
Optimal Scheduling for Remote Estimation with an Auxiliary
Transmission Scheme

Zitian Li, Lixin Yang, Yijin Jia, Zenghong Huang, Weijun Lv, Yong Xu

Abstract— The remote estimation for multiple systems is
considered in this paper. Some smart sensors observe the
systems and run Kalman filters to compute their state estimates,
which are then transmitted to a remote estimator via high
frequency wave band. The path loss and signal attenuation
make communication at high frequency unreliable. To improve
estimation performance, an auxiliary transmission scheme is
proposed, where a complementary channel with low frequency
wave band is deployed to transmit a duplication of a local state
estimate. Since the auxiliary channel consumes extra energy
and occupies limited bandwidth, the optimal scheduling needs
to be studied, i.e., to determine whether or which sensor to
use the auxiliary channel. To tackle this issue, we establish
a Markov decision process (MDP) to formulate the optimal
scheduling, and prove that the optimal policy is deterministic
and stationary. Furthermore, the threshold structure is verified
for the optimal policy. The deep reinforcement learning is
introduced to approximate an optimal policy. Finally, the
threshold structure and the deep reinforcement learning is
validated by a numerical example.

I. INTRODUCTION

With the rapid development of communication technology,
networked control systems [1], [2] have become popular
in both theoretical research and engineering application.
Compared with the traditional control system which depends
on the point to point communication technology, some useful
components of networked control systems are shared in a
reliable network. For theoretical research, plenty of scholars
pay attention to its stability [3], [4] and performance analysis
[5], [6]. For engineering, networked control systems are
applied in numbers of fields, such as electric power [7] and
medical treatment [8], etc.

Among all the studies of networked control systems,
remote estimation is a hot topic [9], [10]. In this scheme,
the Kalman filter is run by a sensor or a remote estimator,
which depends on the computation capacity of the sensor.
However, bandwidth limit [11], [12], power constraint [13],
[14] and packet drop [15], [16] inevitably exist. In view of
it, many scholars investigate sensor scheduling protocol or
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transmission strategy to obtain a trade-off between the qual-
ity of estimation, communication and power consumption.
Some of them get nice research results. To balance estimation
performance and communication load, a deterministic event
trigger was proposed in [17], where the measurement was
allowed to be transmitted to the remote estimator only if the
innovation exceeded a given threshold. To preserve the Gaus-
sian property and obtain a closed-form mean square error
estimator, a stochastic event trigger was further designed in
[18]. Taking into account a composite convex cost function,
the optimal scheduling for a single sensor under uncertain
channels was studied in [19]. Besides, the optimal policy for
multiple sensors over lossy and limited bandwidth channels
was further investigated in [20].

The 5th Generation (5G) mobile communication is widely
used today [21], [22], and it consists of bands with dif-
ferent frequencies. The trade-off between the capacity of
the enhanced Mobile BroadBand (eMBB) and the Ultra-
Reliable Low-Latency Communication (URLLC) is a chal-
lenging issue. To achieve it, a hybrid transmission strategy
was proposed in [23]. In this strategy, the high frequency
band and the low frequency band are both considered to
transmit data, where the low frequency band is utilized to
enhance the reliability of transmission. For example, if the
quality of communication (such as the Signal to Noise Ratio)
exceeds a certain threshold, only the high frequency band
is used, otherwise the data is transmitted by two bands
simultaneously. The large capacity of the high frequency
band and the reliability of the low frequency are combined in
this hybrid transmission strategy. It motivates us to develop
a new auxiliary transmission scheme for remote estimation,
where the redundant transmission channel is considered
to improve the reliability of transmission. In addition, the
optimal multiple sensors scheduling to balance the estimation
quality and the power consumption is worthy of research.

Motivated by the above discussion, this paper focuses
on the remote estimation problem by scheduling multiple
sensors. Most existing works used to deal with bandwidth
constraint and they assumed that all the channels possess
the same communication characteristic. It is interesting to
schedule the sensors from the perspective of redundant
transmission channels, which can be regarded as an effective
method to improve the reliability of transmission.

