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Abstract— This paper explores the synergies between inte-
grated power and thermal management (iPTM) and battery
charging in an electric vehicle (EV). A multi-objective model
predictive control (MPC) framework is developed to optimize
the fast charging performance while enforcing the constraints in
the power and thermal loops. The approach takes into account
the coupling of the battery and cabin thermal management. The
case study of a commercial EV demonstrates that the proposed
method can effectively meet the requirements of fast charging
and thermal management when accurate preview information
is available. However, failure to predict the charging event can
result in performance degradation with longer charging time. A
time-varying weighting strategy is proposed to enhance charg-
ing performance in the presence of uncertainty. This strategy
leverages the battery state-of-charge (SOC) and adjusts the
priority of the multi-objective MPC at different phases during
charging. Simulated results using a commercial EV use case
show improved robustness in charging time using the proposed
strategy.

I. INTRODUCTION

Vehicle electrification is a critical strategy to address
the pressing energy and climate change challenges. Electric
vehicles (EVs) leverage clean and renewable energy sources,
have the potential for lower environmental impact, and
lower maintenance and operating costs than conventional
vehicles [1], [2]. While the past few years have witnessed a
significant increase in EV popularity and market share, there
remain several technical challenges that impeded widespread
adoption. Particular relevant for this study, is the combination
of limited driving range [3], [4], relatively long charging
times [5], and availability of charging infrastructure which
motivates the optimization of EV charging performance. This
can be achieved through advancements in battery technology,
charging infrastructure, and thermal management systems.
This paper aims to enhance the fast-charging performance
of EVs through the optimization of integrated power and
thermal management (iPTM).

The battery charging rate of electric vehicles at a given
charging station is determined by various factors such as
the battery’s state-of-charge (SOC), temperature, charging
station capability, and overall health [6]. Focusing on thermal
considerations, cold operating temperatures can reduce the
maximum charging rate and extend the charging time [7],
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[8]. Similarly, charging rates may be constrained in order to
keep battery temperatures within a desirable range [9]. Al-
though many efforts have been extended to enhance charging
performance [10], [11], there are only a few works [7], [12]
exploring the coupling of battery charging and its thermal
behavior.

The reduction of charging capacity due to cold tem-
peratures can have a negative impact on the performance
of electric vehicle charging. To mitigate this impact on
energy efficiency and charging time, an optimization-based
battery thermal management strategy was developed based
on nonlinear programming in [7]. The study demonstrated
that properly preconditioning the battery temperature can
lead to a significant reduction in charging time. Furthermore,
the approach was extended in [8] to consider the detour
time to the charging station during long-distance trips. The
simulation results indicated that there is a trade-off between
trip time and energy consumption.

Unlike cold ambient conditions, where the restriction in
the charging power and low battery temperature at the start of
charge leads to longer charging time, hot ambient conditions
can reduce the heat rejection capacity of the battery cooling
system. If the heat generated during fast charging exceeds the
cooling capacity, it can cause the charging rate to be throttled
to maintain the battery temperature within acceptable limits,
thereby slowing down the charging process. To address this
issue, an MPC-based iPTM strategy was proposed in our
previous work [13]. This work in [13], however, does not
consider cabin thermal management. In EV applications
where the battery and cabin thermal management share one
heat rejection system, their coupling needs to be properly
considered, particularly when both battery and cabin require
large heating/cooling demands. This study aims to extend
the MPC-based iPTM by integrating the battery and cabin
thermal management and exploring the synergy between
iPTM and fast charging.

The contributions of this paper are as follows: Firstly, we
consider both battery and cabin thermal management and
extend the MPC-based iPTM approach with a non-uniform
sampling strategy and a shrinking horizon to optimize the
fast charging performance. Secondly, the impact of uncer-
tainty associated with the prediction of a charging event is
investigated using a commercial EV use case, quantifying the
trade-off between charging time and cabin comfort. Thirdly,
a time-varying weighting strategy is proposed, which adjusts
the penalty weights based on the current value of battery
SOC to enhance the charging performance in the presence
of uncertainty.
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II. MODELS OF POWER AND THERMAL SYSTEMS OF A
COMMERCIAL ELECTRIC VEHICLE

While the approach presented in this paper can be applied
to a broader class of EVs, we focus our case study on the
electric vehicle for commercial use, referred to as commer-
cial electric vehicle. In this section, a detailed description
of the models used to represent the thermal and power
subsystems of a commercial electric vehicle utilized in this
study is provided.

