
Abstraction-based Motion Coordination Control
for Multi-Robot Systems

Zhuo-Rui Pan, Wei Ren, Xi-Ming Sun

Abstract— This paper studies the motion coordination control
problem for multiple mobile robots under a common workspace
and reach-avoid tasks. Using abstraction-based techniques, we
combine the offline and online control methods to propose a
distributed motion coordination control strategy. In the offline
control strategy, we partition the workspace to derive the graph
for the offline planning, and construct the symbolic abstraction
for each robot to design the individual controller offline. In the
online control strategy, we provide a detection mechanism to
check the existence of the potential robot collision, and imple-
ment the constructed symbolic abstraction and graph-searching
techniques to resolve the robot collision. The combination of the
offline and online control strategies results in the overall motion
coordination control strategy for all robots.

I. INTRODUCTION

Multi-robot systems (MRS) are defined as a group of
robots, which are systematized in the form of a multi-
agent architecture and work towards the same or different
goals [1]. A key problem for MRS is how to coordinate
and control the interactive activities of different robots such
that different goals can be achieved, including collision
avoidance, connectivity maintenance, tracking control and
reach-stay task [2]. This problem is generally addressed
in two directions. The first direction is to combine the
motion coordination and control together, whose essence is
to unify the motion coordination and control via appropriate
mechanisms like energy function based approaches [3]–[5].
However, these approaches depend heavily on the existence
of energy functions, and it becomes difficult to design the
combination mechanisms when the tasks and environment
of MRS are complex. The second direction is to separate
the motion coordination and control. In this direction, a
motion planning is derived first for each robot to achieve
its task, and then the inter-robot collision is solved. In this
paper we follow the second direction to address the motion
coordination control problem of MRS.

Along the second direction, many approaches have been
proposed to deal with the motion coordination control prob-
lems. Since the motion planning is derived first, many
existing techniques can be applied, including optimization
methods [6], sampling methods [7], learning-based methods
[8] and symbolic methods [9], [10]. The comparisons among
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different planning techniques can be found in [11]. With
the motion planning, the motion control can be treated as
a tracking control while avoiding the inter-robot collision,
and can also be solved via many methods, such as safe
corridor methods [12] and model predictive control (MPC)
based methods [13]. The motion planing and control can
be considered together offline to resolve all potential inter-
robot collisions, which however is inefficient since not all
inter-robot collisions can be detected a priori and the priorly-
detected inter-robot collisions may not appear in real time.
Hence, the motion planning is usually studied offline while
the motion control is discussed online. In this respect, the
motion planning is assumed to be well-designed such that
only the online motion control is investigated [14]. However,
since the motion control is based on the motion planning, we
need to consider the effects of the motion planning on the
motion control, which motivates us to consider the motion
planning and control in a unified framework.

In this paper, we address the motion control problem of
multi-robot systems via abstraction-based techniques. We
propose a novel abstraction-based motion control strategy,
which consists of both offline and online motion control
strategies. Specifically, the first step is to address the motion
control problem for each robot individually. Since all robots
move in a common workspace, the workspace is covered
by generating finite zonotopes, whose intersection relations
result in a graph [15], [16]. Using the graph theory, we
establish an offline motion planning for the desired task of
each robot, and further design an abstraction-based offline
controller for each robot via the abstraction construction.
This step is to consider each robot separately since initially
each robot has no information on other robots. If all robots
apply the offline controllers to move simultaneously, then
the inter-robot collisions are inevitable. Hence, the second
step is to design the online motion control strategy to
address the motion control problem for all robots. Based
on the abstraction construction, a prediction-based detection
mechanism is established to check the potential inter-robot
collision. For each robot involved in an inter-robot collision,
we apply the constructed symbolic abstraction and forward
searching techniques to design a local abstract controller to
ensure the collision avoidance. Once all potential internal
collisions are resolved, the desired tasks for all robots are
accomplished via the proposed motion control strategy.