Notations: N denotes the set of non-negative integers.
Rn, Rn×n represent n-dimensional real vectors, and n× n-
dimensional real matrices, respectively. M � (�)0 is a pos-
itive definite (semidefinite) matrix. ρ(M), MT , and Tr(M)
indicate the spectral radius, transpose, and trace of a matrix
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M. P[x] and E[x] denote the probability and the expectation
of a random variable x, respectively. N (0,Σ) is a Gaussian
distribution with zero-mean and covariance Σ.

II. PROBLEM FORMULATION

A. System Model

Consider the remote estimation problem for the following
discrete linear time-invariant (LTI) systems:

xi,k+1 = Aixi,k +wi,k, (1)
yi,k =Cixi,k + vi,k, (2)

where i = 1, . . . ,N denotes the system index. xi,k ∈ Rni

represents the state of the i-th system, and yi,k ∈Rmi denotes
the measurement of the i-th smart sensor. The noise of
the system and the measurement are represented by wi,k
and vi,k, which are mutually independent random variables,
and obey the Gaussian distributions wi,k ∼ N (0,Qi), vi,k ∼
N (0,Ri). Assume that the noise covariances Qi and Ri are
positive semi-definite and positive definite, respectively. In
addition, the initial system state xi,0 is a zero-mean Gaussian
variable with covariance Pi,0 � 0. Hypothetically, (Ai,

√
Qi)

is controllable and (Ai,Ci) is observable.
Each smart sensor can calculate a local state estimate x̂s

i,k
and a corresponding error covariance Ps

i,k by a local Kalman
filter, respectively, which are defined as follows:

x̂s
i,k , E[xi,k|y1, . . . ,yk], (3)

Ps
i,k , E[(xi,k− x̂s

i,k(xi,k− x̂s
i,k)

T |y1, . . . ,yk]. (4)

More in detail, they are computed based on the following
Kalman filtering [24]:

x̂s
i,k+1|k = Aix̂s

i,k, Ps
i,k+1|k = AiPs

i,kAT
i +Qi,

x̂s
i,k+1 = x̂s

i,k+1|k + Ǩi,k+1(yi,k+1−Cix̂s
i,k+1|k),

Ps
i,k+1 = (I− Ǩi,k+1Ci)Ps

i,k+1|k,

where Ǩi,k+1 = Ps
i,k+1|kC

T
i (CiPs

i,k+1|kC
T
i +Ri)

−1 represents the
local Kalman gain. x̂s

i,k+1|k and Ps
i,k+1|k denote the prediction

and the predicted error covariance, respectively. Based on
the assumption of controllability and observability, the local
Kalman filter exponentially attains a steady state. In other
words, the error covariance satisfies

lim
k→∞

Ps
i,k = Pi, i = 1, . . . ,N, (5)

where Pi is a constant positive definite matrix. Since this
work focuses on the performance over infinite time horizon,
we assume that Ps

i,k has achieved Pi.

B. Auxiliary Transmission Scheme

As illustrated in Fig. 1, the sensors transmit their local
state estimate to a remote estimator. To meet the demand
for the bandwidth capacity, the high frequency wave is used
for the sensors to transmit data, such as millimetre wave
(mmWave) with a frequency range from 24.25 GHz to 52.6
GHz. The range is divided into N frequency bands for the
sensors, which are denoted as HF1, . . . ,HFN . However, the
packet dropouts more likely occur at high frequency due to

Remote 
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Fig. 1. System model.

the signal attenuation. γi,k = 1 indicates that the local state
estimate is successfully transmitted from the i-th sensor to the
remote estimator, and γi,k = 0, otherwise. The packet dropout
probability is

E[γi,k = 0] = λi. (6)

To improve the transmission reliability, an auxiliary trans-
mission scheme is proposed in this work, which utilizes
the low frequency wave to transmit a duplication of the
local state estimate. The low frequency wave has a more
reliable transmission, whose packet dropout probability is
λ ∗ < mini λi. However, due to the limited bandwidth of the
low frequency range, only one sensor is allowed to use the
auxiliary channel, which is denoted as LF . Besides, each
transmission of the auxiliary channel consumes E energy cost
of the sensor. Therefore, in view of the energy conservation
and the channel occupancy, we need to determine 1) whether
to use the auxiliary channel, and 2) which sensor to transmit
a duplicate state estimate over the auxiliary channel. Define
ui,k as the decision variable for i-th sensor, i.e., ui,k = 1 if
the i-th sensor uses both HFi and LF channels to transmit
data, and ui,k = 0, otherwise, which satisfies ∑

N
i=1 ui,k ≤ 1.