A. Battery State-of-Charging Model

An equivalent circuit model [14] is used to represent the
battery SOC dynamics.

˙SOC = fSOC(t) =
−Ibat
Cbat

= −
Uoc −

√
U2
oc − 4RintPbat

2RintCbat
,

(1)

where Ibat and Cbat are the battery current and capacity,
respectively. The battery current is determined by the battery
power (Pbat), the open circuit voltage (Uoc), and the internal
resistance (Rint). When the vehicle is in motion, the battery
power is the sum of the vehicle traction power (Ptrac) and
the power consumed by auxiliary subsystems (Paux), i.e.,
Pbat = Ptrac + Paux. While the vehicle is being charged at
the station, the net charging power is Pbat = Pchg + Paux.
Note that Pbat is negative.

B. Battery Thermal Model

The battery is modeled as a lumped thermal mass and
its temperature dynamics are expressed using the following
equation:

Ṫbat = fbat(t) =
1

mbat,thmCbat
(Q̇gen − Q̇amb − Q̇bat),

(2)

where mbat and Cbat are the battery thermal mass and
specific heat capacity, respectively. Q̇gen and Q̇amb represent
the irreversible heat rate generated by internal resistance and
the heat exchange rate between the battery and ambient,
respectively, which are expressed as:

Q̇gen = I2batRint, (3)

Q̇amb = αamb(Tamb − Tbat), (4)

where αamb is a coefficient of heat exchange rate. Addition-
ally, Q̇bat represents the battery cooling power provided by
the cooling system.

C. Cabin Thermal Model

The cabin is also modeled as a lumped mass so that the
cabin temperature dynamics are expressed as

Ṫcab = fcab(t)

=
1

mcabCcab
(Q̇sun + Q̇cov + Q̇ven + Q̇met − Q̇cab),

(5)

where mcab and Ccab are the thermal mass and specific heat
capacity of cabin, respectively. Q̇sun, Q̇cov , Q̇ven, and Q̇met

are the heat transfer rate due to solar loading, air convection,
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Fig. 1. Concept of the developed MPC with nonuniform sampling and
shrinking horizon: (a) driving phase, before the vehicle arrives at the
charging station, and (b) charging phase, after the vehicle arrives at the
charging station.

air ventilation, and human metabolic activities, respectively.
For a more detailed formulation of each heat source term in
(5), please refer to [15]. Moreover, Q̇cab is the cabin cooling
power provided by the cooling system.

III. MODEL PREDICTIVE CONTROL FORMULATION

Our analysis focuses on commercial EVs that operate
at hot ambient temperatures with low initial SOC, which
requires a fast-charging at a nearby charge station to com-
plete the vehicle mission. The objectives of the iPTM are as
follows:

1) final SOC above a prescribed threshold;
2) total charging time within a desired range;
3) minimizing energy consumption while enforcing con-

straints on thermal states and control inputs.
Note that for commercial vehicles, the final SOC and

total charging time requirements are typically determined by
the missions after charging. The main challenge of applying
a conventional receding-horizon MPC in such a setting is
the variability in the SOC and time required for charging,
which makes it uncertain when exactly the target SOC will
be reached. Therefore, the time instant when the vehicle
completes the charging can be within or beyond the receding
prediction horizon. This makes the problem formulation
different from the one addressed by the conventional MPC.

To address the aforementioned challenges and achieve the
objectives, a novel MPC-based iPTM with a non-uniform
sampling strategy and a shrinking horizon is developed.
Fig. 1 illustrates the concept of the MPC-based iPTM in two
distinct scenarios. In the first scenario, as the commercial ve-
hicle approaches the charging station, the prediction horizon
encompasses the entire duration from the current time instant
to the end time of the charging, which can be segmented
into two phases: the driving phase and the charging phase.
In the second scenario, as the commercial vehicle arrives at
the charging station or waits for the charger, the prediction
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horizon extends from the current time instant until the end
time of the charging, but only consists of one phase, i.e., the
charging phase. In both scenarios, the charging time is not
known, which is determined as part of the MPC solution. The
MPC-based iPTM solves the following discrete-time finite-
horizon optimization problem:

min
Q̇bat·,
Q̇cab·,

Pchg·, ∆t2·

t+N1−1∑
i=t

(
Q̇2

bat(i) + Q̇2
cab(i)

