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Abstract— For safe vision-based control applications,
perception-related constraints have to be satisfied in addition
to other state constraints. In this paper, we deal with the
problem where a multirotor equipped with a camera needs
to maintain the visibility of a point of interest while tracking
a reference given by a high-level planner. We devise a
method based on reference governor that, differently from
existing solutions, is able to enforce control-level visibility
constraints with theoretically assured feasibility. To this end,
we design a new type of reference governor for linear systems
with polynomial constraints which is capable of handling
time-varying references. The proposed solution is implemented
online for the real-time multirotor control with visibility
constraints and validated with simulations and an actual
hardware experiment.

I. INTRODUCTION

Multirotors equipped with a camera have been popular
in a large number of applications, such as navigation [1],
target chasing [2], and visual servoing [3]. In this kind of
applications, the multirotor has to achieve a given high-level
objective while keeping a point or region of interest inside
the Field of View (FoV) of the camera. In fact, a loss of
visibility during the mission may be irrecoverable or can
even compromise safety.

The loss of visibility can occur when other control ob-
jectives are prioritized over the visibility requirements, for
instance, when the desired trajectory leads to aggressive ma-
neuvers that drive the point-of-interest (PoI) out of the FoV.
Even explicit consideration of visibility in the control design
may not prevent its loss if multirotor dynamics or other
state limitations are not appropriately considered. To address
these issues, visibility requirements can be formalized as a
constraint and a constrained control method can be used to
track the desired trajectory while enforcing visibility.

In the field of visual servoing, [4] suggests a method based
on nonlinear Model Predictive Control (MPC) while [3]
develops a control barrier function (CBF) to ensure visibility
with visual servo control. These solutions are limited to
visual servoing, whose goal is to regulate or drive the image
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feature to the desired point, and cannot be easily generalized
for arbitrary trajectory tracking control.

For more general tracking problems with multirotors,
the minimum-time trajectory generation problem subject to
visibility constraints is tackled in [5], while [6] incorporates
the visibility requirements as a soft constraint by designing
an additional objective function in MPC. In [7], feature pixels
are included into the system’s state and visibility is repre-
sented as state constraints. In these methods, the visibility
constraint is addressed during the trajectory generation, while
a separate tracking controller handles the low-level control.
However, this approach may result in visibility constraint
violations if the tracking controller fails to ensure feasibility.
A nonlinear MPC method is proposed in [8] to track a
reference while enforcing visibility constraints, but no formal
guarantees on the recursive feasibility are given.

In this paper, we present a rigorous solution based on Ref-
erence Governor (RG) for visibility-constrained control of
multirotors. RG is an add-on control scheme which enforces
constraints on a pre-stabilized system by modifying when-
ever necessary the reference input [9]. More specifically, for
every time instant t, the input value v(t) is determined by
solving an optimization problem. This optimization problem
minimizes the distance between the new input v(t) and the
desired reference r(t), while ensuring that the predicted
system evolution, initiated at the current state x(t) and with
constant input v(t), satisfies the constraints for all future time
instants. Compared to MPC, the computational load of RG
is usually lighter since the cost function does not depend
on the state and a single input is computed instead of a
longer sequence. Also, RG can guarantee the strong recursive
feasibility and constraint satisfaction without additional effort
to maintain stability. In multirotor control problems, RG has
been used to handle obstacle avoidance [10] and attitude
constraints [11]. As far as the authors’ knowledge, this is
the first work that uses RG for perception-driven constrained
control of multirotors.

In order to effectively handle the nonlinear, non-convex
visibility constraint set, we approximate it in polynomial
form and we tighten it to be contained in the original
constraint set. RG is designed with the tightened polynomial
constraints by generalizing the work [12]. Unlike [12], the
proposed RG can handle online time-varying references, as
required for general trajectory tracking control problems.

The contributions of our work can be summarized as:
• We propose a constrained control scheme based on

RG able to handle visibility constraints and arbitrary
spatial reference inputs for multirotors with guaranteed
recursive feasibility and constraint satisfaction.
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Fig. 1: Diagram of the camera-equipped multirotor with
depiction of the frames, the camera Field of View, and the
point of interest.

• We extend the RG for linear systems with polynomial
constraints recently introduced in [12] to deal with
arbitrary reference inputs. This requires to design suit-
able constraints on the steady state of the system. The
properties of the solution are theoretically proved.

• We validated the proposed method with multiple simu-
lations and an hardware experiment.

The paper is organized as follows: Sec. II provides an
explanation of the dynamics and control approach for the
multirotor. Sec. III presents a description of the visibility
constrained problem, while Sec. IV details the proposed
RG with its theoretical properties. The proposed method is
validated through simulations and hardware experiment in
Sec. V. Finally, the paper concludes with Sec. VI.