C. Remote Estimator

The value of γi,k indicates whether the remote estimator
receives the local state estimate xs

i,k. If the remote estimator
unsuccessfully receives the data packet, it only predicts the
state estimate. Thus, x̂i,k+1 and Pi,k+1 is updated by

(x̂i,k,Pi,k) =

{
(x̂s

i,k,Pi) if γi,k = 1,
(Aix̂i,k−1,hi(Pi,k−1)) if γi,k = 0.

(7)

where hi(X) =AiXAT
i +Qi represents the one-step prediction

error covariance. Based on the information of whether or not
the remote estimator receives the data packet, we can obtain
the number of consecutive packet dropouts of each system.
Here, let τi,k denote the stopping time of each system, which
is the number of consecutive transmission failures up to time
k,

τi,k , k−max{0≤ t ≤ k : γi,t = 1}, (8)

where the stopping times of the systems are mutually inde-
pendent. According to the previous stopping time, τi,k can
be calculated by

τi,k =

{
τi,k−1 +1, if γi,k = 0,
0, if γi,k = 1.

(9)

2130



Based on the stopping time τi,k, the error covariance at the
remote estimator can be computed by τi,k as

Pi,k = h
τi,k
i (Pi).

D. Problem of Interest

In this article, we consider the auxiliary transmission
scheme, where the LF channel is used to transmit the same
information to improve the remote estimation performance.
Define a policy as u , {ui,0,ui,1, . . .}. The objective is to de-
termine ui,k at each time to minimize the combination of the
expected average error covariance and energy consumption,
i.e.,

min
u∈U

J(u), (10)

with

J(u), limsup
T→∞

1
T

T−1

∑
k=0

N

∑
i=1

E
[
Tr(Pi,k)+βui,kE

]
, (11)

where U is the set of all policies, and β is a constant weight.
Taking into account the objective (10), one needs to achieve
the tradeoff between the energy consumption and the remote
estimation performance.

III. MARKOV DECISION PROCESS

During the transmission process, the remote estimator can
detect whether the data packet is successfully received, i.e.,
γi,k = 1 or not. Hence, the stopping time τi,k can be computed
by equation (9). Here, we denote a quadruple {S ,A ,P,C }
as an MDP.

State space: the state space is defined as S , NN and
sk , (τ1,k−1, . . . ,τN,k−1) ∈S , which consists of the stopping
time of each sensor at time instant k.

Action space: the action space is defined as A , {0,1}N ,
in which ak , (ui,k, . . . ,uN,k) indicates the use of the auxiliary
channel for each sensor. Note that the action ak satisfies
∑

N
i=1 ui,k ≤ 1 for all k.
Transition probability: under the condition that the pack-

et dropout probability of each channel is λi, we have the
transition probability as follows,

P(sk+1|sk,ak),
N

∏
i=1

P(τi,k|τi,k−1,ui,k), (12)

where

P(τi,k|τi,k−1,ui,k)

=


λi if ui,k = 0 and τi,k = τi,k−1 +1,
1−λi if ui,k = 0 and τi,k = 0,
λiλ
∗ if ui,k = 1 and τi,k = τi,k−1 +1,

1−λiλ
∗ if ui,k = 1 and τi,k = 0.

(13)

Cost function: With the state and the action, the immedi-
ate cost value is obtained, and the state transfers to the next
state as well. According to the choice of different actions,
define the cost function C (·, ·) as

C (sk,ak),
N

∑
i=1

E
[
Tr(Pi,k)+βui,kE

]
. (14)

If the auxiliary channel is idle, the cost function is

C (sk,ak) =
N

∑
i=1

Tr(λih
τi,k−1+1
i (Pi)+(1−λi)Pi).

