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Abstract— This paper investigates the robust set stabilization
of nondeterministic Boolean control networks (BCNs) subject
to random disturbance inputs. Although this problem has been
previously addressed in the literature, we propose an alternative
approach primarily to decrease the computational complexity of
the algorithms. Our technique is inspired by the set propagation
technique in reachability analysis but is applied in reverse
order, identifying all the layered sets of states that reach a
target set in a specific order. Two algorithms are developed:
the first determines the largest robust control invariant subset,
while the second handles time-optimal robust set stabilization
using the results from the first algorithm. In particular, all
time-invariant state feedback gain matrices are identified. Our
approach achieves the lowest computational complexity ever
known, even lower than the current methods designed solely for
deterministic set stabilization without any disturbances. Numer-
ical simulations with two biological networks demonstrate the
significantly reduced processing time of our algorithms. Overall,
this study presents a new approach for robust set stabilization
with improved efficiency, capable of handling relatively large
BCNs beyond the capabilities of existing techniques.

I. INTRODUCTION

A Boolean network (BN) is a discrete-time logical system
model initially proposed to describe gene regulatory net-
works (GRNs). In a BN, the state of each node is binary
and updated via Boolean interaction with each other. A
BN with external binary inputs is called a Boolean control
network (BCN). The control-theoretical study on BCNs has
been booming in recent years mainly thanks to a novel
mathematical tool called the semi-tensor product (STP) of
matrices [1]. In this study, we focus on a canonical control-
theoretical problem under uncertainties [2], namely robust
set stabilization of BCNs under external disturbance inputs.

Set stabilization aims to steer a BCN into and keep it
inside a given target set of states, termed Z , by a proper
control law [3]–[5]. Apparently, it turns into the normal
stabilization of a BCN if Z contains only a single state
[6], [7]. In the theoretical aspect, some important control
problems like output tracking control [8], partial stability
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and stabilization [3], and network synchronization [9] can
be recast into set stabilization problems. In the application
aspect, set stabilization of BCNs may help design therapeutic
intervention strategies [4], [10], [11].

A real-world system is always affected by disturbances.
Compared with the well-studied robust stabilization of
BCNs, there are considerably fewer studies on robust set
stabilization due to its increased complexity and difficulties.
A pioneering study characterized robust control invariance
of a BCN in [12] but did not investigate its stabilization. In
[6], the global robust stability of a BN was first investigated,
and a state feedback pinning control strategy was proposed
for robust stabilization to a fixed point or a limit cycle. Later,
[13] proposed an event-triggered control (ETC) strategy for
robust set stabilization. Still, the state feedback gain designed
therein is time-variant, and the target set is assumed to be
a robust control invariant one. A follow-up work studied
ETC for time-optimal robust set stabilization [14]. Two
more recent studies targeted probabilistic BCNs (PBCNs):
the former investigated robust control invariance [15]; and
the latter developed time-invariant state feedback control for
robust set stabilization [16], respectively.

One common challenge in controlling BCNs is the high
computational burden caused by their exponentially large
state and control space [5], [17]. As a result, control problems
related to BCNs are NP-hard in general [18]. This justifies
the exponential time complexity of all robust set stabilization
methods reviewed in this article. Although the NP-hardness
makes it impossible to design polynomial-time algorithms,
unless P=NP [19], it does not necessarily mean that we
cannot improve upon existing methods. We consider a BCN
with m control inputs, n state variables, and q disturbance
inputs. We define N := 2n, M := 2m, and Q := 2q . Usually,
the big-O time complexity of existing methods is generally
a polynomial of Q,M and N , such as O(QMN3) in [16,
Algorithm 4.8]. We may naturally wonder if it is possible to
decrease the degree of such a polynomial.

Existing robust set stabilization studies typically depend
on computationally expensive matrix algebra operations like
large matrix multiplications, resulting in excessively high
time complexity. In view of this challenge, we develop an
alternative method from an algorithmic perspective instead,
which contains as few matrix multiplications as possible.
Our methodology is mainly inspired by the set propagation
technique in classical control theory, which computes the
destination set of states reachable by a dynamic system
from a given source set of states [20]. In contrast to the
standard set propagation, we compute the source set for
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a given destination set instead, which we call reverse set
propagation (RSP). As we will show, though the RSP idea
appears straightforward, it helps simplify the algorithms and
enhance their time efficiency significantly through lowering
the polynomial degree of the big-O time complexity.