Problem formulation is stated in Section II. The offline
and online control strategies are designed in Sections III and
IV, respectively. A numerical example is given in Section V.
Conclusion and future work are given in Section VI.
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II. PRELIMINARIES AND PROBLEM FORMULATION

R := (−∞,+∞); R+ := [0,+∞); N := {0, 1, . . .};
N+ := {1, 2, . . .}. Given two sets A,B ⊂ Rn, the cardinality
of A is denoted as |A|, and B \ A := {x : x ∈ B, x /∈ A}.
Given x ∈ Rn, xi is the i-th element of x, |x| is the Euclidean
norm of x, and ∥x∥ is the infinity norm of x. The closed
ball centered at x ∈ Rn with radius ε ∈ R+ is defined by
B(x, ε) = {y ∈ Rn : ∥x − y∥ ≤ ε}. Given a compact set
A ⊂ Rn and ε > 0, Eε(A) := {y ∈ Rn : ∥y − x∥ ≤
ε, x ∈ A} is the ε-expansion of A. A set Z ⊂ Rn is a
zonotope, if there exists (c,G) ∈ Rn × Rn×ng such that
Z := {c + Gξ : ∥ξ∥ ≤ 1}, where c ∈ Rn is the center
and G ∈ Rn×ng is the generator matrix with each column
being a generator. We denote any zonotope by {c,G}. A
graph is defined as G = {V, E} with the set of nodes
V = {1, 2, . . . , N} and the set of edges E ⊆ V×V . An edge
from node i to node j is denoted by (i, j), and implies that
node i can receive information from node j. The adjacency
matrix is denoted by A = [aij ]N×N , where aij = 1 if
(i, j) ∈ E and aij = 0 otherwise. The graph G is undirected
if aij = aji for all i, j ∈ V .

A. Problem Formulation

Consider the multi-robot system with N ∈ N mobile
robots, whose dynamics are presented below:

Σi : ẋi(t) = fi(xi, ui), (1)

where i ∈ N := {1, . . . , N}. For each robot, xi := (pi, ηi) ∈
Rn, pi ∈ Rn1 is the position state, ηi ∈ Rn2 is the non-
position state, and n = n1 + n2. ui ∈ Rm is the control
input. For each robot, the following constraints are imposed.

xi ∈ X× Γi ⊂ Rn1 × Rn2 , ui ∈ Ui ⊂ Rm, (2)

where X,Γi,Ui are compact sets, and the origin is contained
in Ui. From (2), we can see that all robots share the same
workspace X ⊂ Rn1 . For the i-th robot, a curve xi : R+ →
Xi is called a trajectory, if there exists a controller ui :
R+ → Ui such that (1) holds for all t ∈ R+. From the
robot model (1), the trajectory can be denoted as xi(t) :=
(pi(t),ηi(t)), where pi(t) is called the position trajectory
of the i-th robot. In addition, xi(t, x, u) denotes the state
reached at t ∈ R+ under u ∈ Ui from x ∈ X× Γi.

For all robots, their sensing abilities are assumed to be the
same. That is, the sensing radii of all robots are the same and
denoted as R > 0. Hence, the communication graph of all
robots are denoted as G = {V, E}, which is time-varying and
undirected. For each robot, its neighbor set at time t ∈ R+

is defined as Ni(t) = {j ∈ V : |pi(t) − pj(t)| ≤ R, j ̸= i}.
That is, the neighbor set is time-varying, and a robot is a
neighbor of the i-th robot only when it is sensed.

