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Abstract— We propose a machine learning method to solve
a mean-field game price formation model with common noise.
This involves determining the price of a commodity traded
among rational agents subject to a market clearing condi-
tion imposed by random supply, which presents additional
challenges compared to the deterministic counterpart. Our
approach uses a dual recurrent neural network encoding noise
dependence and a particle approximation of the mean-field
model with a single loss function optimized by adversarial
training. We provide a posteriori estimates for convergence and
illustrate our method through numerical experiments.

I. INTRODUCTION

This work extends machine learning (ML) techniques
for numerical solutions of mean-field games (MFGs) price
formation models ([11]) to the common noise model from
[12] (also [13]). Our goal is to determine the price $ of a
commodity with a noisy supply Q, traded among rational
agents within a finite time horizon T > 0, under a market-
clearing condition. More precisely, we assume the supply, Q,
satisfies the following stochastic differential equation (SDE){

dQ(t) = bS(Q(t), t)dt+ σS(Q(t), t)dW (t),

Q(0) = q0
(1)

where q0 ∈ R and W , the common noise, is a one-
dimensional Brownian motion. The coefficients bS and σS

satisfy Lipschitz conditions for existence and uniqueness of
solutions (see [10]). Because of (1), our model explains the
price formation for commodities with continuous fluctua-
tions, such as stocks, bonds, currencies, and continuously
produced or consumed goods, such as oil or natural gas.
Additional noise sources, such as sudden and discontinuous
fluctuations, could be modeled by adding Poisson jumps.

Let (Ω,F ,F,P) be a complete filtered probability space
supporting W . Progressive measurability refers to the mea-
surability with respect to this filtration, which we require for
all stochastic processes. Setting a commodity’s price based
on market interactions defines the price formation problem.
MFGs with common noise characterize the price as the
solution of the following.

Problem 1: Suppose that H : R2 → R is uniformly
convex and differentiable in the second argument, m0 is a
probability measure on R, and uT : R → R is uniformly
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convex and differentiable. Find m : [0, T ] × R → R,
u, Z : [0, T ] × R × Ω → R, and $ : [0, T ] × Ω → R
progressively measurable, satisfying m > 0 and

−du+H(x,$ + ux)dt = Z(t, x)dW (t),

u(T, x) = uT (x),

mt − (Hp(x,$ + ux)m)x = 0,

m(0, x) = m0(x),

−
∫
RHp(x,$ + ux)mdx = Q(t).

(2)

The previous problem generalizes the one in [14], which
corresponds to σS = 0. (1) determines Q in (2). As
detailed in Section II, the price formed in (2) guarantees
a minimal cost for all traders under a market-clearing con-
dition. The numerical solution of (2) presents additional
challenges compared to the deterministic counterpart due
to infinite-dimensional state space. [13] computed a semi-
explicit solution for (2) when bS and σS are linear and H
is quadratic. Section II presents the derivation of (2).

Numerical schemes for MFGs without common noise
include Fourier series [21], semi-Lagrangian schemes [5],
fictitious play [15], and variational methods [3]. [9] pro-
poses an ML-based approach to solve bi-level Stackelberg
problems between a principal and a mean field of agents
by reformulating it as a single-level mean-field optimal
control problem. [18] and [8] survey deep learning and
reinforcement learning methods for MFGs and mean-field
control. However, these methods fail to handle general forms
of common noise, as the state space becomes infinite-
dimensional. Recent works address this issue. [2] reduces
continuous-time mean field games with finitely many states
and common noise to a system of forward-backward systems
of (random) ordinary differential equations. [20] used rough
path theory and deep learning techniques. However, the
common noise price formation problem’s coupling is an
integral constraint in an infinite dimensional space, which
is beyond what standard methods can handle. In [1], the
price formation model with common noise was converted
into a convex variational problem and solved using ML, en-
forcing constraints by penalization. However, this approach
introduces numerical instabilities. In contrast, our method
implements the balance constraint in the loss functional
through a Lagrange multiplier.