The main contributions of this paper are:
1) We develop two novel algorithms based on RSP to

compute the largest robust control invariant subset (LR-
CIS) and to achieve time-optimal robust set stabiliza-
tion, respectively. All time-invariant state feedback gain
matrices for the two problems are identified.

2) The proposed approach is distinguished by its superior
efficiency, attaining time complexity considerably lower
than existing methods. Numerical simulations with a
medium-sized biological network demonstrate the sub-
stantially reduced execution time of our approach.

II. PRELIMINARIES

A. Notations Related to STP
1) Given integers k, n, [k, n] := {k, k + 1, · · · , n}.
2) Mm×n denotes the set of all m× n matrices. Given a

matrix A, Coli(A) and Rowj(A) denote its i-th column
and j-th row, respectively.

3) Let In denote the n-dim identity matrix. Let δin :=
Coli(In) be the i-th column of In that contains n−1 0’s
and a single 1. Define ∆n := {δin|i = 1, 2, · · · , n}. A
shorthand for {δi1n , δi2n , · · · , δikn } is δn{i1, i2, · · · , ik}.

4) A matrix L ∈ Mn×q with Coli(L) ∈ ∆n,∀i ∈ [1, q], is
called a logical matrix. Let Ln×q ⊂ Mn×q be the set
of all n× q logical matrices.

5) Given a matrix M ∈ Mn×q , if q is a multiple of k ∈ N,
divide M from left to right into k blocks and denote
the i-th block by Blkki (M) ∈ Mn×(q/k), i ∈ [1, k].

B. Algebraic Representation of BCNs
To be consistent with the majority of existing studies, we

adopt the algebraic representation of a BCN in this study.
Nonetheless, our approach applies to the raw logical form
of a BCN equally well since it does not depend on matrix
operations. Consider a general BCN with n state variables
xi ∈ ∆2, 1 ≤ i ≤ n, m control inputs uj ∈ ∆2, 1 ≤ j ≤ m,
and q disturbance inputs ξk ∈ ∆2, 1 ≤ k ≤ q. Its dynamics is
described by n Boolean functions, one for each state variable:

xi(t+ 1) = fi(x1, · · · , xn, u1, · · · , um, ξ1, · · · , ξq),
where fi : ∆

m+n+q
2 → ∆2 is the i-th Boolean function.

The foundation of the algebraic representation for a logical
system is the semi-tensor product (STP), a generalization of
the normal matrix product [1]. The ASSR of the BCN above
in the STP framework is

x(t+ 1) = Lξ(t)u(t)x(t), (1)

where L ∈ LN×MNQ is called the state transition matrix;
x(t) := ⋉n

i=1xi(t) ∈ ∆N , u(t) := ⋉m
i=1ui(t) ∈ ∆M ,

and ξ(t) := ⋉q
i=1ξi(t) ∈ ∆Q denote the vector form of

the network state, control, and disturbance, respectively. The
derivation of Eq. (1) has been detailed in many papers like
[1], [6], [14], [16] and is omitted here to save space.

III. PROBLEM FORMULATION

In view of the stochastic disturbances, we formulate the
problems in a feedback sense [2], [15], [16]. To ease subse-
quent illustrations, let Π := {π : ∆N → ∆M} denote the set
of all time-invariant state feedback control laws. Obviously,
u = π(x) for any π ∈ Π can be written equivalently as
u = Fπx, where Fπ ∈ LM×N is a unique feedback gain
matrix associated with π. We aim to find out all feasible
state feedback gain matrices for time-optimal robust set
stabilization. We first list some necessary definitions.

Definition 1: Given a set Z ⊆ ∆N and an initial state
x0 ∈ ∆N , BCN (1) is robustly set stabilizable to Z from
x0, if and only if there exists a state feedback control law
π ∈ Π and a finite integer T such that x(t) ∈ Z,∀t ≥ T
holds for all ξ(t) ∈ ∆Q,∀t ≥ 0.

