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Abstract— Stabilization of a parabolic partial differential
equation coupled with an elliptic partial differential equation
is considered. Even in the situation when these equations are
exponentially stable when uncoupled, the coupled system may
be unstable. A backstepping approach is used to design a
boundary control that stabilizes the coupled system. The result
is illustrated with simulations.

I. INTRODUCTION
Parabolic-elliptic systems result from the coupling of

parabolic partial differential equations with elliptic partial
differential equations. Examples include the mathematical
modelling of lithium-ion and electrolytic cells [1], [2], bi-
ological transport networks [3], chemotaxis phenomena [4],
[5] and the thermistor [6].

Parabolic-elliptic systems are an important class of par-
tial differential-algebraic equations (PDAEs). The well-
posedness of the latter has been addressed in [7], [8], [9],
[10]. In [9] the authors gave conditions for well-posedness
using a concept called (E, p)-radiality. This is an extension
of the Hille-Yosida type conditions for PDEs to PDAEs.
Later, [10] provided similar results with weaker conditions
by restricting the state-space to a reflexive Banach space and
also presented an extension of the classical Lumer-Phillips
Theorem to partial differential-algebraic equations.

Stabilization through boundary control for coupled linear
parabolic partial differential equations has been investigated
in the literature. In [11], the backstepping approach was
used to stabilize the dynamics of a linear coupled reaction-
diffusion systems with constant coefficients. An extension of
this work to systems with variable coefficients was presented
in [12]. In Koga et al. [13] the authors described bound-
ary control of the one phase Stefan problem, modeled by
a diffusion equation coupled with an ordinary differential
equation. Feedback stabilization of a PDE-ODE system was
also studied in [14]. The backstepping method stands out
as one of the rare strategies that yields an explicit control
law for PDEs, without first approximating the PDE. This
is achieved by mapping the unstable original system into
an exponentially stable target system. The transformation is
intended to send the destabilizing terms within the original
system to the boundary, where they can be eliminated by the
control input.

If the parabolic equation is stable, it would be expected
that coupling between the parabolic and the elliptic equations
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would not lead to instability. However, this was displayed to
be untrue in [15]. Krstic and Smyshlyaev [16] considered the
boundary stabilization of several coupled parabolic-elliptic
systems, linearized Kuramoto–Sivashinsky and Korteweg–de
Vries equations, using two control inputs. Later [15], sta-
bilization using Dirichlet boundary control of an unstable
parabolic-elliptic system with input delay was shown.

In this paper, we consider boundary stabilization of a class
of parabolic-elliptic systems with single Neumann control.
The result is a feedback control law that exponentially
stabilizes the dynamics of the system. The control input
is directly designed using the system of partial differen-
tial equations, without approximation by finite-dimensional
systems. Explicit calculation of the eigenfunctions is not
required. This is done by using a backstepping approach
[16]. The conventional backstepping methodology involves
looking for an invertible state transformation that maps the
unstable original system into an exponentially stable target
system. However, our algorithm takes a slightly different
approach. We use a backstepping transformation that has
been previously used for parabolic equations [16]. This leads
to an unusual target system. The next step is to establish
stability of the obtained target system. The final result is
an explicit expression for a single boundary control that
stabilizes the coupled system.

In section II, the class of parabolic-elliptic equations under
study is described and shown to be well-posed. Stability
analysis for the system is also provided. The main result,
in section III, is the use of a backstepping transformation
that leads to an explicit expression for a boundary controller
for the coupled system . In section IV, the theoretical results
are illustrated with numerical simulations.

II. PROBLEM STATEMENT

The aim is stabilization of the following class of parabolic-
elliptic systems

wt(x, t) =wxx(x, t)−ρw(x, t)+αv(x, t), (1)
0 =vxx(x, t)− γv(x, t)+βw(x, t), (2)

wx(0, t) =0, wx(1, t) = u(t), (3)
vx(0, t) =0, vx(1, t) = 0, (4)

where x ∈ [0,1] and t ≥ 0. The parameters ρ, α, β , γ are
all real, with α , β both nonzero. Also γ ̸= −(nπ)2 so the
operator γI − ∂xx is invertible. The given restriction on γ

ensures the well-posedness of system (1)- (4); see [10].
The parabolic equation is controlled at x = 1 by Neumann
boundary control u(t).
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System (1)- (4) can be written as

wt(x, t) =wxx(x, t)−ρw(x, t)+αβ (γI −∂xx)
−1w(x, t). (5)

Defining

A = ∂xx −ρI +αβ (γI −∂xx)
−1, (6)

D(A) = {w ∈ H2(0,1), w′(0) = w′(1) = 0},

equation (5) can be further written as

d
dt

w(t) =Aw(t), w(0) = w0. (7)

Theorem 1. The eigenvalues of the uncontrolled system (1)-
(4) are

λn =−ρ +
αβ

γ +(nπ)2 − (nπ)2, n = 0, 1, . . . (8)

where γ ̸=−(nπ)2.