We use recurrent neural networks (RNNs) to approximate
$ and the optimal vector field. We use adversarial train-
ing based on a particle approximation and an augmented
Lagrangian-derived loss function. [22] used an augmented
Lagrangian for constrained empirical risk minimization. [23],
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[19], [4], and [20] explored ML methods in MFGs and relied
on numerical tests for validation. In contrast, we offer analyt-
ical convergence guarantees. Although ML convergence for
MFGs has been studied in [6], [7], direct application to our
problem is hindered by the integral constraint. Convergence
proofs of ML algorithms are difficult due to the complexity
of models and optimization problems involved. Therefore,
we develop a posteriori estimates to confirm the convergence.

Given f : [0, T ]×Ω, we write ‖f‖ =
(
E
[
‖f‖2L2([0,T ]

])1/2
.

Section II introduces the N -player problem corresponding to
Problem 1 with state and adjoint variables X and P. Section
III presents additional notation and proves the following main
result using the N -player problem.

Theorem 1: Suppose that H is uniformly concave-convex
in (x, p), separable, with Lipschitz continuous derivatives,
and uT is convex with Lipschitz continuous derivative.
Let (X,P) and $N solve the N -player price formation
problem with common noise, and let (X̃, P̃) and $̃N be an
approximate solution to the N -player problem up to the error
terms εH and εB . Then, there exists C > 0, depending on

problem data, such that ‖$N − $̃N‖ 6 C

(
‖εH‖+ ‖εB‖

)
.

Here, εH and εB correspond to the deviation of (X̃, P̃)
from a first-order optimality condition and are given in
Section III. Section IV presents our algorithm and Section
V outlines the numerical results for the linear-quadratic
setting. We stress, however, that our method can handle non
linear-quadratic models. Moreover, the ML is well suited for
higher-dimensional state spaces, where, for instance, several
commodities are priced simultaneously. Section VI includes
concluding remarks and future research directions.

II. THE MFG PRICE PROBLEM WITH COMMON NOISE

Price formation is crucial in economics. For instance, in
smart grids, load-adaptive pricing encourages consumers to
modify energy use according to electricity price fluctuations.
MFGs offer a mathematical model to examine interactions
among market agents, such as buyers and producers. These
interactions are formalized in Problem 1.

A representative player with an initial quantity x0 ∈ R at
time t = 0 selects a progressively measurable trading rate
v : [0, T ]× Ω→ R to minimize the cost functional

E

[∫ T

0

(L(X(t), v(t)) +$(t)v(t)) dt+ uT (X(T ))

]
,

(3)

where X solves

dX(t) = v(t)dt, X(0) = x0, (4)

with x0 ∼ m0. The Hamiltonian H in (2) is the Leg-
endre transform of the Lagrangian L in (3): H(x, p) =
supv∈R {−pv − L(x, v)} , (x, p) ∈ R2. Here, we assume
that H satisfies the assumptions of Theorem 1, and that
L(x, v) is uniformly convex in v for all x ∈ R. The value

function for representative agent is

u(t, x) = E

[∫ T

t

(L(X(s), v(s)) +$(s)v(s)) ds|W (t)

]
+ E [uT (X(T )) |W (t)] .

Then, the first equation in (2) holds. The initial distribution
is m0 ∈ P(R) and it evolves according to the stochastic
flow given by v∗(t, x) = −Hp(x,$(t) + ux(t, x)), the
third equation in (2). The last equation is the market-
clearing condition

∫
R v(t, x)mdx = Q(t), ensuring that

all available supply is traded. The MFG’s approach gives
v∗ = −Hp(x,$ + ux), which is the optimal control for all
players to minimize (3) and simultaneously guarantee that
the aggregated trading equals the supply, which is precisely
the balance condition in (2). [1] discusses further details. In
our method, we approximate $, which allows the decoupling
of the equations in (2).