A. Notations

R are the real numbers. We denote by 0∗ and I∗ the
zero and identity matrices of dimension ∗. Let e3 denote
the standard unit vector of z axis and let × denote the cross
product. The abbreviations s(·), c(·), and t(·) stands for the
functions sin(·), cos(·), and tan(·), respectively. Given an
arbitrary vector v ∈ Rn, we denote v = [v1, v2, . . . , vn]

T

and v[i] = [vi, . . . , vn]
T . Denote σ(n, r) = (n+r−1)!

(n−1)! r! and
Σ(n, r) =

∑r
i=1 σ(n, i). A set O is positively invariant if

x(t0) ∈ O then x(t) ∈ O ∀t > t0. The inertial frame,
the body frame, and the camera frame, depicted in Fig. 1,
are denoted as I, B, and C, respectively. The position of
the origin of the body frame OB with respect to the inertial
frame is denoted as pBI , and the rotation from I to B is
denoted as RBI . Transformations between different frame
pairs are defined similarly. Note that the transformation from
the inertial frame to the body frame is usually omitted for
brevity of notations. The angles αh, αv are half of the
horizontal and vertical angles of camera FoV.

II. MULTIROTOR DYNAMICS & CONTROL

A. Multirotor Dynamics

The multirotor dynamics can be expressed as

ṗ = v, (1)
v̇ = −ge3 + fRe3, (2)

ξ̇ = SΩ, (3)

Ω̇ = −J−1(Ω× JΩ) + J−1τ , (4)

Fig. 2: Cascaded control of the multirotor. The RG modifies
the given reference r(t) to convert it to the admissible ref-
erence v(t). The outer-loop controller computes the desired
attitude ξdes(t) and the inner-loop controller computes the
low-level input to track the desired attitude.

where p ∈ R3 is the position of the multirotor with respect
to the inertial frame, v ∈ R3 is the velocity, ξ = [φ, θ, ψ]T is
the roll-pitch-yaw Euler angles of the multirotor, Ω ∈ R3 is
the angular velocity with respect to the body frame, S is the
transformation matrix of the attitude rate ξ̇ and the angular
velocity Ω, J ∈ R3×3 is the moment of inertia matrix, f ∈ R
is the mass-normalized thrust, and τ ∈ R3 is the torque
vector.

B. Multirotor Control
The multirotor dynamics satisfies the differential flatness

property [13], namely there exists an output, called flat
output, such that all the states and inputs of the system can
be expressed as function of it and its derivatives. An example
of flat output of the multirotor dynamics is fo = [pT , ψ]T .

Utilizing the differential flatness property, we use a cas-
caded control scheme that separates the control problem into
outer and inner loops as in Fig. 2. The outer loop controls
the flat output and computes the attitude reference, the inner
loop tracks the given attitude reference and generates the
low-level input to the system.

We assume that the inner-loop high-bandwidth attitude
controller has negligible regulation delay and local asymp-
totic stability. The assumption is valid with popular attitude
controllers for multirotors such as [14]. For the outer-loop
controller with reference v, we use a stabilizing feedback
controller (i.e. nonlinear feedback linearization). The result-
ing closed-loop system is

ẋ = Acx+Bcv, (5)

where x = [pT , ψ, vT , ψ̇]T ∈ R8, v ∈ R4 is the position
and yaw reference vector, which corresponds to the flat out-
put, and Ac, Bc are the closed-loop continuous-time system
matrices.

III. VISIBILITY CONSTRAINED CONTROL PROBLEM

A. Constraint Formulations
For safe vision-based tasks, the multirotor is required to

keep a PoI in the FoV of the camera. We formalize this
requirement as a constraint on the multirotor state.

Let plI = [xlI , y
l
I , z

l
I ]
T be the position of the PoI in the

inertial frame. As in [8], the position of the PoI in the camera
frame plC = [xlC , y

l
C , z

l
C ]
T can be computed with the pinhole

camera model as

plC = RC,TB (RT (plI − p)− pCB). (6)
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The visibility constraint can be obtained by requiring that
the PoI is inside the limits of the FoV and that the PoI
is in front of the camera. This can be expressed with the
inequalities ∣∣∣xlC/zlC∣∣∣ ≤ t(αh), (7a)∣∣∣ylC/zlC∣∣∣ ≤ t(αv), (7b)

zlC > 0, (7c)

where αh and αv are half of the horizontal and vertical angles
of the camera FoV as in Fig. 1. We call (7a), (7b) as the
bearing constraints and (7c) as the distance constraint.