Proof. The analysis is standard but given for completeness.
Let {φ j} j≥0 ⊂C 4(0,1) be the eigenfunctions of the operator
A corresponding to the eigenvalues λ j, then

λ jφ j = φ
′′
j −ρφ j +αβ (γI −∂xx)

−1
φ j,

φ
′
j(0) = φ

′
j(1) = 0.

(9)

Setting

(γI −∂xx)
−1

φ j = e j, (10)

then γe j − e
′′
j = φ j. Substituting for e j from (10) into (9),

e j =
ρ +λ j

αβ
φ j −

1
αβ

φ
′′
j .

We obtain the fourth-order differential equation

φ
′′′′
j − (λ j +ρ + γ)φ

′′
j +(γ(λ j +ρ)−αβ )φ j = 0, (11)

with the boundary conditions

φ
′
j(0) = φ

′
j(1) = φ

′′′
j (0) = φ

′′′
j (1) = 0. (12)

Solving system (11)- (12) for φ j yields that φ j = cos( jπx)
for j = 0, 1, . . . . Subbing φ j in (11) leads to (8). □

Theorem 2. System (1)- (4) is exponentially stable if

ρ >
αβ

γ
, (13)

and the decay rate in that case is bounded by the maximum
eigenvalue

ρ − αβ

γ
. (14)

Proof. Since A is a self-adjoint operator with a compact
inverse, it follows from [17, section 3] that A is a spectral
operator. Also, A generates a C0-semigroup with growth
determined by the eigenvalues. □

Thus, even in the case when the parabolic equation is
exponentially stable, coupling with the elliptic system can
cause the uncontrolled system to be unstable.

III. STABILIZATION VIA BOUNDARY CONTROL

In this section, we design a boundary control that stabilizes
the dynamics of the coupled system by using a backstepping
approach. These transformations are generally formulated as
a Volterra operator, which guarantees under weak conditions
invertibility of the transformation. One possible approach to
stabilization is to convert system (1)- (4) into one equation
in terms of the state w(x, t). However, this will result in
the presence of a Fredholm operator αβ

∫ 1
0 g(x;y)w(y, t)dy

where g(x;y) is the Green’s function of (γI − ∂xx)
−1. This

term makes it difficult to establish a suitable Volterra trans-
formation. Another approach would be a vector-valued trans-
formation for both w(x, t) and v(x, t). This is quite complex.

The simplest approach is to apply state transformation only
on the parabolic state. This leads to a target system that is
also a PDAE, but only one transformation is needed and
there is now a wide literature on such transformations; see
[16]. We use the transformation

w̃(x, t) =w(x, t)−
∫ x

0
k(x,y)w(y, t)dy. (15)

while the elliptic state v(x, t) is unchanged, and the kernel
k(X ,y) is given by the following lemma from [16, chap. 4].

Lemma 3. The hyperbolic partial differential equation

− kyy(x,y)+ kxx(x,y)+(ρ − c1)k(x,y) = 0,

ky(x,0) = 0, k(x,x) =−1
2
(c1 −ρ)x,

(16)

is well-posed. Furthermore, the solution of the system above
is

k(x,y) =−(c1 −ρ)x
I1

(√
(c1 −ρ)(x2 − y2)

)
√

(c1 −ρ)(x2 − y2)
, (17)

where I1(·) is the modified Bessel function of first order
defined as

I1(x) =
∞

∑
m=0

(x/2)2m+1

m!(m+1)!
.

The following lemma in [16, chap. 4] presents the inverse
transformation of (15).

Lemma 4. The inverse transformation of (15) is

w(x, t) =w̃(x, t)+
∫ x

0
l(x,y)w̃(y, t)dy,

where l(x,y) is the solution of the system

lxx(x,y)− lyy(x,y)− (ρ − c1)l(x,y) = 0,

ly(x,0) = 0, l(x,x) =−1
2
(c1 −ρ)x,

with

l(x,y) =−(c1 −ρ)x
J1

(√
(c1 −ρ)(x2 − y2)

)
√
(c1 −ρ)(x2 − y2)

, (18)

where J1(·) is the Bessel function of first order defined as

J1(x) =
∞

∑
m=0

(−1)m (x/2)2m+1

m!(m+1)!
.
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Theorem 5. Transformation (15) maps the original system
(1)- (4) into the target system

w̃t(x, t) =w̃xx(x, t)− c1w̃(x, t)