The particle approximation of the model described by (2)
involves Q in (1) and a finite population of N players with
independent, identically distributed initial positions xn0 ∈ R,
n = 1, . . . , N , with distribution m0. Each player selects vn :
[0, T ]× R× Ω→ R, 1 6 n 6 N , determining its trajectory
Xn according to (4) and aiming at minimizing the functional

E

[∫ T

0

(
L(Xn(t), vn(t)) +$N (t) (vn(t)−Q(t))

)
dt

]
+ E [uT (Xn(T ))] . (5)

The existence of v∗n minimizing (5) for 1 6 n 6 N corre-
sponds to the existence of a minimizer v∗ = (v∗1, . . . , v∗N )
minimizing the functional

E

[
1

N

N∑
n=1

∫ T

0

L(Xn(t), vn(t))dt+ uT (Xn(T ))

]
(6)

subject to the market-clearing constraint

1

N

N∑
n=1

vn(t)−Q(t) = 0. (7)

The impact of one player’s strategy on another’s payoff is
given solely by the price in (5). The same applies to (6),
where the effects become implicit because any unilateral
change in (7) immediately influences the choices of other
players and, consequently, their payoff. The linear depen-
dence of (7) on the player’s controls is essential for the
analysis in Section III, and it corresponds to the particle
approximation of the balance condition in (2). The supply
function implicitly affects the cost criteria of the agents. The
cost functionals in (5) and (6) encode the supply effect on an
agent that interacts with the market using the price instead of
its supply, which is often the case in markets. As N →∞,
the solution of (5) converges to that of (2).

We rely on the existence and uniqueness result for the
N -player price formation model, presented in [13], which
determines the price $∗N : [0, T ] × Ω → R through
the Lagrange multiplier associated with the market-clearing
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constraint. $∗N is the unique price allowing agents to
minimize (5) while satisfying (7). Our goal is to extend
the ML algorithm introduced in [11] to cover the case of
common noise, providing a solution to the price formation
problem in random environments. Relying on the particle
approximation of the model to approximate the price solving
(2), we approximate stationary points of the functional

E

[
1

N

N∑
n=1

∫ T

0

(
L(Xn(t), vn(t))

+$N (t) (vn(t)−Q(t))
)
dt+ uT (Xn(T ))

]
(8)

by minimizing w.r.t. v and maximizing w.r.t. $N . The
min-max problem corresponds to considering (8) as the
augmented-Lagrangian of (6) under the constraint (7), $N

begin the Lagrange multiplier of such constraint. In Section
IV-B, adversarial training involves two RNNs–one maximiz-
ing, and the other minimizing the same objective functional.
The approximation is done in the ML framework, and we
guarantee its accuracy using a posteriori estimates of the N -
player model, which we discuss next.

III. A POSTERIORI ESTIMATES

In this section, we use optimality conditions for the N -
player game to obtain a posteriori estimates to verify our ap-
proximation’s convergence. We extend the proof presented in
[11] to the common noise setting with minor modifications.

The optimality conditions for (5) give rise to a Hamil-
tonian system comprising the following backward-forward
stochastic differential equation

dPn(t) = Hx(Xn(t), Pn(t) +$N (t))dt

+Zn(t)dW (t),

dXn(t) = −Hp(Xn(t), Pn(t) +$N (t))dt,

(9)

Pn(T ) = u′T (Xn(T )), and Xn(0) = xn0 for 1 6 n 6
N .Xn corresponds to the state variable of agent n, while Pn

is its associated adjoint variable. Zn is part of the unknowns
and guarantees that Pn is progressively measurable despite
evolving backward in time. v∗ and $∗N solving the N -
player price formation problem define a solution of (9) by

P ∗n(t) + Lv(X∗n(t), v∗n(t)) +$∗N (t) = 0 (10)

for 1 6 n 6 N , defining a saddle point of (8) that satisfies
the market-clearing constraint (7). Let P̃n, Z̃n, X̃n, and $̃N

satisfy

dP̃n(t) =
(
Hx(X̃n(t), P̃n(t) +$N (t)) + εn(t)