Definition 2: Following Definition 1, let the smallest
value of T be TZ,π(x

0), called the shortest transient period
attained by π towards Z . Let T ∗

Z(x
0) := minπ∈Π TZ,π(x

0)
denote the shortest transient period among all possible state
feedback control laws.

Obviously, BCN (1) is robustly set stabilizable from x0

to Z if and only if T ∗
Z(x

0) < ∞. The domain of attraction
(DoA) of Z contains all initial states from which BCN (1)
is robustly set stabilizable to Z , denoted by

ΩZ := {x ∈ ∆N |T ∗
Z(x) < ∞}. (2)

Let T ∗∗
Z := maxx∈ΩZ T ∗

Z(x) denote the maximum shortest
transient period among all initial states in ΩZ .

Two problems are investigated in this study.
Problem 1: Given a target set Z ⊆ ∆N and an initial state

x0 ∈ ∆N , check whether BCN (1) is robustly set stabilizable
from x0 to Z via time-invariant state feedback control.

Problem 2: Given a target set Z ⊆ ∆N and an initial state
x0 ∈ ∆N , compute T ∗

Z(x
0) and find all time-invariant state

feedback gain matrices that attain T ∗
Z(x

0).
In essence, Problem 1 ascertains robust set stabilizability,

and Problem 2 targets time-optimal robust set stabilization.
It deserves a mention that the solution to Problem 2 also
answers Problem 1, since Problem 1 is equivalent to con-
firming whether T ∗

Z(x
0) < ∞. Moreover, our algorithms are

general and not limited to any specific initial state.

IV. MAIN RESULTS

A. Calculation of the LRCIS

An important concept in (robust) set stabilization is (ro-
bust) control invariance [3], [12], which is stated below.

Definition 3: Consider BCN (1) and a target set Z ⊆ ∆N .
A set R ⊆ Z is called a robust control invariant subset
(RCIS) of Z , if for any state x ∈ R, there exists a control
input u ∈ ∆M such that the succeeding state is still in R,
i.e., Lξux ∈ R, for any disturbance ξ ∈ ∆Q. Denote the
largest RCIS (LRCIS for short) of Z by IC(Z).

Clearly, the union of any two RCIS’s forms another RCIS.
The LRCIS is the union of all RCIS’s of Z . Computing the
LRCIS is usually the first task in robust set stabilization due
to the critical role it plays as follows (see [2], [3], [5], [16]).
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Lemma 1: Given an integer T , x(t) ∈ Z,∀t ≥ T holds if
and only if x(t) ∈ IC(Z),∀t ≥ T .

Since it is always possible to keep BCN (1) inside IC(Z)
forever by its definition, Lemma 1 implies that it is equivalent
to steering the BCN from the initial state to any state in
IC(Z) for robust set stabilization. Unlike existing methods
that compute the LRCIS directly (see, e.g., [3], [5], [16],
[21]), we approach this problem via reverse thinking by first
identifying the set of states in Z that do not belong to IC(Z)
instead, termed ĪC(Z) := Z \ IC(Z). The states in ĪC(Z)
have an interesting property opposite to the property of states
in IC(Z), which is stated below.

Proposition 1: Consider BCN (1), a target set Z , and an
initial state x(0) = x0 ∈ Z . We have x0 ∈ ĪC(Z) if and
only if there exists a disturbance sequence and a finite integer
k ∈ [1,∞) such that x(k) /∈ Z is true.

Proof: We give a straightforward proof by contradiction.
(Sufficiency) Supposing that such a disturbance sequence

does not exist, there must exist a state feedback control law
that ensures x(t) ∈ Z,∀t ≥ 0 for all possible disturbance
sequences. Lemma 1 further says x(t) ∈ IC(Z),∀t ≥ 0,
which conflicts with the precondition that x(0) ∈ ĪC(Z).
Thus, a contradiction is formed, and the sufficiency is proved.