If the auxiliary channel is used by the i-the sensor, the
cost function is computed by

C (sk,ak), Tr(λiλ
∗h

τi,k−1+1
i (Pi)+(1−λiλ

∗)Pi +βE)

+
N

∑
j=1, j 6=i

Tr(λ jh
τ j,k−1+1
j (P j)+(1−λ j)P j),

where the application of the auxiliary transmission can
improve the transmission efficiency of the corresponding
system, but it brings a cost of the additional computation
E to the system.

Define a policy π , {πk}∞
k=0 as a sequence of mappings

from the state to an action. According to the above, we
can acquire different values of cost function under different
policies π . Therefore, the objective of the MDP is to obtain
an optimal policy π∗ to minimize the expected average cost
over an infinite time horizon, that is,

J(s,π) = limsup
T→∞

1
T

T−1

∑
k=0

E[C (sk,ak)], (15)

J(s,π∗) = min
π∈Π

J(s,π), (16)

where s is the initial state, and the action is ak = πk(sk).

IV. OPTIMAL SCHEDULING FOR AUXILIARY
TRANSMISSION SCHEME

A. Existence of Optimal Deterministic and Stationary Policy

According to the established MDP model, whether there is
an optimal strategy is a primary problem in this subsection.
To this end, the following assumption is required:

Assumption 1: The spectral radius of each system and the
packet dropout probabilities satisfy

max
i

ρ
2(Ai)λiλ

∗ < 1. (17)
For ease of presentation, we assume N = 2 in the following

analysis, i.e., there are only two systems. Without loss of
generality, let the packet dropout probabilities satisfy λ1 <
λ2. The existence of an optimal deterministic stationary
policy is given as follows.

Theorem 1: If Assumption 1 holds, there exists a constant
ρ∗ and a function V (·) to solve the average cost optimality
(Bellman) equation, and ρ∗ is the optimal value for the
problem (15), that is,

ρ
∗+V (s) = min

a∈A
{C (s,a)+ ∑

s′∈S
P(s′|s,a)V (s′)}. (18)

where s′ stands for the next state of the systems. In addition,
there exists an optimal deterministic stationary policy π∗ to
solve the Bellman optimality equation (18), i.e.,

a∗ = π
∗(s) = arg min

a∈A
{C (s,a)+ ∑

s′∈S
P(s′|s,a)V (s′)}. (19)
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Proof: First, we denote the discounted total cost under
a policy as:

Vσ (s),
∞

∑
k=0

σ
kE[C (sk,π(sk))|s0 = s], (20)

V ∗σ (s) = inf
π∈Π

Vσ (s). (21)

Then, the action space A is finite. According to the
established MDP model and Abelian theorem [25], we have

liminf
T−→∞

1
T +1

T

∑
k=0

Ck ≤ liminf
σ↑1

(1−σ)
∞

∑
k=0

σ
kCk

≤ limsup
σ↑1

(1−σ)
∞

∑
k=0

σ
kCk ≤ limsup

T−→∞

1
T +1

T

∑
k=0

Ck.

The one-stage cost Ck is nonnegative, continuous, and
the set {a ∈ A|Ck(s,a) < θ} is compact for any θ ∈ R. In
the process of state transition, the corresponding probability
P(sk+1|sk,ak) is strongly continuous in ak. Since the average
cost is bounded, if we always select the action a = (0,1),
there exists a state b ∈ S to satisfy (1− σ)V ∗σ (b) ≤ M,
where σ ∈ [σ ,1), 0 < σ < 1 and M is a nonnegative number.
Besides, we pick the state z = (0,0) and let N = infk ≥ 0{k :
τi = 0,τ j = 0}. Then, we can obtain:

V ∗σ (s)≤ E{
N−1

∑
k≥0

σ
kCk(sk,ak)|s0 = s}+E{σN |s0 = s}V ∗σ (z)