)
dt

+Z̃n(t)dW (t),

dX̃n(t) = −Hp(X̃n(t), P̃n(t) + $̃N (t))dt,

1
N

N∑
n=1

−Hp(X̃n(t), P̃n(t) + $̃N (t)) = Q(t) + εB(t),

(11)
where P̃n(T ) = u′T (X̃n(T )) − εnT , X̃n(0) = xn0 , εn, εB :

[0, T ]×Ω→ R, εnT : Ω→ R, for 1 6 n 6 N . We write X =
(X1, . . . , XN ) and, similarly, for all indexed processes. We
let εH = (ε1, . . . , εN , ε1T , . . . , ε

N
T ) and 1 = (1, . . . , 1) ∈ RN .

Proposition 2: Under the assumptions of Theorem 1, let
(X,P,Z) and $N solve (9), and let (X̃, P̃, Z̃), $̃N , εH ,
and εB satisfy (11). Then,

‖Pn − P̃n‖2 6 C
(
‖Xn(T )− X̃n(T )‖2 + ‖Xn − X̃n‖2

+‖εnT ‖2 + ‖εn‖2
)
,

for 1 6 n 6 N , where C > 0 depends on problem data.
Proof: Integrating on [t, T ] the first equations in (9) and

(11), taking expectations, and using the martingale property
of the processes Zn and Z̃n, we have the estimate

E
[
(Pn − P̃n)2

]
6 CE

[
(Xn(T )− X̃n(T ))2

+(Xn − X̃n)2 + (εnT )2 + (εn)2
]

for 1 6 n 6 N . Integrating the previous inequality over
[0, T ] we obtain the result.

Proposition 3: Under the assumptions of Theorem 1, let
(X,P,Z) and $N solve (9), and let (X̃, P̃, Z̃), $̃N , εH ,
and εB satisfy (11). Then, ‖P + 1$N − (P̃ + 1$̃N )‖2 +
‖X− X̃‖2 6 C

(
‖εH‖2 + +‖εB‖2

)
, where C > 0 depends

on problem data.
Proof: We write ‖ · ‖2 = ‖ · ‖L2([0,T ]). The uniform

concavity-convexity assumption on H and the equations in
(9) and (11) give

γp
2
‖Pn +$N − (P̃n + $̃N )‖22 + γx

2
‖Xn − X̃n‖22

6
∫ T

0

(
d
(
X̃n −Xn

)
(Pn − P̃n)

− d
(
Xn − X̃n

)
($N − $̃N )

−
(

d(Pn − P̃n) + εndt
)

(Xn − X̃n)

+ (Zn − Z̃n)dW (t)

)
for 1 6 n 6 N , for some γp, γx > 0. Using Itô product

rule, the initial and terminal conditions in (9) and (11), and
the convexity of uT , the previous inequality gives

γp
2
‖Pn +$N − (P̃n + $̃N )‖22 + γx

2
‖Xn − X̃n‖22

6
(
− γT

2
+ 1

4δ1

)
(Xn(T )− X̃n(T ))2 + δ1(εnT )2

−
∫ T

0

(
d
(
Xn − X̃n

)
($N − $̃N ) + εn(Xn − X̃n)dt

+ (Zn − Z̃n)dW (t)

)
for some γT > 0 and δ1 > 0 to be selected. Adding the

previous inequality over n and using the third equation in
(9) and (11), we get

γp
2
‖P + 1$N − (P̃ + 1$̃N )‖22 + γx

2
‖X− X̃‖22

6
(
− γT

2
+ 1

4δ1

)
|X(T )− X̃(T )|2 + δ1|εT |2

+

∫ T

0

(
NεB($N − $̃N )dt+ (Z− Z̃)dW (t)

)
+ δ2‖ε‖22 + 1

4δ2
‖X− X̃‖22 (12)

for some δ2 > 0 to be selected. By the triangle inequality,

N

2
‖$N−$̃N‖2 6 ‖P+1$N−(P̃+1$̃N )‖2+‖P−P̃‖2.