In this work, each robot has its own specification defined
in the workspace X ⊂ Rn1 , where the obstacle set is denoted
as O := {Ok : k ∈ K} ⊂ X with the index set K ⊆ N.
Each specification is assumed to be a reach-avoid task and
is expressed as a linear temporal logic formula φi; see [17]
for more details. Let pi |= φi mean the satisfaction of φi for

the system (1). Given multiple robots and their specifications
φi, our goal is to design distributed controllers to guarantee
the satisfaction of φi for each robot, which avoiding the
collisions among all robots. This goal is further reformulated
in the following optimization problem for each robot.

min Ji(xi, ui) (3a)
s.t. (1) − (2), pi |= φi, (3b)

pi(t) ∩O = ∅, ∀t ∈ R+, (3c)
pi(t) ∩ pj(t) = ∅, ∀j ∈ Ni(t),∀t ∈ R+, (3d)

where Ji : X× Γi × Ui → R is a predefined cost function,
which is assumed to be locally Lipschitz with respect to the
first argument. For each robot, (3b) shows the constraints and
specification, (3c) is to ensure the obstacle avoidance, and
(3d) is to avoid the collisions with other robots.

III. ZONOTOPE-BASED OFFLINE CONTROL

In this section, we first cover the workspace via zonotope
techniques, then generate an undirected graph via the applied
covering, and finally apply abstraction-based techniques to
design the offline controller for each robot.

A. Zonotope-based Covering

The covering strategy is presented in Alg. 1, which is to
generate finite zonotopes (which are called cells) to cover the
workspace X ⊂ Rn1 . The generation mechanism in Alg. 1 is
explained below in detail. First, we set an integer M > n1

a priori and choose M points ci ∈ X arbitrarily, where
i ∈ {1, . . . ,M} (line 1). In line 2, we connect each point
with at least n1 neighbour points such that the matrix Gi

in (5) is full-rank. By taking the point ci and the matrix
Gi as the center and the generator matrix respectively, we
construct the zonotopes in line 3. Here we would like to
emphasize that each zonotope is well-constructed due to the
assumptions on M and Gi. If either M ≤ n1 or Gi is not
full-rank, then the generated zonotopes cannot be applied
in the control design afterwards, which should be avoided
in the generation mechanism. Second, if these zonotopes
cannot cover the workspace X ⊂ Rn1 (i.e., line 4), then
a larger number M ∈ N is chosen (line 5) and lines 1-3
are re-implemented to generate more zonotopes. This loop
is repeated until the workspace is covered by the union of
all generated zonotopes. Note that with the larger M ∈ N,
we can choose different connections of each center with its
neighbour centers, which results in different choices of the
matrix Gi and further affects the generation of all zonotopes.
Finally, if the union of all generated zonotopes covers
the workspace, then each generated zonotope is expanded
slightly in line 7. In lines 1-3, the zonotope generation
may result in the intersection relation between two neighbor
zonotopes, and thus line 7 is to ensure the existence of the
intersection relation between any two neighbor zonotopes.
This step is to enhance the intersection relation, which will
play an important role in the controller design afterwards.
The parameter ε > 0 comes from the desired precision,
which will be discussed in the following subsections.
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Algorithm 1: Workspace Covering
Input: the workspace X ⊂ Rn1

Output: the covering of the workspace X ⊂ Rn1

1 Set M > n1 and choose {ci ∈ X : i = 1, . . . ,M}
2 Connect these points such that for each ci ∈ Rn, there

exists a full-rank matrix

Gi = (ck1 − ci, . . . , cki − ci), ki ≥ n1 (4)

3 Construct the zonotope

Zi = {ci + 0.5Giξ : ∥ξ∥ ≤ 1} (5)

4 while X \ (∪M
i=1Zi) ̸= ∅ do

5 Choose a larger number M ∈ N
6 Re-implement lines 1-3

7 Expand all Zi via a predefined parameter ε > 0

Z̄i = Eε(Zi) = {ci, 0.5(1 + ε)Gi} (6)

8 return Z = ∪M
i=1Z̄i

Since X is bounded, Alg. 1 can be terminated in finite time,
and the union set Z is derived. In this way, the covering of
the workspace is denoted as P(X) := Z.