In addition to the visibility constraints, in order to take into
account the limited capabilities of the multirotor hardware,
we require that the linear velocity and acceleration satisfy
∥ṗ∥∞ ≤ vmax, ∥v̇∥∞ ≤ amax, where vmax and amax are
the velocity and acceleration limits.

B. Approximations of the Visibility Constraints

Since roll and pitch angles are usually small and they
affect visibility only marginally, we use a simplified form
of the constraints to focus on the dependence on position p
and yaw angle ψ, as commonly done in the literature [13].
To this end, inspired by the visual servoing literature [3],
we introduce the virtual camera frame. It is defined with
same position and orientation of the camera frame but roll
and pitch angles of the multirotor are set to zero. Thus,
the rotation of the virtual camera frame with respect to
the inertial frame is RVI = RZ(ψ)R

C
B and the coordinates

plV = [xlV , y
l
V , z

l
V ]
T of the PoI in the virtual frame are

RCBp
l
V + pCB = RTZ(ψ)(p

l
I − pBI ), (8)

where RZ(·) is the rotation with respect to the z axis. For
convenience of presentation, we assume that the camera is
forward-facing and attached to the center of the multirotor,
namely pCB = 03×1. It follows that

xlV = s(ψ)(xlI − xBI )− c(ψ)(ylI − yBI ), (9a)

ylV = −(zlI − zBI ), (9b)

zlV = c(ψ)(xlI − xBI ) + s(ψ)(ylI − yBI ). (9c)

Due to the trigonometric functions of ψ, the visibility con-
straints result to be nonlinear. We propose to approximate the
trigonometric functions with polynomial functions. For the
domain ψ ∈ [−π/2, π/2], using Remez exchange algorithm
[15], we can find a set of coefficients {kis}ni=0, {kic}ni=0 so
that s(ψ) ≈ fs(ψ) =

∑n
i=0 k

i
sψ

2i+1 and c(ψ) ≈ fc(ψ) =∑n
i=0 k

i
cψ

2i. By substituting the approximated sin and cos
functions in (9), the visibility requirement is approximated
as polynomial constraints.

The resulting polynomial constraint set is not an inner
approximation of the original constraint set. However, the
following Lemma shows that the violations of the original
constraints for a point satisfying the polynomial constraints
are bounded.

Lemma 1: Assume that |φ| ≤ φmax < π/2, |θ| ≤
θmax < π/2, and t(θmax) < min{t(αv)/(1 −∆max), (1 −

∆max)/t(αv)} where ∆max = max |f2s + f2c − 1| ≪ 1.
Then, for any point satisfying the approximated constraints,
the original distance constraint (7c) is satisfied and violations
of the bearing constraints (7a)-(7b) are bounded.

Proof: The proof is provided in Appendix A.
We can tighten the approximated constraints by the violation
bound of the previous Lemma so that enforcing the resulting
constraint set guarantees the satisfaction of the true visibility
constraints. It is possible to numerically show that the ap-
proximation error is sufficiently small in practical multirotor
settings. A more detailed explanation is provided in the
Appendix.

C. Visibility Constrained Control Problem and Algorithm

Based on the constraints introduced in Sec. III, the prob-
lem of visibility constrained control is stated as below.

Problem 1: Find an admissible input trajectory v(t) such
that the state trajectory x(t) satisfies the visibility constraints
(7) with user-defined state constraints and tracks as close as
possible the desired reference trajectory r(t).

The visibility constrained control problem is solved using
RG, which modifies the desired reference command in order
to enforce the pointwise-in-time constraints. In this work, we
propose to extend the RG for linear systems with polynomial
constraints [12] in order to tackle arbitrary time-varying
references. Further details and the theoretical properties of
the proposed algorithm are provided in the following section.

IV. GENERALIZED REFERENCE GOVERNOR FOR
POLYNOMIAL CONSTRAINTS

A. Background and problem formulation

Consider a linear discrete-time system

x(k + 1) = Ax(k) +Bv(k), (10)

with x ∈ Rn and v ∈ Rm. We assume that the matrix A is
stable. We introduce the extended system

z(k + 1) =

[
A B
0 Im

]
z(k) = ϕz(k), (11)

with z = [xT ,vT ]T ∈ Rn+m. Consider the set of constraints

ci(z) ≤ 0, i = 1, 2, . . . , c (12)

where ci : Rn+m → R is a polynomial function with
monomials up to degree p. Following [16], the maximal
output admissible set (MOAS) of system (10) is defined as

O∞ = {z : ci(ϕ
kz) ≤ 0, i = 1, 2, . . . , c, ∀k ≥ 0}, (13)

which can be used to enforce the constraints on the evolution
of the system. Unfortunately, in general, O∞ consists of
infinitely many inequalities and thus cannot be computed.
In the case of linear inequalities, there exists an inner
approximation of O∞ that is finitely determined, i.e. it can
be computed with an iterative procedure in a finite number
of steps [16]. In the case of polynomial constraints, similar
procedures to compute an inner approximation exist but
they are usually conservative [17], rely on Sum of Squares
Programming [18], or require ϕ to be stable [12]. In this
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work, we propose to extend the approach of [12] for the
case of ϕ marginally stable. This allows us to tackle also
non-zero time-varying reference inputs.