(13)
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Using (13) on the RHS of (12), taking expectations, and
using Proposition 2, we obtain

γp
2
‖P + 1$N − (P̃ + 1$̃N )‖2 + γx

2
‖X− X̃‖2

6
(
− γT

2
+ 1

4δ1
+ C

δ4

)
‖X(T )− X̃(T )‖2

+
(
δ1 + C

δ4

)
‖εT ‖2 + (Nδ3 +Nδ4) ‖εB‖2

+ 1
4δ3
‖P + 1$N − (P̃ + 1$̃N )‖2

+
(
δ2 + C

δ4

)
‖ε‖2 +

(
1

4δ2
+ C

δ4

)
‖X− X̃‖2

for some δ3, δ4 > 0 to be selected. Selecting δi, i = 1, . . . , 4
conveniently, the previous expression provides the result.

Proof: [Proof of Theorem 1] Using (13), Proposition 2,
and Proposition 3, we get

‖$N − $̃N‖2 6
C

N

(
‖εH‖2 + ‖εB‖2 + ‖X(T )− X̃(T )‖2

)
.

(14)

The Lipstichz continuity of Hp and Proposition 2 give

‖X(T )− X̃(T )‖2 6 C
(
‖εH‖2 + ‖εB‖2

)
. (15)

Using (15) in (14), we obtain the result.

IV. NEURAL NETWORKS FOR PROGRESSIVELY
MEASURABLE PROCESSES

This section explains the RNN used for estimating v∗ and
$, and describes how the ideas in Section III are imple-
mented. Section V presents numerical experiments. RNNs,
popular in natural language processing, produce sequentially
dependent outputs. This architecture has a cell that iterates
through input sequences and has a hidden state tracking
historical dependencies; see [17] for details. RNNs have also
been used in the context of control problems with delay
in [16]. Here our motivation comes from the impact of the
common noise on the mean-field.

In our architecture, the RNN takes as inputs an ordered
sequence, such as a discrete realization of the supply Q =(
Q〈0〉, . . . ,Q〈K〉

)
. The RNN features a hidden state h,

initialized as zero, that captures the temporal dependence.
Inside the RNN, a weight matrix W[l] and a bias vector b[l]

determine layer l, where 1 6 l 6 L. Their dimensions de-
pend on the number of neurons n[l] per layer. The activation
function of layer j is denoted by σ[l]. The cell parameters
(weight matrices and bias vectors) are denoted by Θ.

RNNs parametrize progressively measurable processes.
We use two RNNs for approximating the control variable
v and the price $. A trade-off must be made between
computational cost and accuracy. Deep-RNN uses several
layers and neurons in their cell. After multiple numerical
experiments, we select L = 5 layers, with n[1] = 16,
n[2], n[3], n[4] = 32, and n[5] = 1 for the RNN approx-
imating v〈k〉, and n[1], n[2], n[3], n[4] = 16, and n[5] = 1
for the RNN approximating $. Further research is needed
to determine which RNN architecture excels for specific
modeling parameters. As a common practice for RNN, the
activation functions are hyperbolic tangent for the first layer,
which computes the hidden state, and sigmoid for layers
two to four. The last layer has the identity as activation

function. Although we do not address it, an interesting
research question is how sensitive the results are to the
choice of parameters of the RNN. Moreover, a comparison
regarding the accuracy and computational efficiency against
other methods, such as forward-backward SDEs methods,
can be formulated based on the adaptability of those methods
to the price formation MFG problem with common noise.