B. Intersection-based Graph

To show the intersection relation among all zonotopes,
we construct a graph to verify the realizability of each
specification. To this end, each zonotope Z̄i is labeled via
a symbol from the set Π := {v1, . . . , vM}. To connect
each zonotope with the corresponding symbol, we denote
R(vi) = Z̄i for all vi ∈ Π and i ∈ M := {1, . . . ,M}.

For two sets A,B ⊂ X, their intersection A ∩ B is
admissible if (A∪B)\(A∩B∩O) is connected; see [2, Ch. 2,
Sec. 5]. With this definition, we can check if the intersection
region of any two zonotopes is admissible, which is sum-
marized as Alg. 2. In this way, we can derive all admissible
intersection regions, and an admissible intersection regions
means the existence of an edge between the corresponding
two zonotopes. That is, the adjacency matrix A is obtained
in Alg. 2 and results in an undirected graph Gc := (Vc, Ec),
where Vc = Π and Ec ⊆ Π×Π with (vi, vj) ∈ Ec if aij = 1.

For the specification φi of each robot, the region of interest
from φi is denoted as R(πi) ⊂ X \ O with the symbol πi.
All symbols consist of the set π := {πi : i ∈ N}, and thus
R(π) = ∪i∈NR(πi). In addition, the initial regions Xi0 of
all robots are labeled into the set δ := {δi : i ∈ N} with
R(δi) = Xi0. By including the sets π and δ, the graph G is
generalized as Ḡc = (Vc, Ēc). In particular, Vc = Π∪π∪δ and
Ēc ⊆ Vc × Vc including the edges in G and the edges from
the connections among Z, R(π) and R(δ) = ∪i∈NR(δi).

C. Offline Planning for Each Robot

With the graph Ḡc, we can check if the specification of
each robot can be realized and further derive the initial offline
planning for each robot. Each path in Ḡc, i.e., p̄ = v̄1v̄2 . . .
with v̄k ∈ Vc, can be projected into a path in Gc, that is,
p = v1v2 . . . with vk ∈ Vc. Furthermore, we have a sequence
of finite regions Z := {Zk = R(vk) ∈ Z : vk ∈ p, k ∈ N+}.

Algorithm 2: Intersection-based Adjacency Matrix
Input: the partition Z, the forbidden region O ⊂ X
Output: the matrix A = [aij ] and the set I = {Iij}

1 for i = 1 : 1 : M do
2 if Z̄i ∩O ̸= Z̄i then
3 for j = 1 : 1 : M do
4 if Z̄j ∩O ̸= Z̄j then
5 Ψ = Z̄i ∩ Z̄j

6 if Ψ = ∅ then
7 aij = 0
8 else
9 if (Z̄i ∪ Z̄j) \ (Ψ ∩O) is connected

then
10 aij = 1 and Iij = Ψ \O
11 else
12 aij = 0

13 else
14 aij = 0

15 else
16 aij = 0 for j ∈M

17 return A = [aij ] and I = {Iij}

Lemma 1: Consider the workspace X ⊆ Rn1 and the
specification φi of each robot. Let the graph Ḡc be con-
structed. φi can be realized if and only if
(1) there exists a path p̄i in Ḡc connecting δi and πi;
(2) For the sequence Zi from pi and each Zk

i ∈ Zi, k ∈ N,
either of the following two conditions holds: (i) Zk

i \
O is connected; (ii) otherwise, there exists a connected
subregion Z̄k

i ⊂ Zk
i \O such that Z̄k

i ∩(Zk
i ∩Z

k−1
i )∩(Zk

i ∩
Zk+1

i ) ̸= ∅, and Z̄k
i ∩R(πi) ̸= ∅ if Zk

i ∩R(πi) ̸= ∅.
Lemma 1 offers a way to check if the task of each robot

can be realized. Z0
i is the initial workspace R(δi), and

Z
|pi|+1
i is the region of interest R(πi). The path pi for each

robot may not be unique. In this case, we choose the shortest
path p∗

i for each robot and derive the region set Zi.