B. Construction of Maximal Output Admissible Set

Preliminarily, we define recursively

z{r+1}=
[
z1z[1]

{r}T

z2z[2]
{r}T

· · · znz[n]{r}
T
]T

(14)

starting from z{1} = z. Note that z{r} ∈ Rσ(n,r) is a
vector containing all the monomials of degree r obtained
from the entries of z without repetitions. Similarly, we define
recursively

z⊗r = z⊗ z⊗(r−1) (15)

starting from z⊗1 = z. Note that z⊗r ∈ R(m+n)r is a vector
containing all the monomials of degree r obtained from the
entries of z but with repetitions. There always exist two
matrices Mc(n+m, r) and Me(n+m, r) such that

z{r} =Mc(n+m, r)z
⊗r, z⊗r =Me(n+m, r)z

{r}. (16)

A procedure to compute Mc(n + m, r) and Mc(n + m, r)
can be obtained following [19]. By recursively defining

ϕ⊗r = ϕ⊗ ϕ⊗(r−1) (17)

starting from ϕ⊗1 = ϕ, we have that

z⊗r(k + 1) = (ϕz(k))
⊗r

= ϕ⊗rz⊗r(k), (18)

where we used the mixed-product property of the Kronecker
product. Using (16) and (18), we obtain

z{r}(k + 1) =Mc(n+m, r)z⊗r(k + 1) (19)

=Mc(n+m, r)ϕ⊗rz⊗r(k) (20)

=Mc(n+m, r)ϕ
⊗rMe(n+m, r)z

{r}(k) (21)

= ϕ{r}z{r}(k). (22)

The following Lemma provides the spectral characterization
of ϕ{r} and ϕ⊗r.

Lemma 2: The matrix ϕ⊗r is marginally stable and has ex-
actly mr unitary eigenvalues. The matrix ϕ{r} is marginally
stable and has exactly σ(m, r) unitary eigenvalues.

Proof: Proof is given in Appendix B.
We can now stack the vectors z{r} for r = 1, . . . , p as

Z =
[
z{1}

T

z{2}
T

· · · z{p}
T
]T

(23)

obtaining a vector containing all the monomials up to degree
p obtained from entries of z without repetitions. Moreover,
we can introduce the auxiliary linear system

Z(k+1) =

[
ϕ{1} 0

ϕ{2}

...
0 ϕ{p}

]
Z(k) = ΦZ(k). (24)

Exploiting Z the polynomial inequalities ci(z) ≤ 0 can be
equivalently expressed by linear constraints CiZ ≤ ci0. In
this way, as done in [12], it is possible to exploit the theory of
MOAS for linear systems with linear constraints to compute
an approximation of the MOAS of the original linear system

with polynomial constraints. However, the solution proposed
in [12] requires that ϕ is stable and it can be used only with
null reference. In this work, instead of using the vector Z,
in order to easily find an inner approximation of the MOAS
that can be used for any reference input, we permute the
components of the state to highlight the subsystem containing
unitary eigenvalues. With a little abuse of notation, denote

z{r+1}
x =

[
x1z[1]

{r}T

x2z[2]
{r}T

· · · xnz[n]{r}
T
]T
. (25)

Note that z{r} = [z
{r}T

x ,v{r}T

]T . Now we can define

Zx =
[
z{1}

T

x z{2}
T

x · · · z{p}
T

x

]T
(26)

V =
[
v{1}T

v{2}T

· · · v{p}T
]T

(27)

and introduce Z ∈ RΣ(n,p) as

Z = η(z) =
[
ZTx VT

]T
, (28)

where η(·) is a suitable function. Since Z is a permutation
of the vector Z, there always exists a matrix T such that

Z = TZ (29)

and
Z(k + 1) = ΦZ(k) = TΦTTZ(k) . (30)

Lemma 3: It holds that

Φ =

[
F G
0 IΣ(m,p)

]
, (31)

where F is stable.
Proof: The proof follows from the Lemma 2 since Φ

is a permutation of the block diagonal matrix with diagonal
blocks ϕ{r}, r = 1, . . . , p.
It is possible to rewrite the polynomial function ci as

ci(z) =
∑p

r=1
cirz

{r} − cio = CiZ− cio . (32)

We introduce the following set

Z = {Z : CiZ ≤ ci0, i = 1, 2, . . . , c}. (33)

The maximal output admissible set of (30) is defined as

O′
∞ = {Z : ΦkZ ∈ Z, ∀k ≥ 0} . (34)

Based on the set

O′
ϵ = {Z = (Zx,V) : ((I−F )−1GV,V) ∈ (1−ϵ)Z} (35)

for ϵ > 0, we can define the following inner approximation

Õ′
∞ = O′

∞ ∩O′
ϵ.