≤ E{
N−1

∑
k≥0

Ck(sk,ak)|s0 = s}+V ∗σ (z),

with s 6= z. If Assumption 1 holds, E{∑N−1
k≥0 Ck(sk,ak)|s0 = s}

is always bounded for any state s. However, we can set
f (s) = E{∑N−1

k≥0 Ck(sk,ak)|s0 = s} to satisfy −M ≤ V ∗σ (s)−
V ∗σ (z)≤ f (s) in the above inequality, where M is a constant
and f (s) is a nonnegative function. Based on finite states
and discrete actions, the function f (s) is measurable, and
{V ∗

σ(n)(s)−V ∗
σ(n)(z)} is equicontinuous. In summary, the

above conditions have been verified. To find an optimal de-
terministic stationary policy, consider the vanishing discount
approach in [25], and it suffices to satisfy

limsup
T→∞

1
T +1

T

∑
k=0

E[C (sk,ak)]< ∞. (22)

Because the energy cost of the auxiliary channel is bound-
ed, and the action space is finite, we have E[Tr(Pi,k) +
βui,kE]< ∞ for k ∈ N, which completes the proof.

B. Structural Results

The above results show that the optimal policy is determin-
istic and stationary, which greatly reduces the search space of
the optimal policy. Nevertheless, due to the countable state
space, solving the Bellman equation is still an intractable
issue. In this section, a structural result of the optimal policy
is obtained to reduce the computational complexity, which is
essential for the MDP. We first give the following definition:

Definition 1: (Submodularity). Define a function f (·, ·) :
X×Y→ R as a submodular function, which satisfies

f (x+,y+)+ f (x−,y−)≤ f (x+,y−)+ f (x−,y+), (23)

where x+ ≥ x− and y+ ≥ y−.
Theorem 2: Given the stopping time of each system

τ
f
j , j 6= i, the corresponding optimal action u∗(τi) of the i-th

system is non-decreasing in τi.
Proof: We define the function Q(·, ·) as

Q(τi,ui), C (s(i),a(i))+ ∑
s′
(i)∈S

P(s′(i)|τi,ui)V (s′(i)), (24)

where s(i) , (τ f
1 , . . . ,τi, . . . ,τ

f
N), a(i) , (0, . . . ,ui, . . . ,0) and

the next state is s′(i) , (τ f
1 , . . . ,τ

′
i , . . . ,τ

f
N) with fixed τ

f
j , j 6= i,

and τ ′i = 0 or τi+1. Based on Theorem 1 in [19], given fixed
τ

f
j , j 6= i, to prove that u∗(τi) is non-decreasing in τi, it is

sufficient to show that Q(τi,ui) is submodular in (τi,ui), i.e.,
Q(τi,ui) satisfies the inequality

Q(τ+i ,u+i )−Q(τ−i ,u+i )≤ Q(τ+i ,u−i )−Q(τ−i ,u−i ), (25)

where τ
−
i ≤ τ

+
i and u−i ≤ u+i . According to the equations

(24) and (25), we have

Q(τ+i ,u+i )−Q(τ−i ,u+i )

=λ1λ
∗Tr(h

τ
+
i +1

i (Pi))+(1−λ1λ
∗)Tr(Pi)

−λ1λ
∗Tr(h

τ
−
i +1

i (Pi))− (1−λ1λ
∗)Tr(Pi)

+E[V (τ+
′

i )|τ+i ,u+i ]−E[V (τ−
′

i )|τ−i ,u+i ]

=λ1λ
∗(Tr(h

τ
+
i +1

i (Pi))−Tr(h
τ
−
i +1

i (Pi)))

+E[V (τ+
′

i )|τ+i ,u+i ]−E[V (τ−
′

i )|τ−i ,u+i ],

and

Q(τ+i ,u−i )−Q(τ−i ,u−i )

=λ1Tr(h
τ
+
i +1

i (Pi))+(1−λ1)Tr(Pi)

−λ1Tr(h
τ
−
i +1

i (Pi))− (1−λ1)Tr(Pi)

+E[V (τ+
′

i )|τ+i ,u−i ]−E[V (τ−
′

i )|τ−i ,u−i ]

=λ1(Tr(h
τ
+
i +1

i (Pi))−Tr(h
τ
−
i +1

i (Pi)))

+E[V (τ+
′

i )|τ+i ,u−i ]−E[V (τ−
′

i )|τ−i ,u−i ].