+αv(x, t)−α

∫ x

0
k(x,y)v(y, t)dy, (19)

0 =vxx(x, t)− γv(x, t)+β w̃(x, t)

+β

∫ x

0
l(x,y)w̃(y, t)dy, (20)

w̃x(0, t) =0, w̃x(1, t) = 0, (21)
vx(0, t) =0, vx(1, t) = 0, (22)

where c1 is a free parameter restricted to be chosen such
that c1 > ρ and the partial differential equation governing
the kernel function k(x,y) is (16), provided that

u(t) =
∫ 1

0
kx(1,y)w(y, t)dy+ k(1,1)w(1, t). (23)

Proof. We rewrite (15) as

w(x, t) = w̃(x, t)+
∫ x

0
k(x,y)w(y, t)dy. (24)

Differentiating (15) with respect to x twice gives

wxx(x, t) =w̃xx(x, t)+
∫ x

0
kxx(x,y)w(y, t)dy

+ kx(x,x)w(x, t)+
d
dx

k(x,x)w(x, t)

+ k(x,x)wx(x, t). (25)

and with respect to t,

wt(x, t) =w̃t(x, t)+
∫ x

0
k(x,y)wt(y, t)dy

=w̃t(x, t)+
∫ x

0
k(x,y)[wyy(y, t)−ρw(y, t)

+αv(y, t)]dy

=w̃t(x, t)+ k(x,x)wx(x, t)

−
∫ x

0
ky(x,y)wy(y, t)dy−ρ

∫ x

0
k(x,y)w(y, t)dy

+α

∫ x

0
k(x,y)v(y, t)dy

=w̃t(x, t)+ k(x,x)wx(x, t)− ky(x,x)w(x, t)

+ ky(x,0)w(0, t)+
∫ x

0
kyy(x,y)w(y, t)dy

−ρ

∫ x

0
k(x,y)w(y, t)dy+α

∫ x

0
k(x,y)v(y, t)dy.

(26)

Here, kx(x,x) = ∂

∂x k(x,y)|x=y, ky(x,x) = ∂

∂y k(x,y)|x=y,
d
dx k(x,x) = kx(x,x) + ky(x,x). Substituting (25) and (26)
in (1), and after some mathematical steps we arrive to

w̃t(x, t) = w̃xx(x, t)−ρw(x, t)+2
d
dx

k(x,x)w(x, t)

− ky(x,0)w(0, t)−α

∫ x

0
k(x,y)v(y, t)dy+αv(x, t)

+
∫ x

0
[−kyy(x,y)+ kxx(x,y)+ρk(x,y)]w(y, t)dy.

Adding and subtracting the term c1w(x, t) to the right-hand-
side of the previous equation

w̃t(x, t) = w̃xx(x, t)− c1w(x, t)+αv(x, t)−α

∫ x

0
k(x,y)

× v(y, t)dy+(c1 −ρ +2
d
dx

k(x,x))w(x, t)− ky(x,0)w(0, t)

+
∫ x

0
[−kyy(x,y)+ kxx(x,y)+(ρ − c1)k(x,y)]w(y, t)dy = 0.

(27)

It follows from Lemma 5 that equation (27) reduces to
(19). Also, w̃x(0, t) = wx(0, t)−k(0,0)w(0, t) = 0. The other
boundary condition on w(x, t) holds by noting that u(t) is
given by (23). □

The boundary condition (23) defines the control signal for
the original system.

Next, we provide conditions that ensure that the target
system is exponentially stable. We need to establish some
lemmas. The next lemma gives bounds on the induced L2-
norms of the kernel functions k(x,y) and l(x,y).

Lemma 6. The L2-norms of k(x,y) and l(x,y) are bounded
by

∥k∥ ≤
√

(c1 −ρ)π

8

(
er f i(

√
(c1 −ρ)

2
)

×er f (

√
(c1 −ρ)

2
)

) 1
2

, (28)

∥l∥ ≤
√

(c1 −ρ)π

8

(
er f i(

√
(c1 −ρ)

2
)

×er f (

√
(c1 −ρ)

2
)

) 1
2

, (29)

where er f i(x) = 2√
π

∫ x
0 eξ 2

dξ , and er f (x) = 2√
π

∫ x
0 e−ξ 2

dξ .

Proof. To prove relation (28), we recall the expression for the
kernel k(x,y) given in (17). We set z =

√
(c1 −ρ)(x2 − y2),

then

k(x,y) =
−(c1 −ρ)

z
x

∞

∑
m=0

( z
2

)2m+1 1
m!m+1!