Let ∆t = T/K be the time-step size and discretize (4) as

X〈k+1〉 = X〈k〉 + v〈k〉(Θv)∆t, X〈0〉 = x0 (16)

for k = 0, . . . ,K, where Θv is the parameter of the RNN
approximating v. The second RNN, with parameter Θ$,
computes $〈k〉. More precisely, the inputs and outputs of the
two RNNs are as follows. For the RNN computing $(Θ$),
the input consists of a supply realization and the time; that
is,
(
(Q〈k〉)Kk=0, (t〈k〉)Kk=0

)
. The output is ($〈k〉)Kk=0. For

the RNN computing v(Θv), the input consists of the time,
the state variables (which the RNN updates according to (16)
as it iterates in the temporal direction), and the current price
approximation; that is,

(
(t〈k〉)Kk=0, (X

〈k〉)Kk=0, ($
〈k〉)Kk=0,

)
.

The output is (v〈k〉)Kk=0. Because we consider a population of
N agents, we add the superscript (n) to denote the position
and control sequence of the agent being considered; that is,
(X(n)〈k〉)Kk=0, and (v(n)〈k〉)Kk=0, for 1 6 n 6 N .

A. Numerical implementation of a posteriori estimates
To implement the results of Section III, we discretize (11)

as follows. Let ∆P̃ 〈k〉 = P̃ 〈k+1〉−P̃ 〈k〉 for k = 0, . . . ,K−1.
At the discrete level, (11) is equivalent to

∆P̃ (n)〈k〉 =
(
Hx(X̃(n)〈k〉, P̃ (n)〈k〉 + $̃N〈k〉) + ε(n)〈k〉

)
∆t

+Z(n)〈k〉∆W 〈k〉,

∆X̃(n)〈k〉 = −Hp(X̃(n)〈k〉, P̃ (n)〈k〉 + $̃N〈k〉)∆t,

1
N

N∑
n=1

−Hp(X̃(n)〈k〉, P̃ (n)〈k〉 + $̃N〈k〉) = Q〈k〉 + ε
〈k〉
B

P̃ (n)〈K〉 = u′T (X̃(n)〈K〉) − ε
(n)
T , X̃(n)〈0〉 = xn0 for 1 6

n 6 N . Hx(x, p) = −Lx(x, v) at the point v where the
supremum is achieved. Thus, taking expectations on both
sides of the equation in the prior system, and using the
martingale property for Z̃n, for 1 6 n 6 N , we get

E
[
∆P̃ (n)〈k〉

]
= E

[
−Lx(X̃(n)〈k〉, ṽ(n)〈k〉) + ε(n)〈k〉

]
∆t

E
[
∆X̃(n)〈k〉

]
= E

[
ṽ(n)〈k〉

]
∆t,

E

[
1
N

N∑
n=1

ṽ(n)〈k〉
]

= E
[
Q〈k〉 + ε

〈k〉
B

]
,

(17)
E
[
P̃ (n)〈K〉

]
= E

[
u′T (X̃(n)〈K〉)− ε(n)T

]
, and X̃(n)〈0〉 =

xn0 , where ṽ(n)〈k〉 = −Hp(X̃(n)〈k〉, P̃ (n)〈k〉+ $̃N〈k〉) drives
the process X̃(n)〈k〉 according to (16). While the initial
condition X̃(n)〈0〉 is deterministic, the terminal condition
P̃ (n)〈K〉 is random. We take a Monte Carlo (MC) approxi-
mation of (17) with J realizations; that is,

1
J

J∑
j=1

∆P̃
(n)〈k〉
j = ∆t

J

J∑
j=1

(
−Lx(X̃

(n)〈k〉
j , ṽ

(n)〈k〉
j ) + ε

(n)〈k〉
j

)
1
J

J∑
k=1

∆X̃
(n)〈k〉
j = ∆t

J

J∑
j=1

ṽ
(n)〈k〉
j ,

1
JN

J∑
k=1

N∑
n=1

ṽ
(n)〈k〉
j = 1

J

J∑
j=1

(
Q
〈k〉
j + εB

〈k〉
j

)
,
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X̃
(n)〈0〉
j = xn0 and 1

J

J∑
k=1

P̃
(n)〈K〉
j =

1
J

J∑
k=1

(
u′T (X̃

(n)〈K〉
j )− εT (n)

j

)
. Thus, to implement the

a posteriori estimate of Theorem 1 numerically, let ṽ(n)〈k〉j

and $̃N〈k〉 be given. Define X̃(n)〈k〉
j and P̃ (n)〈k〉

j according
to (16) and (10), respectively, and compute the mean-square
error (MSE) of εH and εB by