D. Offline Control for Each Robot

Since p∗
i is to realize the specification of each robot, we

next only focus on the corresponding region set Zi to design
the controller for each robot. To this end, we first denote the
intersection region set in Zi as Ii := {Ikl

i = Zk
i ∩ Z l

i :
∀Zk

i ,Z l
i ∈ Zi}. In each Zk

i , the i-th robot aim to move
from I(k−1)k

i to Ik(k+1)
i while avoiding the obstacle O. We

denote the time-discretization of Σi as Tτ (Σi), where τ is
the sampling period. If Zk

i ∈ Zi is the workspace, then the
corresponding state space is Xk

i := Zk
i ×Γi and the system

is denoted as Tτ (Σi,X
k
i ). Next, we consider Tτ (Σi,X

k
i )

and construct its symbolic abstraction as follows:

Tτ,λ,θ(Σi,X
k
i ) = (Xi, Xi0,Ui,∆i), (7)

with (i) the state set Xi = A(Xk
i , λ), which means the

partition of Xk
i via a given parameter λ > 0; (ii) the set of

initial states Xi0 = A(Xk
i0, λ) with Xk

i0 ⊆ Xk
i ; (iii) the input

set Ui = A(Ui, θ), which means the partition of Ui via a
given parameter θ > 0; (iv) the transition relation ∆i defined
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below: for y1, y2 ∈ Xi and v ∈ Ui, y2 ∈ ∆i(y1, u) if and
only if y2 ∈ {q̄ ∈ Xi : ∥xi(τ, y1, v)− q̄∥ ≤ (0.5 + eLiτ )ε},
where Li > 0 is the Lipschitz constant of the system (1).

In the above construction mechanism, the parameters
λ, θ > 0 are respectively to partition Xk

i and Ui, and
are constrained via the desired equivalence relation for
Tτ (Σi,X

k
i ) and Tτ,λ,θ(Σi,X

k
i ). The details on the abstrac-

tion construction can be found in many existing works, e.g.,
[15], [18], [19]. Here, τ, λ, θ are set to be the same for all
regions and robots. This setting is to guarantee that there
exists a common abstract workspace for all robots; otherwise,
each robot has a symbolic abstraction such that multi-layered
symbolic abstractions are involved. For the union Xi :=
∪Xk

i , the symbolic abstraction is denoted as Tτ,λ,θ(Σi,Xi).
The following lemma is from our previous work [15] and is
to show how to ensure the feedback refinement relation; see
[15], [18] for more details.

Lemma 2: Consider the system Tτ (Σi,Xi) and its ab-
straction Tτ,λ,θ(Σi,Xi) with the parameters τ, λ, θ > 0.
Given a precision ε > 0, if the map F : Xi → Xi is given
by F(x) = {y ∈ Xi : ∥x − y∥ ≤ ε}, then F is a feedback
refinement relation from Tτ (Σi,Xi) to Tτ,λ,θ(Σi,Xi), that
is, Tτ (Σi,Xi) ⪯F Tτ,λ,θ(Σi,Xi).

From Lemma 2 and [15], [18], if Tτ (Σi,Xi) ⪯F

Tτ,λ,θ(Σi,Xi) and there exists an abstract controller Ci
a :

Xi → 2Ui such that the specification φi is satisfied for
Tτ,λ,θ(Σi,Xi), then the abstract controller Ci

a can be refined
as the controller Ci(x) := Ci

a(F(x)) for any x ∈ Xi, which
further guarantees that φi is satisfied for Tτ (Σi,Xi). In this
way, we only need to check the existence of the abstract con-
troller, which can be established via many existing software
toolboxes and the techniques from the fields of computer
science; see [20] for more details. Since we aim to minimize
the cost function in (3), the abstract controller design is
formulated into the following optimization problem.

min Ji(yi, ui) (8a)
s.t. yi(k + 1) = ∆i2(yi(k), ui(k)), (8b)

qi |= φi, qi(k) ∩Eε(O) = ∅, ∀k ∈ N, (8c)
yi(k) ∈ A(Zi, λ), ui(k) ∈ A(Ui, θ), (8d)

where yi(k) ∈ Rn is the abstract state at the time step k ∈ N,
and qi(k) ∈ Rn1 is the abstract position in yi(k).