(Necessity) Suppose for the contradiction purpose that we
have x0 ∈ IC(Z) instead. Then, by Lemma 1, we can always
find a state feedback control law such that x(t) ∈ Z,∀t ≥ 0
regardless of disturbances, which negates the existence of
a disturbance sequence satisfying x(k) /∈ Z, k ∈ [1,∞).
Therefore, the assumption x0 ∈ IC(Z) must be wrong, i.e.,
the “only if” clause is true. The necessity is proved.

Proposition 1 says that BCN (1) will finally leave Z at
a certain time instant from an initial state x ∈ ĪC(Z). This
proposition lays the foundation for our RSP based algorithm
to locate the ĪC(Z). Intuitively, we first set up the base case,
i.e., collect states from which the BCN leaves Z in at least
one time step no matter what control is applied, termed D1.
Then, we find states from which the BCN leaves Z in at least
two time steps, termed D2. An equivalent construction of D2

is to get states from which the BCN reaches D1 in at least
one time step regardless of control. We continue this iterative
process to find all relevant states. Formally, we proceed as
follows and propagate states reversely from Di to Di+1:

D1 := {x ∈ Z|Lξux /∈ Z,∀u ∈ ∆M ,∃ξ ∈ ∆Q}, (3)

Di+1 := {x ∈ Z \ ∪i
l=1Dl|Lξux ∈ ∪i

l=1Dl,

∀u ∈ ∆M ,∃ξ ∈ ∆Q}, i ≥ 1, (4)

where Di denotes the set of states in ĪC(Z) from which
the BCN can leave Z in at least i steps regardless of
control inputs. Obviously, we have ĪC(Z) = ∪∞

i=1Di by
Proposition 1.

The RSP based procedures instantiating the above idea
for LRCIS calculation are presented in Algorithm 1, which
calculates Di one by one. Note that the state transition
Lξux in the algorithm can be quickly computed in O(1)
without using matrix products thanks to the special structure

Algorithm 1: Calculation of LRCIS
Input: BCN (1) and a target set Z ⊆ ∆N

1 Compute D1 by Eq. (3) and initialize D ← D1

2 i← 1
3 do
4 Compute Di+1 by Eq. (4)
5 D ← D ∪Di+1

6 i← i+ 1
7 while Di ̸= ∅
8 return Z \ D

of logical vectors as follows,

LδiQδ
j
MδkN = Colk

(
BlkM

j

(
BlkQ

i (L)
))

. (5)

Theorem 1: Consider Algorithm 1. We have
(1) Algorithm 1 terminates in at most |Z| iterations;
(2) ĪC(Z) = D and IC(Z) = Z \ D.

Proof: (1) The size of D is increased at least by 1 at
Line 5 unless Di+1 is empty. Recall that we have |D| ≤ |Z|
because of D ⊆ Z . This fact means that D = Z becomes true
after the do-while loop runs at most |Z| times (if it has not
terminated before that). According to how D is constructed
in Algorithm 1, Eq. (4) at Line 4 is equivalent to

Di+1 = {x ∈ Z \ D|Lξux ∈ D,∀u ∈ ∆M ,∃ξ ∈ ∆Q}.

In the case of D = Z , it is obvious that Di+1 is set empty at
Line 4, and the loop condition fails immediately at Line 7.
Therefore, Algorithm 1 terminates in at most |Z| iterations.

(2) Supposing that the do-while loop runs totally H itera-
tions in Algorithm 1, we have DH+1 = ∅, and D = ∪H+1

i=1 Di

by construction. Eq. (4) implies that Di = ∅,∀i ≥ H + 1.
Thus, we have got D = ∪H+1

i=1 Di = ∪∞
i=1Di = ĪC(Z). We

further have IC(Z) = Z \ ĪC(Z) = Z \ D by definition.
Time complexity: Computing Eq. (4) at Line 4 takes

time O(MQ|Z|) in the worst case. Line 5 takes at most
O(|Z|) because of |Di+1| ≤ |Z|. Since the do-while loop
continues for no more than |Z| iterations, the worst-case time
complexity of Algorithm 1 is O(MQ|Z|2).