=
−(c1 −ρ)

z
x

z
2

∞

∑
m=0

( z
2

)2m 1
m!m+1!

=
−(c1 −ρ)

2
x

∞

∑
m=0

(z2/4)m

m!
1

m+1!

≤−(c1 −ρ)

2
x

∞

∑
m=0

(z2/4)m

m!

Thus the induced L2- norm is bounded by

∥k(x,y)∥ ≤ (c1 −ρ)

2
∥x∥∥e

z2
4 ∥

≤ (c1 −ρ)

2
∥x∥∥e

(c1−ρ)x2
4 ∥∥e

−(c1−ρ)y2
4 ∥

≤
√

(c1 −ρ)π

8

(
er f i(

√
(c1 −ρ)

2
)er f (

√
(c1 −ρ)

2
)

) 1
2

.

2665



Similarly, one can prove (29) by referring back to (18). □
The following lemma will be needed to show stability of

the target system.

Lemma 7. The states of the target system (19)-(22) satisfy
the following inequality

∥v(x, t)∥ ≤ |β |
γ
(1+∥l∥)∥w̃∥. (30)

Proof. Multiply equation (20) by v(x, t) and integrate from
0 to 1,

0 =
∫ 1

0
vxx(x, t)v(x, t)dx− γ

∫ 1

0
v2(x, t)dx

+β

∫ 1

0
w̃(x, t)v(x, t)dx

+β

∫ 1

0
v(x, t)

∫ x

0
l(x,y)w̃(y, t)dydx,

Thus,

γ

∫ 1

0
v2(x, t)dx ≤β

∫ 1

0
w̃(x, t)v(x, t)dx

+β

∫ 1

0
v(x, t)

∫ x

0
l(x,y)w̃(y, t)dydx. (31)

Bounding the terms on the right-hand side of inequality (31)
using Cauchy-Schwartz leads to (30). □

Theorem 8. The target system (19)− (22) is exponentially
stable if

c1 >
|αβ |

γ
(1+∥l∥)(1+∥k∥). (32)

Proof. Define the Lyapunov function candidate,

V (t) =
1
2

∫ 1

0
w̃2(x, t)dx =

1
2
∥w̃(x, t)∥2.

Taking the time derivative of V (t),

V̇ (t) =
∫ 1

0
w̃(x, t)w̃t(x, t)dx

=
∫ 1

0
w̃(x, t)[w̃xx(x, t)− c1w̃(x, t)

+αv(x, t)−α

∫ x

0
k(x,y)v(y, t)dy]dx

≤− c1

∫ 1

0
w̃2(x, t)dx+α

∫ 1

0
w̃(x, t)v(x, t)dx

−α

∫ 1

0
w̃(x, t)

∫ x

0
k(x,y)v(y, t)dydx. (33)

Using Cauchy-Schwartz inequality, we estimate the term of
the right hand-side of inequality (33) as follows.

α

∫ 1

0
w̃(x, t)v(x, t)dx ≤|α|∥w̃∥∥v∥

≤|α||β |
γ

(1+∥l∥)∥w̃∥2, (34)

and

−α

∫ 1

0
w̃(x, t)

∫ x

0
k(x,y)v(y, t)dydx

≤ |α|
∫ 1

0
|w̃(x, t)|

∫ 1

0
|k(x,y)||v(y, t)|dydx

≤ |α|∥k∥∥w̃∥∥v∥

≤ |α||β |
γ

∥k∥(1+∥l∥)∥w̃∥2. (35)

Subbing (34) and (35) in (33),

V̇ (t)≤−
(

c1 −
|α||β |

γ
(1+∥l∥)(1+∥k∥)

)
∥w̃∥2. (36)

Setting

c2 =c1 −
|α||β |

γ
(1+∥l∥)(1+∥k∥),

then inequality (36) implies that,

V (t) ≤ e−2c2tV (0).

If the parameter c1 is chosen such that (32) is satisfied, then
V (t) decays exponentially as t → ∞, and so does ∥w̃(x, t)∥.
By means of lemma (7), the state v(x, t) is asymptotically
stable. Recalling (15), (2) and the fact that the operator (∂xx−
γI) is bounded, the exponential stability of v(x, t) follows
from

∥v(x, t)∥ ≤|β |
γ
(1+∥l∥)∥w̃∥

≤ |β |
γ
(1+∥l∥)∥w̃0∥e−2c2t

≤ |β |
γ
(1+∥l∥)(1+∥k∥)∥w0∥e−2c2t

≤ 1
γ
(1+∥l∥)(1+∥k∥)∥∂xx − γI∥∥v0∥e−2c2t

= c3∥v0∥e−2c2t

where c3 =
1
γ
(1+∥l∥)(1+∥k∥)∥∂xx−γI∥. The conclusion of

the theorem follows. □
The decay rate of the target system is bounded by,

2c2 = 2
(

c1 −
|α||β |

γ
(1+∥l∥)(1+∥k∥)

)
. (37)

The following corollary to Theorem 8 is now immediate.