In the problem (8), the constraint (2) is embedded in the
symbolic abstraction Tτ,λ,θ(Σi,Xi). Due to the feedback
refinement relation in Lemma 2, Eε(O) is introduced and
the difference Ji(xi, ui) − Ji(yi, ui) is a function of the
precision ε > 0. That is, the solution to (8) results in an
approximate solution to (3). In addition, the smaller the
precision ε > 0 is, the smaller this difference is while the
higher the computational complexity is.

Since the refinement of the abstract controller depends
on the feedback refinement relation, we can update the
transitions in Tτ,λ,θ(Σi,Xi) by trimming all transitions
that cannot guarantee the feedback refinement relation. The
updated symbolic abstraction is denoted as T̄τ,λ,θ(Σi,Xi),
which will be used in the following online control strategy.

Algorithm 3: Potential Collision Detection: Detect()
Input: pi, qi(k, h), qj(k, h), k ∈ N, i, j ∈ N , h ∈

{0, 1, . . . ,N}
Output: N̄i(k)
Initialize: N̄i(k) = ∅

1 Compare all paths pi to derive all joint vertices
2 for each zonotope that corresponds to a joint vertex do
3 for j ∈ Ni(k) do
4 if (10) holds for some h ∈ {0, 1, . . . ,N} then
5 N̄i(k) = N̄i(k) ∪ {j}

6 if N̄i(k) ̸= ∅ then
7 The i-th robot switches to DET mode

IV. ONLINE COORDINATION AND CONTROL

Since each robot is considered individually in Section III,
the collision among different robots is inevitable when all
designed controllers are implemented such that all robots
move simultaneously. Hence, it is necessary to have an online
coordination and control strategy to ensure the satisfaction of
the constraints (3c)-(3d), which is investigated in this section.

To deal with the potential collision, each robot is assumed
to have the following two modes. The first mode is REG
mode, which is the regular mode for the collision-free case
and where the offline controller is implemented. The second
mode is DET mode, where the potential collisions are
detected and how to plan and control the robot needs to
be reconsidered. Each robot is initialized in REG mode and
switches among these two modes.

A. Potential Collision Detection

We start with the potential collision among all robots.
From the graph G in Section III-D, the paths pi for all robots
are derived and can be compared here to check the joint
vertices among different paths. Since each vertex means a
zonotope, the existence of a joint vertex implies the corre-
sponding zonotope is share by at least two robots. If the path
of a robot does not intersect with other paths, then this robot
just implements the offline controller and there is no need
to consider the potential collision. Hence, we compare all
derived paths and only consider all zonotopes that correspond
to the joint vertices. This step reduces the computational
complexity of the local replanning and control.

In the zonotope corresponding to a joint vertex, a nec-
essary condition for the robot collision is that the neighbor
set Ni(k) at the current time step k ∈ N is not empty. If a
robot senses other robots, then it needs to detect the potential
collision. For this purpose, we implement the MPC-based
techniques and assume that the prediction step of all robots
are the same and are set as N ∈ N. For each h ∈ {1, . . . ,N},
the predicted abstract position of each robot is denoted as
qi(k, h) ∈ Rn1 , and all N-step predicted abstract positions
are qi[k,N] ∈ Rn1 . From Lemma 2, we define the cell
C(qi(k)) = {x ∈ Rn1 : ∥x− qi(k)∥ ≤ ε}.