Proposition 1: If Z is compact, Õ′
∞ is finitely determined,

and positively invariant.
Proof: From Lemma 3, Φ is marginally stable. Then,

the statement follows from Theorem 7.2 in [16] by rewriting
the system (30) in the required form. See also in [16, Page
355].
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As outlined in [16], the tighter condition on the steady-state
enforced by O′

ϵ is fundamental in order to guarantee that Õ′
∞

is finitely determined. Now we can define

Õ∞ = {z : Z ∈ Õ′
∞,Z = η(z)}. (36)

Then we have the following proposition.
Proposition 2: If Z is compact, Õ∞ is finitely determined,

positively invariant, and Õ∞ ⊆ O∞
Proof: The statement follows from the previous Propo-

sition and the fact that, if Z(k) = η(z(k)), then Z(k+1) =
η(z(k + 1)) since η(ϕz) = Φη(z).

Since the set Õ′
∞ is the MOAS for a linear system subject

to linear constraints, it can be computed following the well-
known iterative procedure proposed in [16]. According to
(36), Õ∞ can be immaterially obtained from Õ′

∞. Note that
Õ∞ is an inner approximation of O∞ and it can be taken
arbitrarily close to O∞ by choosing ϵ arbitrarily close to 0.
Differently from [12], we require Z ∈ O′

ϵ. In this was, ϕ
does not need to be stable.

The assumption on the compactness of Z can be relaxed
by introducing the constraint output Y = [C,D]Z and the
constraint set Y = {Y : HiY ≤ hio, i = 1, . . . , c} with
suitable C,D,Hi, hio such that conditions [C,D]Z ∈ Y and
Z ∈ Z are equivalent. In this case, Proposition 1 holds if
(Φ, C) is observable and Y is compact. Fictitious redundant
constraints can be added to meet this requirement following
the procedure from Remark 5 of [12].

C. Reference Governor

The RG can be formalized as

λ(k) = argmaxλ∈[0,1] λ (37)

s.t. (x(k),v(k−1)+λ(r(k)−v(k−1))) ∈ Õ∞ (38)

and v(k) = v(k−1) + λ(k)(r(k) − v(k−1)). The above
optimization problem can be solved by bisection.

Since the MOAS is not limited to the case with ϕ
stable, the proposed method can be used for any arbitrary
time-varying reference r(k). This generalizes the solution
proposed by [12], which can be used only to drive the
system to the origin, i.e. r(k) = 0. Although [12] can be
applied for non-null references by computing the MOAS for
the error dynamics, this approach is impractical to handle
time-varying references since it requires re-computing the
MOAS at every time step. Furthermore, even for a fixed
reference, the set of feasible initial conditions is enlarged
with the proposed strategy. Roughly speaking, this is due
to the fact that [12] requires that the initial state admits
the existence of a sequence of inputs linearly converging
to 0 whose corresponding evolution is admissible, while the
proposed strategy simply requires the existence of an initial
admissible input, as stated in the following proposition.

Proposition 3: Assume that there exist v0 such that
(x(0),v0) ∈ Õ∞, i.e. the optimization problem is feasible
at time k = 0. Then, the optimization problem is recursively
feasible and the resulting system evolution satisfies the
constraints.

Algorithm 1 Visibility Constrained Control with RG

1: Input: MOAS Õ∞, PoI plI , reference {r}Kk=1, initial
state x0

2: for k = 1, · · · ,K do
3: xL, rL ← CoordTransformI→L(xk, rk, plI)
4: vL ← ReferenceGovernor(Õ∞,xL, rL,vL,prev)
5: vL,prev ← vL
6: vk ← CoordTransform L→I(vL,p

l
I)

7: xk+1 ← MultirotorDynamics(xk,vk)
8: end for

Proof: Recursive feasibility holds since input λ(k) =
0 is always admissible since MOAS is positively invariant.
Constraints are satisfied because (x(k), v(k)) ∈ Õ∞ implies
that ci(x(k), v(k)) ≤ 0.
In general, it is not possible to guarantee the convergence
to the global optimal point since constraints are not convex.
In that case, convergence can be obtained by using an inner
convex approximation of O′

ϵ.