Corollary 9. The controlled system is exponentially stable
if

c1 >
|α||β |

γ

1+

√
(c1 −ρ)π

8

(
er f i(

√
(c1 −ρ)

2
)

) 1
2

×

(
er f (

√
(c1 −ρ)

2
)

) 1
2
2

. (38)

Thus, if c1 satisfies (32), transformation (15) converts the
original system (1)-(4) into the stable target system (19)-
(22). From (23) an explicit definition of the control is signal
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is immediately obtained,

u(t) =
∫ 1

0
kx(1,y)w(y, t)dy+ k(1,1)w(1, t). (39)

IV. NUMERICAL SIMULATIONS

The solutions of system (1)-(4), both controlled and un-
controlled, were simulated numerically using a finite-element
approximation in COMSOL Multiphysic software. Linear
splines, with 27 sub-intervals, were used to discretize the
coupled system into a DAE. Time was discretized by a time-
stepping algorithm, generalized alpha, with time-step=0.2.

First, we considered the system with γ = 1
4 , ρ = 1

3 , α = 1
4

and β = 1
2 and initial condition w(0) = sin(πx). For these

coefficients, the system is unstable according to Theorem
2. Figure 1 presents the dynamics of the states w(x, t) and
v(x, t) before and after applying the control (39). It can be
seen that, in the absence of control, the solutions grow in
magnitude t increases. With parameter c1 = 1.2 inequality
(38) is satisfied so the control law is stabilizing. Figure 1
shows the controlled system with the same initial condition.
As predicted by the theory, the dynamics of the system
decay to zero with time. A comparison between the L2-norm
of both states w(x, t) and v(x, t) before and after applying
the control is shown in Figure 2. We also carried out the
simulation for parameters γ = 10, ρ = 9.5, α = 10 and
β = 10, c1 = 15. The open-loop and closed-loop dynamics,
indicating the behaviour of the coupled system without and
with control, respectively, were simulated (see Figure 4).
Even though (38) is not satisfied by this set of parameters, the
numerical simulations indicate that the control is stabilizing
the system. This suggests that condition (38) on the control
parameter c1 is not necessary for the stability of the target
system.

V. CONCLUSION

Boundary stabilization of a parabolic-elliptic systems is
considered in this paper. Coupling between two stable
parabolic and elliptic equations can result in an unstable
coupled system. A boundary control law is designed for this
system using a backstepping approach. The transformation
is only applied to the parabolic part, simplifying the calcula-
tions. A sufficient condition for stability is obtained. Numer-
ical simulations were conducted to illustrate the theoretical
result. The state-feedback nature of the obtained control input
(i.e. (39)) requires the knowledge of the state. Therefore,
the observer design problem along with design of an output
feedback controller is presented in [18]. Future work is aimed
at weakening the sufficient condition on c1 for stability for
the target system. The design of a boundary control when
some nonlinear terms are present in the system is also a
point of interest. Furthermore, an extension of the work to
the case when the coefficients are spatially-variant will be
studied.
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Fig. 4. Trajectory of the coupled parabolic-elliptic system (1)-(4) with
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The system parameters γ = 10, ρ = 9.5, α = 10 and β = 10 mean that
without control, the system is unstable. The control is (39) with c1 = 15,
which does not satisfy the sufficient stability condition (38). However, the
controlled system appears to be stable, indicating that the condition may be
stronger than needed.

1 2 3 4

t

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

||
w

(x
,t
)|

| L
2

open-loop response

closed-loop response

(a) L2-norm w(x, t)

1 2 3 4

t

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

||
v
(x

,t
)|

| L
2

open-loop response

closed-loop response

(b) L2-norm v(x, t)

Fig. 5. Comparison between the L2-norm of the solutions w(x, t) and
v(x, t) for the open and closed-loop systems with γ = 10, ρ = 9.5, α = 10,
β = 10 and c1 = 15, which does not satisfy the stability condition (38). The
figure demonstrates the unstable behaviour of the solution without applying
control. It also indicates that the control input forces the solutions of the
coupled system to decay to the zero solution as t goes to ∞ although the
stability condition (38) is not satisfied.
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