Example 1: Consider a tiny BCN for illustration purposes
[16], which has three states, one control input, and one
disturbance input (∧, conjunction; ∨, disjunction):

x1(t+ 1) = x2(t) ∨ x3(t)

x2(t+ 1) = x1(t) ∧ u(t)

x3(t+ 1) = u(t) ∨ (ξ(t) ∧ x1(t))

. (6)

The transition matrix of the BCN in its ASSR form (1) is

L = δ8[1, 1, 1, 5, 3, 3, 3, 7, 3, 3, 3, 7, 4, 4, 4, 8,

1, 1, 1, 5, 3, 3, 3, 7, 4, 4, 4, 8, 4, 4, 4, 8]. (7)

Given a set Z := δ8{2, 4, 5, 7}, Algorithm 1 yields D1 =
δ8{2} and D2 = ∅. The correctness of δ28 is easily validated.
Since there hold Lδ12δ

1
2δ

2
8 = δ38 /∈ Z and Lδ12δ

2
2δ

2
8 = δ38 /∈ Z ,

there always exist a disturbance input δ12 that forces the BCN
to leave the set Z for both control δ12 and δ22 . The LRCIS is
thus IC(Z) = Z \ {δ28} = δ8{4, 5, 7}.
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Algorithm 2: Time-Optimal Robust Set Stabilization
Input: BCN (1) and a target set Z ⊆ ∆N

1 Compute the LRCIS IC(Z) by Algorithm 1
2 If IC(Z) = ∅ return end // infeasible
3 R0 ← IC(Z), and R← R0

4 i← 0
5 do
6 Compute Ri+1 based on Ri by Eq. (10)
7 Utr(x)← U(x,Ri), ∀x ∈ Ri+1 by computing Eq. (9)
8 R← R∪Ri+1

9 i← i+ 1
10 while Ri ̸= ∅
11 return Utr,R,R0,R1, · · · ,Ri−1

B. Time-Optimal Robust Set Stabilization

To begin with, we say that a state x reaches a set S ⊆ ∆N

robustly in one step if it satisfies

Lξux ∈ S, ∃u ∈ ∆M ,∀ξ ∈ ∆Q. (8)

Collect all states that enable Eq. (8) into a set U(x,S):

U(x,S) := {u ∈ ∆M |Lξux ∈ S,∀ξ ∈ ∆Q}. (9)

After the LRCIS IC(Z) is obtained above, we develop an
algorithm for robust set stabilization via RSP again. Denote
the set of initial states for which the shortest transient period
is i by Ri. Lemma 1 tells R0 = IC(Z). Moreover, we have
the following equation by definition

Ri+1 := {x ∈ ∆N \ ∪i
l=0Rl|Lξux ∈ ∪i

l=0Rl,

∃u ∈ ∆M ,∀ξ ∈ ∆Q}, i ≥ 0. (10)

That is, any state in Ri+1 must reach Ri robustly in
exactly one time step. Applying the RSP principle again,
we start from R0 and calculate each non-empty Ri, i ≥ 1
in Algorithm 2.

Theorem 2: Supposing that Algorithm 2 finishes in K
iterations (i.e., i = K at the end), we have
(1) K ≤ N
(2) T ∗

Z(x) = k, ∀x ∈ Rk, k ∈ [0,K − 1], and ΩZ = R.
Proof: (1) Assume that R0 ̸= ∅; otherwise, the algo-

rithm terminates at Line 2 with K = 0. Clearly, at least
one extra state is inserted into the set R at Line 8 in each
iteration until Ri+1 = ∅. Consequently, we get R = ∆N

after at most N − 1 iterations if the algorithm does not stop
before that. In the next iteration, we must have Ri+1 = ∅
at Line 6 because there holds Ri+1 ⊆ ∆N \R by Eq. (10).
The algorithm thus stops in this iteration according to the
condition at Line 10. Therefore, we always have K ≤ N .