COP (i)
∆t1) +

t+N1+N2−1∑
i=t+N1

{( Q̇
2
bat(i) + Q̇2

cab(i)

COP (i)
∆t2)+

α(∆t2(i))
2 + β1ϵ

2
1 + β2ϵ

2
2},

s.t. SOC(i+ 1) = SOC(i) + fsoc(i)∆tj , j ∈ {1, 2}
Tbat(i+ 1) = Tbat(i) + fbat(i)∆tj , j ∈ {1, 2}
Tcab(i+ 1) = Tcab(i) + fcab(i)∆tj , j ∈ {1, 2}
SOCmin ≤ SOC(i) ≤ SOCmax,

SOC(t+N1 +N2) = SOCtarg,

Tbat,min ≤ Tbat(i) ≤ Tbat,max + ϵ1,

Tcab,min ≤ Tcab(i) ≤ Tcab,max + ϵ2,

0 ≤ Q̇bat(i) ≤ Q̇bat,max,

0 ≤ Q̇cab(i) ≤ Q̇cab,max,

Q̇bat + Q̇cab ≤ Q̇max,

0 ≤ Pchg(i) ≤ Pchg,max,

0 ≤ ∆t2(i) ≤ ∆t2,max,
(6)

The index j ∈ {1, 2} is determined as follows:

j =

{
1, if i ≤ t+N1 − 1,

2, if i ≥ t+N1.
(7)

It can be seen from (6) that the cost function consists of
three terms: i) the energy consumed for battery and cabin
cooling, ii) the penalty term of charging time (represented
by ∆t2, as the number of samples in the charging horizon
is fixed by N2), and iii) slack variables (ϵ1 and ϵ2) defining
soft constraints of the upper bounds of Tbat and Tcab. Note
that the control/decision variables are Q̇bat, Q̇cab Pchg , and
∆t2.

fSOC , fbat, and fcab are the dynamic equations (1-3) in-
troduced in Section II. The variables ∆t1 and ∆t2 represent
the sampling time during the driving and charging phases,
respectively, while N1 and N2 represent the number of
sampling points during these phases. The prediction horizon
length can be calculated as ∆t1N1+∆t2N2, where ∆t1N1 is
the remaining time it will take for the vehicle to arrive at the
charging station, and ∆t2N2 is the total predicted time spent
at the charging station. Note that N1 equals zero once the
driving phase is completed and the charging phase begins.

Note that the MPC formulation (6) employs a non-uniform
sampling strategy for the prediction horizon. Over the driving
phase, the sampling time ∆t1 is fixed, and the number of
samples N1 is calculated based on the remaining time that
the vehicle takes before arriving at the charging station. On
the other hand, over the driving phase, as the charging time is

not predetermined, we fix the sampling number N2, and treat
the number of samples ∆t2 as a control/decision variable, the
value of which is determined by solving the optimization
problem (6). This sampling strategy allows us to impose
the terminal condition of SOC at the end of the prediction
horizon without knowing the exact time for the vehicle to
complete charging.

IV. SIMULATION RESULTS

In this section, we present the numerical results of ap-
plying the proposed MPC-based iPTM to a commercial EV,
operating at an ambient temperature of 38oC. It starts with
a low initial SOC, drives through an urban route to a fast
charging station, and gets charged to a target SOC, as shown
in Fig. 1.

For the results shown below, we use 0.3 (30%) and 0.6
(60%) for the initial and target SOC, respectively. The
maximum charging power (Pchg,max) is 80 kW . To protect
the OEM proprietary data, the exact value of Q̇max will not
be given in this paper, and the maximum cooling power of the
battery and cabin are both 83% of Q̇max. The cooling power
results shown in this section will be normalized using Q̇max.
During both the driving and charging phases, the desired
range of battery temperature and cabin temperature is 15
to 35oC and 23 to 25oC, respectively. Note that the range
of battery temperature is suggested by [16], and the cabin
temperature range is adopted from the temperature setting in
the flight of Korean Air [17].

A. Simulation results with accurate preview

In order to show the effectiveness of the MPC-based
iPTM, we first assume that accurate preview information
over the entire prediction horizon is available. In this study,
the preview information consists of the vehicle speed profile
before arriving at the charging station and the waiting time
at the charging station before charging begins. Such an
assumption will be relaxed later for a study of the robustness
of the algorithm. In this and the following case studies, the
budgeted charging time is set to 30 min.

