufficient conditions for asymptotic
stability. Future work includes the use of distributed opti-
mization for the second layer controller, the consideration of
flexible consumers for which the power consumption can be
curtailed and the consideration of general ZIP-loads.
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