D. Application to Visibility Constrained Control

In this subsection, we explain how the previously designed
RG can be applied to the visibility constrained control
problem. Since deriving the MOAS is computationally de-
manding, we construct it offline. It is constructed following
Sec. IV-B with the polynomial approximation of the visibility
constraints and the discrete-time version of the system.1

However, since the constraints depend on plI , the MOAS
would depend on it as well and we would need to compute
a different MOAS whenever the PoI changes. We can avoid
this by introducing a new frame L which has the origin at plI
and the same orientation of the inertial frame I. The MOAS
is constructed with the transformed constraints. In this way,
when the PoI changes, we do not need to recompute the
MOAS but we have to express any positions with respect
to the new frame, that can be easily done by a change of
coordinate. Using this approach, RG can be used online
without prior information of the landmark.

With the constructed MOAS, the RG is used to modify
a given reference trajectory to ensure visibility constraint.
The online control method is described in Algorithm 1. With
the given MOAS Õ∞, PoI plW , reference r, and initial
state x0, at each time instant, the state and the desired
reference are first transformed to the landmark frame L.
Then, RG is used to compute the modified reference in
frame L. Subsequently, it is transformed to the inertial frame,
and applied to the closed-loop multirotor system (5). From
Proposition 3, the proposed method guarantees recursive
feasibility and visibility constraint satisfaction.

V. VALIDATION

We validate the proposed RG for visibility constrained
control with simulations and a real-world experiment.

1Note that in order to meet the requirement of compact feasible set in
Proposition 2, small positive value ϵz is introduced to the distance constraint
(7c) as zlC ≥ ϵz > 0.
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(a)

(b)

Fig. 3: Simulation result of the single PoI scenario for the
solution without the proposed RG (red line) and with the
proposed RG (blue line). (a) Trajectory of the multirotor
with the PoI (green dot) and the non-admissible region (grey
area). Boundaries of the admissible region are depicted for
the true constraints (black line) and the tightened constraints
taking into account the approximation error (magenta line).
(b) Velocity (left) and acceleration (right) of the multirotor.

TABLE I: Parameter Set for the Simulations

Types Parameter Values
Discretization Time Ts = 10ms

Camera FoV αh = 45◦, αv = 35◦

Polynomial Approx. k0c = 0.8798, k2c = −0.3566
k1s = 0.9928, k3s = −0.1462

Max. Roll & Pitch θmax = 4◦, φmax = 4◦

State Constraints vmax = 1.5m/s, amax = 1.0m/s2

Control Gains kP = 4, kD = 2

A. Simulation Setup

In the following simulations, we assume that the multirotor
is stabilized using the control law proposed in [14]. The input
force is obtained by proportional-derivative (PD) control
with the P gain kP and D gain kD. The desired attitude is
computed based on the obtained force vector. More details
can be found in [14]. Approximation bounds to tighten the
polynomial constraints are computed with maximum roll and
pitch angles φmax, θmax. The system dynamics is discretized
with sampling time Ts. The simulations are performed in
MATLAB environment on a i7 laptop. The parameters used
in the simulations are listed in Table I.

(a)

(b)

Fig. 4: Simulation result of the multi PoI scenario for the
solution without (red line) and with the proposed RG (blue
line). (a) Trajectory of the multirotor where the proposed
RG follows the reference passing waypoints (black dots)
while maintaining the visibility to the PoI (green dots).
Multirotor poses (red&green axes) are shown for every 1.5s.
(b) Maximum violations of the visibility constraints (7a-c).

B. Simulation: Single PoI

In this subsection we consider the case with a single PoI
and a circular reference trajectory. The reference trajectory is
on a 2D plane with zero yaw angle, r(t) = [Rc(ωt+π/2)−
1.5R,Rs(ωt+π/2), 0, 0]T with R = 1.5m, ω = 2π/25. The
PoI is located at the origin. We compare the solution with and
without the proposed RG and the results are given in Fig. 3.
The trajectory obtained without the proposed RG can track
the reference but loses the visibility of the PoI. Conversely,
the trajectory with the proposed RG always satisfies the
visibility constraints and other state constraints as shown in
Fig. 3 (b). In particular, in the region close to the origin (x ≥
−1), the system tracks the best admissible approximation of
the desired non-admissible reference. As soon as the desired
reference is steady-state admissible (x ≤ −1, y ≤ 0), the
RG drives the system as fast as possible back to the desired
reference, causing a small overshoot. It can be probably
removed by slowing down the desired reference trajectory.