Fig. 2 presents the state and input trajectories with the
MPC. It can be seen that with accurate preview information,
the requirement of charging time can be satisfied. After
charging for 30 min, the SOC reaches the required value of
0.6. It can be seen from Fig. 2-(g) that to meet the desired
charging time, a substantial charging power of approximately
50 kW is necessary in this case study. However, due to
the capacity constraint of the cooling system, battery heat
generation during the charging event may drive temperature
to the upper constraint. As shown in Fig. 2-(c), to avoid
constraint violations, the controller pre-cools the battery
temperature before charging began. Such pre-cooling creates
some room for the battery temperature to rise during the
charging phase and thus can avoid the throttling of the charge
rate.

To conclude, this case study demonstrates the effectiveness
of the proposed MPC-based iPTM in enforcing fast charging
requirements and power/thermal constraints throughout the
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Fig. 2. State and input trajectories with MPC and accurate preview: (a) Vehicle speed, (b) SOC, (c) battery temperature, (d) cabin temperature, (e) scaled
battery cooling power, (f) scaled cabin cooling power, (g) (negative) battery charging power, and (h) the estimated charging time.

driving and charging phases. Nonetheless, such favorable
behavior is contingent on precise preview information, e.g.,
the vehicle speed, and availability of the charging station.
Uncertainties may potentially impede the controller’s perfor-
mance.

B. Impact of the uncertainties in the preview

We next consider the impact of the uncertainties in the
preview information. As discussed in Sec IV-(B), MPC in-
corporates the knowledge of the upcoming charging event to
pre-cool the battery, thereby allowing large battery charging
power to reduce the charging time. The following cases are
considered to illustrate the impact of accurately predicting
the charging event:

• Case I: The charging event is predicted accurately over
the prediction horizon,

• Case II: The charging event is not predicted until the
vehicle arrives at the charging station.

For Case I, it is assumed that the preview information is
known a priori. In Case II, before the vehicle arrives at the
station, the charging event is not predicted, and thus, the
cost function only includes the first term in (6) to minimize
the BTM energy consumption. Once the vehicle arrives and
starts charging, the same optimization problem in (6) will be
solved. The comparison of Case I and Case II is displayed
in Fig. 3. Note that for Case II, a different set of penalty
weights is defined in Table I from Case II-a to II-c.

Unlike Case I, which benefits from accurate preview infor-
mation, in Case II MPC does not account for the upcoming
charging event over the prediction horizon and therefore does
not conduct pre-cooling on the battery. This uncertainty leads
to performance degradation of the controller, and different
settings of penalty weights (β1 and β2) influence the priority
of the multi-objective MPC.

Note that β1 is always set to a large value to ensure that
the battery temperature constraint is enforced, while different

TABLE I
PENALTY WEIGHTS OF β1 AND β2 .

Case I Case II-a Case II-b Case II-c
β1 1e11 1e11 1e11 1e11
β2 1e10 1e10 1e5 1e3
tchg 30.0 35.6 32.5 31.2
[min]
CV 0 44 3680 8740

[oC · sec]

values of β2 are selected, representing varying levels of
relaxation for the cabin temperature constraint. Moreover,
the charging time (tchg) and accumulated cabin temperature
constraint violation (CV ) are summarized in Table I.

It can be seen that for Case II, the MPC performance
is sensitive to the settings of β2, and there is a trade-off
between the charging time and cabin temperature constraint
violation. As the value of β2 is reduced, the accumulated
constraint violation of cabin temperature increases, while
the charging time reduces. This is because of the constraint
on cooling capacity. For Case II-a, with large values of
β1 and β2, MPC tends to enforce the constraints for both
battery and cabin temperature. However, because no pre-
cooling is conducted in advance, there is no room for the
battery temperature to rise. Therefore, compared with Case
I, in Case II-a the charging power needs to be reduced
to avoid constraint violation, which causes an increase in
total charging time. For Case II-c, as β2 is reduced, the
strictness of the cabin temperature constraint is relaxed,
which allows cabin temperature to rise above its upper
bound. Therefore, the cabin cooling power can be reduced
and the battery cooling power can be increased, allowing for
a larger charging as shown in Fig. 4.