(2) A straightforward proof can be given via mathematical
induction. The base that T ∗

Z(x) = 0,∀x ∈ R0 is obviously
true by Lemma 1. Supposing that T ∗

Z(x) = i,∀x ∈ Ri is
true, we get T ∗

Z(x) = i+ 1,∀x ∈ Ri+1 by the construction
of Eq. (10). Therefore, we have T ∗

Z(x) = k,∀x ∈ Rk, k ≥
0. Note additionally that Algorithm 2 yields RK = ∅, and
Eq. (10) further tells us that Rk = ∅,∀k ≥ K + 1. This
fact means that the maximum shortest transient period is

T ∗∗
Z = K − 1. Hence, the DoA ΩZ is computed by ΩZ =

∪K−1
k=0 Rk = ∪K

k=0Rk = R.
Theorem 2 also answers Problem 1: BCN (1) is robustly

set stabilizable from x0 to Z if and only if x0 ∈ ΩZ .
Time Complexity: First, Algorithm 2 runs Algorithm 1

once at the beginning, which takes O(MQ|Z|2) time. Then,
we proceed to the do-while loop. In the i-th iteration, 0 ≤
i ≤ N − 1, there are at most N − 1 − i states to check for
the computing of Eq. (9) and Eq. (10) at the first two lines
of the loop, which takes at most O(MQ(N − 1− i)) time.
The subsequent Line 8 appends at most N − 1− i states to
R in O(N −1− i) time. Thus, the i-th iteration takes totally
O(MQ(N − 1− i)) time in the worst case. The runtime of
the whole do-while loop is no more than

N−1∑
i=0

O(MQ(N − 1− i)) = O(MQN2). (11)

The total worst-case time complexity of Algorithm 2 is
thus O(MQ|Z|2) + O(MQN2), which is simplified to
O(MQN2) because of |Z| ≤ N .

Remark 1: The concept of RSP in the above algorithms is
comparable to that of [2] in dealing with continuous-valued
linear uncertain systems. However, we leverage the discrete
nature and finite size of a BCN’s state and control space
to develop exact algorithms that converge within a specified
number of iterations. In contrast, the algorithm proposed in
[2] applies linear programming at its core and only obtains an
approximate solution with respect to a tolerance parameter.

C. State Feedback Control

In this section, we characterize all feasible time-invariant
state feedback gain matrices for time-optimal robust set
stabilization. Robust set stabilization of a BCN is composed
of two phases in general: first, steer the BCN from its initial
state to any state in the LRCIS, called the transient phase;
second, keep the state inside the LRCIS, named the steady
phase. The control inputs associated with each state in the
first phase have been identified by Algorithm 2 (i.e., the
returned Utr), which are generally not unique. The capability
to keep the BCN’s state inside the LRCIS is implied by
Definition 3, which guarantees that U(x, IC(Z)) is not empty
for any state x in IC(Z). Let

Ust(x) := U(x, IC(Z)), ∀x ∈ IC(Z). (12)

We have the following result.
Theorem 3: Consider BCN (1), a target set Z , and an

arbitrary initial state from which the BCN is robustly set
stabilizable. Time-optimal robust set stabilization is attained
with time-invariant state feedback control u = Fx if and
only if

Coli(F ) ∈


Utr(x), if x = δiN ∈ ΩZ \ IC(Z) (13a)
Ust(x), if x = δiN ∈ IC(Z) (13b)
∆M , otherwise, (13c)

where Utr is given by Algorithm 2, and Ust is filled in (12).
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Proof: Let the initial state be x0. Since the BCN is
robustly set stabilizable from x0 to Z , we have x0 ∈ ΩZ ,
or equivalently, x0 ∈ ∪K−1

k=0 Rk based on Theorem 2, where
K − 1 indicates the maximum shortest transient period (see
the proof of Theorem 2). Assume x0 = δiN without loss
of generality. The feedback control injected at state x0 is
computed by u0 = Fx0 = Coli(F ).