C. Simulation: Multiple PoIs
We consider the scenario with multiple PoIs and time-

varying yaw reference. From the initial position s =
[0, 0, 0]T to the goal position g = [5,−1, 0]T , the refer-
ence trajectory is obtained as the concatenation of three
polynomial trajectories with two intermediate waypoints at
w1 = [1.2, 0.8, 0]T and w2 = [3,−2, 0]T . For each piece of
the reference trajectory, the multirotor requires to maintain
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(a)

(b) (c)

Fig. 5: (a) Snapshot from the hardware experiment. (b) 3D
trajectory of the multirotor and (c) the image coordinate
trajectories of the PoI. While the controller without the pro-
posed RG violates the visibility constraints (grey intervals),
the proposed RG can prevent violations during the flight.

the visibility of a different PoI, namley p1
I = [2.5, 1.5, 0]T ,

p2
I = [4.5,−3, 0]T , and p3

I = [5.5,−1, 0]T .
The result with the proposed RG for this task is given in

Fig. 4. Fig. 4(a) shows how the proposed RG modifies the
reference trajectory and Fig. 4(b) confirms that the proposed
RG is able to prevent violations of the visibility constraints.
Thanks to the low computaional demand of RG, since the
mean and maximum computation times (equal to 0.89ms and
3.6ms respectively) are smaller than the sampling period, the
proposed method can be used for real-time control.

D. Hardware Experiment

In the experiment, we consider the scenario where the
multirotor sweeps a wall and maintain the visibility of a PoI
located on the wall. The reference is given by a human pilot,
similarly to teleoperations for inspection, and the visibility
can be violated due to human errors. A quadrotor equipped
with a forward-facing Realsense D435 camera (αh = 34.5◦,
αv = 21◦) is used. We use the Pixhawk4 flight controller and
an Intel i7 NUC computer. The state information is provided
by the Optitrack motion capture system. The position of the
PoI is assumed to be known. To identify the model of the
closed-loop system, we use the n4sid algorithm [20].

Experimental results are shown in Fig. 5. We can see that
the proposed RG maintains visibility of the PoI and prevents
violations due to wrong commands given by the human pilot.
The video of the experiment can be checked at https:
//youtu.be/SquHiHjRsMQ.

VI. CONCLUSION

In this work, we deal with the visibility-constrained con-
trol problem for multirotors, where the objective is to track

(a) (b)

Fig. 6: The bound of the violations of the bearing constraints
for different ϕ, θ computed from (a) ϵ1(ϕ, θ) and (b) ϵ2(ϕ, θ).

a given reference while maintaining the visibility of a point-
of-interest. The visibility constraint is formulated based on
the camera geometry and results in nonlinear constraints.
The proposed method based on RG guarantees constraint
satisfaction and can be used in real-time. Simulations and an
hardware experiment validate the proposed method. For fu-
ture work, we will integrate the proposed method with high-
level path planning algorithms to obtain a complete solution
for many applications of camera-equipped multirotors.

APPENDIX

A. Bound of Violation by the Constraint Approximation

Proof: [Lemma 1] Due to the symmetry of the bearing
constraints, we only consider the case when xlC > 0 and
ylC > 0. The violation functions g1 = xlC/z

l
C − t(αh) and

g2 = ylC/z
l
C−t(αv) increase with xlC and ylC . The maximum

violation occurs at the boundary of the feasible region, which
is xlV = t(αh)z

l
V , ylV = t(αv)z

l
V . Let f2c (ψ)+ f2s (ψ)− 1 =

∆ψ where |∆ψ| ≤ ∆max, and k = (1+∆ψ)c(θ)−s(θ)t(αv).
Then, due to the assumption, k > 0 and zlC = kzlV > 0, thus
the distance constraint is satisfied.

The violation of the bearing constraints is bounded as

g1 ≤
{
(1 + ∆max)(s(θ)s(φ) + c(φ)t(αh)− c(θ)t(αh))

+ c(θ)s(φ)t(αv) + s(θ)t(αv)t(αh)
}
/kmin = ϵ1(φ, θ),

g2 ≤
{
(1 + ∆max)(s(θ)c(φ)− s(φ)t(αh)− c(θ)t(αv))

+ s(θ)t2(αv) + c(θ)c(φ)t(αv)
}
/kmin = ϵ2(φ, θ),

where kmin = (1−∆max)c(θ)− s(θ)t(αv). kmin decreases
with respect to θ ∈ [−θmax, θmax], and is positive as
kmin ≥ (1 − ∆max)c(θmax) − s(θmax)t(αv) > 0 with the
assumption. ϵ1(φ, θ) and ϵ2(φ, θ) are bounded as ϵ1(φ, θ) ≤
ϵ1,max and ϵ2(φ, θ) ≤ ϵ2,max.