For any two robots, if C(qi[k,N])∩C(qj [k,N]) = ∅ with
i, j ∈ N , then the collision between the i-th and j-th robots
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Algorithm 4: Online Motion Controller Design
Input: the offline controller from (8) for each robot
Output: Real-time planning and control strategy
Initialize: Robot i is in REG mode and moves via the

offline controller
1 while φi is not satisfied do
2 N̄i(tk)← Detect()
3 if N̄i(tk) = ∅ then
4 The robot switches to REG mode
5 else
6 The robot switches to DET mode
7 Solve the problem (11)
8 if the solution exists then
9 Update the offline controller

10 The robot switches to REG mode
11 else
12 The robot stops as a static obstacle
13 Repeat Step 7

does not exist. If there exists an h ∈ {0, 1, . . . ,N} such that

C(qi[k + h, 2]) ∩ C(qj [k + h, 2]) ̸= ∅, (9)

then the collision between the i-th and j-th robots exists.
The condition (9) shows that any two successive predicted
cells for each robot do not intersect with those for other
robots. The condition (9) is motivated by the continuity of
the robot motion from one cell to another. In particular, the
condition (9) includes the special case where only each time
step is considered. That is, C(qi(k, h)) = C(qj(k, h)), which
means that two robot will reach the same abstract position
while cannot show the continuous moving from one cell to
another. Hence, for each robot at time step k, we define the
following set of all its collision neighbors:

N̄i(k) := {j ∈ Ni(k) : ∃h ∈ {0, 1, . . . ,N}
such that (9) holds}. (10)

The above collision detection mechanism is summarized in
Alg. 3. Once the potential robot collision is detected, the
robot switches to DET mode immediately.

B. Local Planning and Control

If the potential collision is detected, then the next is to
replan the robots and to re-design the controller to resolve
the collision. We aim to apply the MPC-based techniques to
re-plan the motion of each robot. Each robot communicates
with its neighbour robots and searches the follow-up N steps
to derive a tradeoff between the motions of itself and its
collision neighbors. Hence, the local planning and control
are formulated into the following optimization problem:

min Ji(yi, ui) (11a)
s.t. yi(k + 1) = ∆i2(yi(k), ui(k)), (11b)

qi |= φi, qi(k) ∩Eε(O) = ∅, (11c)

yi(k) ∈ A(Xk
i , λ), ui(k) ∈ A(Ui, θ), (11d)

C(qi(k)) ∩ C(qj(k)) = ∅, ∀j ∈ N̄i(k). (11e)

Comparing with (8), the constraint (11e) is embedded in
(11) to ensure the collision avoidance. Note that (8) is solved
offline via the abstraction-based control technique, which
is a backward searching method to recursively search the
predecessor states from the target region, whereas (11) needs
to be solved online via certain forward searching method.

To solve (11), we can focus on the symbolic abstraction
T̄τ,λ,θ(Σi,Xi) and the next N steps for each robot. At the
current time step, if the potential collision is detected, then
the local goal is to resolve the robot collision that may
occur in the next N steps. In this case, all robots involved
in the potential collision have their initial positions qi(k)
and local target position qi(k,N), i ∈ N and k ∈ N. Since
T̄τ,λ,θ(Σi,Xi) is discrete-time and discrete-state, the local
goal can be solved by the graph-searching techniques to find
a local position trajectory such that (9) does not hold for any
h ∈ {1, . . . ,N}. Since all control inputs from Ui needs to
be checked for N steps, we estimate that the computational
complexity of solving (11) is O(N

∑N
i=1 |Ui|N).

The solvability of the optimization problem (11) depends
on both the abstraction construction and the abstract position
of each robot. On the one hand, the finer the partitions of the
state and input spaces are, the more the abstract positions and
transitions will be. In this way, each robot can search more
transitions to find a feasible local trajectory, whereas the
finer partition will inevitably result in higher computational
complexity. On the other hand, if one robot is surrounded
by other robots, that is, all neighbour abstract positions of
this robot are taken, then the problem (11) cannot be solved,
and this robot stops immediately as a static obstacle and wait
for the motion of other robots. In this case, the robot is still
power-on to switch back to REG mode if it is possible. The
online motion control strategy is stated in Alg. 4. Since the
feedback refinement relation is ensured between Tτ (Σi,Xi)
and T̄τ,λ,θ(Σi,Xi), the motion control strategy from Alg. 4
is available for the system (1) to solve the problem (3).