This case study illustrates that failure to predict the
charging event in advance results in performance degradation
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Fig. 3. State and input trajectories of with MPC and preview/without a preview of charging event and different weights: (a) Vehicle speed, (b) SOC, (c)
battery temperature, (d) cabin temperature, (e) scaled battery cooling power, and (f) scaled cabin cooling power.

and the MPC-based iPTM has to compromise either on the
charging time or the enforcement of constraints.

charging 
begins

Fig. 4. The time histories of the (negative) charging power in different
cases.

C. SOC-aware penalty weight adjustment strategy

The case study in Sec.IV-C shows the impact of the
uncertainty in predicting the charging event with constant
penalty weights. In this section, we explore the time-varying
penalty weights to enhance the performance of the MPC-
based iPTM strategy. An adjustment strategy is developed to
update the penalty weights in real-time based on the current
state of SOC.

Two assumptions are made in this study. First of all, it
is assumed that during the charging phase, the drivers and
the passengers leave the vehicle. This assumption implies
that any constraint violation of cabin temperature during the
charging phase will not affect the comfort of the drivers and
passengers. Secondly, we assume that the drivers and pas-
sengers return to the vehicle immediately after the charging
is completed. Therefore, the final cabin temperature will be
used as a metric to evaluate the comfort level upon their
return.

With these two assumptions, a time-varying weighting
strategy is proposed to enhance the charging performance in

situations where the charging event is not correctly predicted.
This strategy exploits the insight that the cabin temperature
constraint can be relaxed during the early phases of charging
when there is no occupants in the vehicle but should be
tightened as the charging nears completion. This idea is
implemented with the penalty weight (β2) given by:

β2 = F (SOC) = β010
b

SOC−SOCmin
SOCtarg−SOCmin (8)

It can be seen that β2 takes value between β0 (when
it starts charging) and 10bβ0 (when SOC approaches the
target). Therefore, by using this equation, the tightness of
the cabin temperature constraint is adjusted. Hence a new
case study is defined as:

• Case III: The charging event is not predicted until
the vehicle arrives at the charging station. β2 is time-
varying, following eq. (8) with β0 = 10 and b = 10.

The comparison of trajectories with MPC in Case I-III
is presented in Fig. 5. It can be seen from Fig. 5-(c) that
the cabin temperature rises above the upper bound (25oC)
at the beginning of the charging and cools down when
charging nears completion. The charging time, and final
cabin temperature in all cases are summarized in Table. II.

TABLE II
SETTINGS OF PENALTY WEIGHTS OF β1 AND β2 .

Case I Case II-a Case II-c Case III
tchg 30.0 35.6 31.2 32.9
[min]

Tcab,final 25.0 25.0 31.0 25.0
[oC]

It can be seen that while both Case II-a and Case III
successfully enforce the final cabin temperature constraint,
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Fig. 5. State and input trajectories with MPC when assuming the preview
information is accurate: (a) Vehicle speed, (b) SOC, (c) cabin temperature,
and (d) scaled cabin cooling power.

Case III outperforms Case II-a by reducing charging time by
2.7 min. On the other hand, although Case II-c requires less
charging time than Case III, the final cabin temperature is
higher, when occupants return to the vehicle after charging is
completed. Consequently, the proposed time-varying weight-
ing strategy improves the charging performance and enforces
the thermal constraints in the presence of uncertainty. Such
benefits are achieved by adjusting the strictness of the
constraint during the charging phase.

V. CONCLUSION
In this paper, a multi-objective model predictive control

(MPC) framework is developed to optimize the fast charging
performance through integrated power and thermal manage-
ment (iPTM). The controller takes into account the coupling
of the battery and cabin thermal management. Due to the
uncertain charging time, the proposed MPC-based iPTM
utilizes a non-uniform sampling over a prediction horizon
and a shrinking horizon to achieve the desired performance.
The simulation results demonstrate the effectiveness of the
proposed MPC-based iPTM in achieving fast charging while
enforcing power/thermal constraints throughout the driving
and charging phases when accurate preview information is
available. However, the uncertainty analysis shows that the
failure to predict the charging event leads to performance
degradation, and the controller needs to compromise either
on the charging time or the cabin temperature at the end of
the charging event. Moreover, to enhance the performance
in the presence of uncertainty, a time-varying weighting

strategy was proposed to leverage the different thermal
priorities and adjust the penalty weights in the cost function.
This strategy updates penalty weights based on the current
value of the battery SOC. The simulation results show that
at the same value of the final cabin temperature, the proposed
strategy reduces the required charging time by adjusting the
cabin priority during the charging phase.
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