With the parameters from Table I, the violation bounds
are computed as in Fig. 6. The maximum bound is used to
tighten the visibility constraints. Since the camera FoV is
αh = 45◦, αv = 35◦ and the bounds are ϵ1,max = 0.110,
ϵ2,max = 0.175, the reduced FoV is αh = 41.7◦, αv =
27.7◦. It can be used to guarantee the feasibility of the true
visibility constraints.

B. Proof of Lemma 2

We start with useful properties of the Kronecker product.
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Lemma 4: The following statements hold:
1) (A⊗B)⊗ C = A⊗ (B ⊗ C)
2) AB ⊗ CD = (A⊗ C)(B ⊗D)
3) Let λAi , i=1, . . . , n, be the eigenvalues of A and λBj ,

j = 1, . . . ,m, be the eigenvalues of B. Then λAi λ
B
j ,

i=1, . . . , n, j=1, . . . ,m, are the eigenvalues of A⊗B.
We are now ready to prove Lemma 2.

Proof: We prove the first statement by inductive argu-
ment. It holds for r = 1 since ϕ⊗1 = ϕ. Assume that the
statement holds for r − 1. Then

ϕ⊗r = ϕ⊗ ϕ⊗r−1 =

[
A⊗ ϕ⊗r−1 B ⊗ ϕ⊗r−1

0⊗ ϕ⊗r−1 Im ⊗ ϕ⊗r−1

]
.

Since A is stable and ϕ⊗r−1 is marginally stable for inductive
hypothesis, A ⊗ ϕ⊗r−1 is stable due to Lemma 4.3. Since
Im⊗ϕ⊗r−1 is the block diagonal matrix containing m copies
of ϕ⊗r−1 and ϕ⊗r−1 is marginally stable with exactly mr−1

unitary eigenvalues by inductive hypothesis, Im ⊗ ϕ⊗r−1 is
marginally stable with mr unitary eigenvalues.
To prove the second statement, let Tr be a change of basis
matrix such that zr = Trz

⊗r with zr = [∗, v⊗rT ]T and
zr(k+1) = Tr ϕ

⊗r T−1
r zr(k). Since v⊗r(k+1) = v⊗r(k),

it follows that ϕr =
[
Fr Gr

0 Imr

]
for some matrices Fr and

Gr. Since ϕ⊗r is marginally stable with exactly mr unit
eigenvalues and ϕr is equivalent to ϕ⊗r, Fr is stable.

Recall that there exist two matrices Mc(m, r) ∈
Rσ(m,r)×mr

and Mc(m, r) ∈ Rmr×σ(m,r) such that
v{r} = Mc(m, r)v

⊗r,v⊗r = Me(m, r)v
{r}. Since

Me(m, r) is full-column rank, Mc(m, r) can be computed
as the Moore-Penrose pseudo-inverse of Me(m, r) and
Mc(m, r)Me(m, r) = Iσ(m,r). Similarly, there always exist
two matrices Nc(n+m, r) ∈ Rσ(n+m,r)×(n+m)r and Nc(n+
m, r) ∈ R(n+m)r×σ(n+m,r) such that z{r} = Nc(n +

m, r)zr, zr = Ne(n+m, r)z{r}. Since z{r} = [∗ ,v{r}T

]T

and zr = [∗ ,v⊗rT ]T , it holds that

Nc(n+m, r) =

[
N11
c N12

c

0 Mc(m, r)

]
,

Ne(n+m, r) =

[
N11
e N12

e

0 Me(m, r)

]
.

We have

z{r}(k + 1) = Nc(n+m, r)zr(k + 1)

= Nc(n+m, r)ϕrzr(k)

= Nc(n+m, r)ϕrNe(n+m, r)z{r}(k).

From (22) we must have

ϕ{r} = Nc(n+m, r)ϕrNe(n+m, r)

=

[
N11
c N12

c

0 Mc(m, r)

][
Fr Gr
0 Imr

][
N11
e N12

e

0 Me(m, r)

]
=

[
N11
c FrN

11
e ∗

0 Mc(m, r)Me(m, r)

]
.

Following the same procedure we can obtain

z{r}(k) = Nc(n+m, r) (ϕr)
k
Ne(n+m, r)z{r}(0),

(
ϕ{r}

)k
=

[
N11
c (Fr)

k
N11
e ∗

0 Mc(m, r)Me(m, r)

]
.

Since Fr is stable, N11
c FrN

11
e is stable. Moreover

Mc(m, r)Me(m, r) = Iσ(m,r). This concludes the proof.
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