Obviously, we have λ1λ ∗(Tr{hτ
+
i +1

i (Pi)} −
Tr{hτ

−
i +1

i (Pi)}) ≤ λ1(Tr{hτ
+
i +1

i (Pi)} − Tr{hτ
−
i +1

i (Pi)}).
If the formula (25) is true, then one only has to
guarantee that E[V (τ+

′
i )|τ+i ,u+i ] − E[V (τ−

′
i )|τ−i ,u+i ] ≤

E[V (τ+
′

i )|τ+i ,u−i ]−E[V (τ−
′

i )|τ−i ,u−i ].
Therefore, we need to compute V (s) by the relative value

iteration (Bellman equation), that is,

Vn+1(s) = min
a∈A
{C (s,a)+ ∑

s′∈S
P(s′|s,a)Vn(s′)}−Vn(sα),

where sα is an arbitrary state, sα 6= s. In the following, we de-
fine Qn(τi,ui) = C (s(i),a(i))+ ∑

s′
(i)∈S

P(s′(i)|s(i),a(i))Vn(s′(i)).
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Without loss of generality, assume N = 2. We fix τ2 to
describe the state s− , (τ−1 ,τ2), s+ , (τ+1 ,τ2), and denote
the action space as a ∈ A , {(0,0),(1,0),(0,1)}, where
a0 = (0,0) indicates that the auxiliary channel is idle, and
a1 = (1,0), a2 = (0,1) indicate that the sensor 1 and 2
adopt the auxiliary channel to transmit data, respectively.
Therefore, the value function of states V (s) is

V1(s−)

=min
a∈A
{C (s−,a)+ ∑

s−′∈S
P(s−

′ |s−,a)V0(s−
′
)}−V0(sα)

= min
u1∈{0,1}

{Q0(τ
−
1 ,u1)}−V0(sα)

≤ min
u1∈{0,1}

{Q0(τ
+
1 ,u1)}−V0(sα) =V1(s+),

and the action-value function Q0(τ
−
1 ,u1) is

Q0(τ
−
1 ,u1) = Q0(τ

−
1 ,0)

=λ̄1Tr(P1)+λ1Tr(h
τ
−
1 +1

i (P1))+ λ̄1Tr(P2)+λ1Tr(hτ2+1
i (P2))

≤λ̄1Tr(P1)+λ1Tr(h
τ
+
1 +1

i (P1))+ λ̄1Tr(P2)+λ1Tr(hτ2+1
i (P2))

=Q0(τ
+
1 ,0) = Q0(τ

+,u1),

and

Q0(τ
−
1 ,u1) = Q0(τ

−
1 ,1)

=λ̄1Tr(P1)+λ1Tr(h
τ
−
1 +1

i (P1))

+(1−λ1λ
∗)Tr(P2)+λ1λ

∗Tr(hτ2+1
i (P2))

≤λ̄1Tr(P1)+λ1Tr(h
τ
+
1 +1

i (P1))

+(1−λ1λ
∗)Tr(P2)+λ1λ

∗Tr(hτ2+1
i (P2))

=Q0(τ
+
1 ,1) = Q0(τ

+,u1),

where λ̄1 = (1 − λ1). Assume that Vn(s−) ≤ Vn(s+).
This inequality still holds according to Qn−1(τ

−
1 ,0) =

(1 − λ1)Tr{P1} + λ1Tr{hτ
−
1 +1

i (P1)} + (1 − λ1)Tr{P2} +
λ1Tr{hτ2+1

i (P2)} ≤ (1 − λ1)Tr{P1} + λ1Tr{hτ
+
1 +1

i (P1)} +
(1 − λ1)Tr{P2} + λ1Tr{hτ2+1

i (P2)} = Qn−1(τ
+
1 ,0), and

Qn−1(τ
−
1 ,1)≤Qn−1(τ

+
1 ,1). The next value function of state

satisfies

Vn+1(s−)

=min
a∈A
{C (s−,a)+ ∑

s−′∈S
P(s−

′ |s−,a)Vn(s−
′
)}−Vn(sα)

= min
u∈{0,1}

{Qn(τ
−
1 ,u1)}−Vn(sα)

≤ min
u∈{0,1}

{Qn(τ
+
1 ,u1)}−Vn(sα) =Vn+1(s+),

which proves the monotonicity of the state value function
Vn(s), it is shown that Q(τi,ui) is submodular function.
Hence, u∗(τi) = argminui Q(τi,ui) is non-decreasing in τi.
The proof is completed.