(Sufficiency) In the case of x0 ∈ R0, or equivalently,
x0 ∈ IC(Z) by construction (see Algorithm 2), Eq. (13b)
is activated, and u0 ∈ Ust(x

0). Recall the definition in
Eq. (12). It is clear that Eq. (13b) will keep the BCN’s state
inside IC(Z) forever, which yields TZ(x

0) = 0 = T ∗
Z(x

0).
Next, consider the case with x0 ∈ Rk, k ∈ [1,K − 1]. At
first, Eq. (13a) is activated for state x0 with u0 ∈ Utr(x

0).
By the construction of Utr in Algorithm 2, we must have
x1 = Lξ0u0x0 ∈ Rk−1,∀ξ0 ∈ ∆Q. If we still have
k − 1 ≥ 1, the same analysis can show that the state after
x1, say x2, must belong to Rk−2. Hence, the state trajectory
starting from the initial state x0 will finally arrive at a state in
R0, say xk ∈ R0, after k steps steered by feedback control
(13a). This forms indeed the transient phase. After that, we
return to the first case again, and Eq. (13b) is used instead,
which traps the state within IC(Z) forever. Therefore, we
have TZ(x

0) = k = T ∗
Z(x

0) for x0 ∈ Rk, k ∈ [1,K − 1]
(note that the second equality is due to Theorem 2). A state
x /∈ ΩZ will never be encountered by definition; otherwise,
the BCN cannot get robustly set stabilized. Consequently, the
control corresponding to such a state does not matter, which
indicates that Eq. (13c) is sufficient. The proof of sufficiency
is thus finished for an arbitrary initial state x0 ∈ ΩZ .

(Necessity) Consider the case with x0 ∈ IC(Z), i.e., x0 ∈
R0. Since time-optimal robust set stabilization is required,
all succeeding states must stay in IC(Z) regardless of dis-
turbances to make TZ(x

0) = T ∗
Z(x

0) = 0. Clearly, we must
have u0 ∈ U(x0, IC(Z)), written also as u0 ∈ Ust(x

0) based
on Eq. (12). This case corresponds to Eq. (13b). Secondly,
we proceed to the case where x0 ∈ Rk, k ∈ [1,K−1] holds.
Theorem 2 states T ∗

Z(x
0) = k, which implies that u0 must

drive the state from x0 to a state in Rk−1 in exactly one time
step without being affected by disturbances. This condition
effectively requires u0 ∈ U(x0,Rk−1), or more concisely,
u0 ∈ Utr(x

0) (see Utr in Algorithm 2), which corresponds to
Eq. (13a). Note that the initial state x0 ∈ ΩZ is arbitrarily
chosen in the above discussion, which justifies the necessity
of Eq. (13a) and (13b). As for a state x not contained in ΩZ ,
Eq. (13c) is always true no matter what control is injected
at x. (In fact, as we have discussed above, the control for a
state x /∈ ΩZ does not matter.) Thus, Eq. (13) is correct, and
the proof of necessity is completed.

Example 2: Continuing Example 1, we build the state
feedback control law for time-optimal robust set stabilization.
Algorithm 2 produces R0 = δ8{4, 5, 7}, R1 = δ8{6, 8},
and R2 = ∅. The maximum shortest transient period is thus
T ∗∗
Z = 1, and the DoA is ΩZ = δ8{4, 5, 6, 7, 8}. All time-

optimal state feedback gain matrices are given by

F = δ2[{1, 2}, {1, 2}, {1, 2}, {1}, {2}, {2}, {2}, {1}],

TABLE I
TIME COMPLEXITY COMPARISON FOR SET STABILIZATION TASKS OF

deterministic BCNS WITH NO DISTURBANCES.

Task Method Time complexity

Compute the LRCIS

[3, Proposition 2] O(MN + |Z|N3)
[21, ] O(M |Z|+ |Z|3)
[5, Algorithm 2] O(M |Z|+ |Z|2)
[16, Algorithm 3.7] O(M |Z|3)
Algorithm 1 O(M |Z|2)

Check set stabilizability
[3, Proposition 5] O(MN +N4)
[5, Theorem 2] O(MN + |Z|2)
[16, Theorem 4.10] O(MN3)
Algorithm 2 O(MN2)

Time-optimal
set stabilization

[3, Proposition 6] O(MN3 + |Z|N3)
[5, Theorem 3] O(MN + |Z|2)
[16, Algorithm 4.8] O(MN3)
Algorithm 2 O(MN2)

where each column can take any value in the corresponding
set. Take the state x = δ48 ∈ IC(Z) for an example. It is easy
to find out U(x, IC(Z)) = δ8{1}, which is consistent with
the fourth column of the above feedback gain matrix.