V. NUMERICAL EXAMPLE

Consider the following 3 autonomous vehicles
ẋi1(t) = ui1(t) cos(xi3(t)),

ẋi2(t) = ui1(t) sin(xi3(t)),

ẋi3(t) = ui2(t),

where i ∈ {1, 2, 3}, pi := (xi1, xi2) ∈ R2 is the vehicles
position, ηi := xi3 ∈ R is orientation of the vehicle, ui1 ∈ R
is the linear velocity and ui2 ∈ R is the angular velocity. The
control input is assumed to be in Ui = [0, 1]× [−1.5, 1.5].

The three vehicles move in the same state space X×Γ with
X = [0, 16] × [0, 10] and Γ = [−π, π]. Initially, all vehicles
are placed statically (see the points in Fig. 1(b)). All vehicles
are to move to the target position (see the stars in Fig. 1(b))
while avoiding the obstacles O = {O1,O2,O3,O4} (i.e., the
black regions in Fig. 1(a)). All vehicles do not need to move
simultaneously from the initial time. Vehicle 1 (the green
one in Fig. 1(b)) moves from the initial time, vehicle 2 (the
blue one in Fig. 1(b)) starts to move from 2.1s, while vehicle
3 (the red one in Fig. 1(b)) starts to move from 6.3s.
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Fig. 1. Simulation of the motion coordination problem among 3 vehicles. (a) Illustration of the workspace covered by the generated zonotopes. (b) The
position trajectories of all vehicles, where the points are the initial positions and the stars are the target positions. The dotted curves are the position
trajectories based on the offline controller, while the solid curves are the position trajectories based on the online controller. (c) The evolution of the control
inputs. The dotted lines are the offline control inputs, while the solid curves are the online control inputs.

To achieve the task of all vehicles, the workspace X is
covered by generating zonotopes as in Alg. 1. 64 zonotopes
are generated in Fig. 1(a). Following Alg. 2, we construct
a graph and further derive the offline motion planning for
each vehicle. Let ε = 0.2, τ = 0.3, λ = 0.05 and θ = 0.1
to construct the local symbolic models. Using the SCOTS
toolbox [20] and by solving the optimization problem (8) via
the constructed local symbolic models, the offline abstract
controller for each vehicle is derived; see the dotted lines in
Fig. 1(c). With the offline abstract controllers, the position
trajectories of all vehicles are depicted in Fig. 1(b).

To deal with the potential collisions, we apply the pro-
posed collision detection mechanism in Section IV-A. Let
R = 1 and N = 3. The collisions are detected by vehicles
1 and 2 at 8.4s and 15s, respectively. By implementing Alg.
4, the real-time position trajectories are shown via the solid
curves in Fig. 1(b). Fig. 1(b), all the collisions are resolved
and the tasks of all vehicles are accomplished. The real-time
control inputs are depicted in Fig. 1(c). All computations
are performed on a workstation with dual Intel Xeon Gold
6230R processors (2.10GHz) and 224GB RAM.

VI. CONCLUSION

In this paper, we addressed the motion coordination
control problem of multi-robot systems with reach-avoid
tasks. An abstraction-based control strategy was proposed.
Using the workspace covering and abstraction techniques,
we developed the abstract motion planning and controller for
each robot. To resolve all inter-robot collisions, we proposed
a prediction-based detection mechanism and implemented
the forward-searching techniques to design local abstract
controllers. Future work will be devoted to the extension
to deal with complex tasks for multi-robot systems.
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