Remark 1: Utilizing the threshold structure, the optimal
policy can be efficiently determined through the relative
value iteration algorithm (RVIA) with slight adjustments. To
elaborate, for a given state s, if the optimal action is a∗ for

a state s∗ ≤ s, it suffices to apply RVIA solely to actions
a≥ a∗. This approach minimizes superfluous computations,
thus reducing computational complexity.

Remark 2: The assumption that N = 2 can be extend-
ed to a general N. For example, when N = 3, the
state becomes s = (τ1,τ2,τ3), and the action is a ∈
{(0,0,0),(1,0,0),(0,1,0),(0,0,1)}. Building upon the ev-
idence presented in the proof of Theorem 2, it is evident
that the Q function within the context of relative value
iteration continues to exhibit submodularity. Consequently,
the threshold structure also persists.

V. ILLUSTRATIVE EXAMPLE

This section illustrates the threshold structure of the op-
timal policy by an example. In addition, an optimal policy
is approximated by the deep reinforcement learning in the
simulation environment. Adopt two LTI systems with the
following parameters:

A1 =

[
1.12 0.8

0 0.1

]
, Q1 =

[
1 0
0 0.5

]
, C1 = [1,0.9], R1 = 1.2,

A2 =

[
1.09 0.7

0 0.2

]
, Q2 =

[
1 0
0 1

]
, C2 = [1,1], R2 = 1.

The above parameters are selected by experience. Two
smart sensors obtain their local state estimates, and transmit
them to a remote estimator over unreliable channels. While
practical applications typically involve a greater number of
sensors than just two, we employ a pair of sensors to visually
elucidate the threshold structure of the optimal policy. The
packet arrival probabilities of the channels are λ1 = 0.4 and
λ2 = 0.5, respectively. To improve the estimation perfor-
mance, an auxiliary channel with high reliability is deployed
to transmit a duplication when necessary, whose packet
arrival probability is assumed to be λ3 = 0.7. The energy
cost of using the auxiliary channel is E = 30. The optimal
scheduling policy for this auxiliary channel is shown in Fig.
2. One finds that when the holding times of two systems
are both small, the auxiliary channel is unnecessary to be
activated for energy conservation.

Finally, the deep reinforcement learning algorithm, i.e.,
dueling double deep Q-network (D3QN) is employed to
approximate an optimal policy. Please refer to [26] for the
details of the algorithm. The parameters are given as follows.
The maximum capacity of the replay buffer is 106, and the
numbers of nodes in the neural network are 128, 128, and
64, respectively. The target network is synchronized with an
online network every 100 steps. The learning rate is 0.0003.
The discount factor σ = 0.99. We train the network over 100
episodes, and each of them has 100 time steps. The learning
process and the comparison with other policies are depicted
in Fig. 3, where the greedy policy selects the sensor with the
largest holding time to use the auxiliary channel. It is evident
that the D3QN significantly reduces the average cost, i.e., the
estimation error covariance and the energy consumption.

VI. CONCLUSION
This paper has proposed an auxiliary transmission scheme

to improve the remote estimation performance. To implement
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Fig. 2. The optimal scheduling policy for the auxiliary channel. Blue
circles, red squares and green triangles correspond to the action (1,0), (0,1)
and (0,0), respectively.

Fig. 3. The learning process of the optimal scheduling policy.

the optimal scheduling for the auxiliary channel, an MDP
model has been established, and the existence of an optimal
deterministic and stationary policy has also been presented.
Besides, the optimal policy has been verified to have a
threshold structure. The D3QN algorithm has been employed
to obtain an optimal policy for the optimal scheduling. Final-
ly, the simulation results have visually shown the threshold
structure of the optimal policy, and the better performance
of the DRL-based policy.
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