V. COMPARISON WITH EXISTING METHODS

Currently, most studies in the literature are devoted to
deterministic set stabilization without taking disturbances
into account, and relatively few studies focus on robust set
stabilization via regular state feedback control. To perform a
more comprehensive comparison, we take the deterministic
BCN as a special case of the nondeterministic one by fixing
∆Q = {δ11} in view of the fact that Lδ11ux ≡ Lux. That
is, algorithms developed for robust set stabilization apply to
deterministic set stabilization as well but not vice versa. We
then list the time complexity of ours and existing methods
for deterministic set stabilization in Table I. Three tasks
have been investigated, though the last two tasks are solved
simultaneously with Algorithm 2. Only our approach and
Wang’s method [16] are capable of robust set stabilization
problems in particular. Interestingly, our approach even beats
most existing methods for deterministic set stabilization
except Gao’s [5] in terms of time complexity, highlighting its
outstanding efficiency advantage clearly. Note however that
the method in our previous work [5] is a graphical one, which
depends on the static state transition graph and cannot handle
nondeterministic state transitions, prohibiting its extension to
robust set stabilization problems.

Next, we move to robust set stabilization for BCNs subject
to stochastic disturbances. The main competitor is the STP
based algebraic method proposed in the recent study [16].
The time complexity comparison is listed in Table II for
three tasks. In addition, we also measured the actual runtime
of different algorithms for two biological networks and
report the results in Table II. The ara operon network is
characterized by n = 9,m = 4, q = 2 with a target set Z
composed of 203 states. The T-LGL network is a bit large
with n = 16,m = 4, q = 3, and its target set contains
1094 states. More details of the two networks are available
in [5]. We first see that our algorithms enjoy lower time
complexity than those in [16] in all three tasks. One notable
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TABLE II
TIME COMPLEXITY AND RUNTIME COMPARISON FOR ROBUST SET STABILIZATION OF TWO BIOLOGICAL NETWORKS.

Task Method Time complexity Running time

ara operon T-LGL

Compute the LRCIS [16, Algorithm 3.7] O(MQ|Z|3) 1.93 s 269 s
Algorithm 1 O(MQ|Z|2) 6.4E-4 s 3.1E-2 s

Check robust set stabilizability [16, Theorem 4.10] O(MQN3) 2.26 s > 24 hours
Algorithm 2 O(MQN2) 4.2E-3 s 1.7 s

Time-optimal
robust set stabilization

[16, Algorithm 4.8] O(MQN3) 2.26 s > 24 hours
Algorithm 2 O(MQN2) 4.2E-3 s 1.7 s

observation is that, though the degree of N is lower only
by 1 in the big-O time complexity of our approach, the
running time difference in practice for a medium-sized T-
LGL network can be astonishing, reduced from more than 24
hours to roughly only 1.7 s in Table II. This huge difference
is consistent with the exponential nature of N in view of
N = 2n. The success of the efficiency enhancement in our
approach is mainly attributed to the removal of expensive
matrix operations. Indeed, our RSP based algorithms only
involve remarkably cheap computations in each step aside
from their simple structures (as implied by the few number
of lines in each algorithm).

VI. CONCLUSIONS

In this study, we proposed a novel approach for time-
optimal robust set stabilization of BCNs based on reverse set
propagation (RSP). This approach first sets up a destination
set of states and then locates other sets of states that can
reach the destination set in order of the required number
of time steps. All feasible state feedback gain matrices for
time-optimal robust set stabilization have been constructed
by our algorithms. Comprehensive comparison showed that
our approach attained the lowest known time complexity
and was thousands of times faster than its competitor when
handling a medium-sized 16-node network. It deserves a final
mention that, although our approach can manage relatively
large BCNs beyond the capacity of existing methods, it
still runs in exponential time in accordance with the NP-
hardness of the problems. Consequently, our approach is
still computationally intractable when the network has many
nodes. A promising workaround is to combine the RSP
technique with the network aggregation framework [22] for
treatment of really large-scale BCNs of a special structure.
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