MSE(εH) = 1
JNK

J∑
j=1

K∑
k=0

N∑
n=1

((
∆P̃

(n)〈k〉
j +

∆tLx(X̃
(n)〈k〉
j , v

(n)〈k〉
j )

)2

+
(
u′T (X̃

(n)〈K〉
j )− P̃ (n)〈K〉

j

)2
)
,

MSE(εB) = 1
JK

J∑
j=1

K∑
k=0

(
1

N

N∑
n=1

v
(n)〈k〉
j −Q〈k〉j (t)

)2

. (18)

We measure (18) as we train the neural network with the
algorithm we introduce next.

Remark 4: Theorem 1 addresses the convergence for finite
populations. A complete analysis of the convergence in our
method involves three steps we identify by writing

‖$ − $̃N
ML‖ 6 ‖$ −$N‖+ ‖$N −$N

MC‖+ ‖$N
MC − $̃N

ML‖.

First, the convergence of finite to continuum population
games. Second, the convergence of the MC approximation
to the finite population game, addressing the dependence of
sample size w.r.t. population size. Third, the convergence
of the ML to the MC approximation, involving the RNN
parameters in the estimates. This is the error that our a
posteriori estimate controls.

B. Training algorithm
In typical ML frameworks, a neural network is trained by

minimizing a loss function L. Within a fixed architecture, L
assigns a real number L(Θ) to a parameter Θ. The objective
is to minimize L across all possible values of Θ. For a given
realization Qi of the supply, the loss function is

L (Θv,Θ$) =
1

N

N∑
n=1

(
K−1∑
k=0

∆t

(
L(X(n)〈k〉, v(n)〈k〉(Θv))

+$〈k〉(Θ$)
(

v(n)〈k〉(Θv)−Q〈k〉i
))

+ uT (X(n)〈M〉)

)
,

(19)

obtained by time discretization and Monte-Carlo approxi-
mation of (8). Algorithm 1 describes the training algorithm.
Our algorithm uses adversarial training, where one RNN
maximizes and another minimizes the loss functional (19).

In contrast to the algorithm in [11], in Algorithm 1, the
supply input changes between training steps. The algorithm
trains two neural networks in an adversarial manner. At each
step, we generate a sample of the probability distribution
m0. To minimize the agent’s cost function, we update Θv

in the direction of descent while Θ$ is fixed. Conversely, to
penalize deviation from the balance condition, we maximize
the cost functional by updating Θ$ in the direction of ascent
while Θv is fixed. This process is repeated, approximating
the saddle point corresponding to the control minimizing the
cost functional and its Lagrange multiplier.

Algorithm 1: Training algorithm

Input : number of training iterations I , epoch size Ie , number of time steps K, training sample size
Ntrain , test sample size Ntest , MC sample size J , initial density m0 .

Initialize Θ1
v,Θ

1
$ ;

for i = 1, . . . , I do

sample (xn0 )
Ntrain
n=1 according to m0 ;

sample (Q
〈k〉
i

)Kk=0 according to (1);

compute ($〈k〉(Θi$))Kk=0 and ((v(n)〈k〉(Θiv))
Ntrain
n=1 )Kk=0 ;

compute L(Θiv,Θ
i
$) according to (19);

compute Θi+1
v by updating Θiv in the descent direction LΘv

(Θiv,Θ
i
$);

compute ((v(n)〈k〉(Θi+1
v ))

Ntrain
n=1 )Kk=0 ;

compute L(Θi+1
v ,Θi$) according to (19);

compute Θi+1
$ by updating Θi$ in the ascent direction LΘ$

(Θi+1
v ,Θi$);

if i mod Ie = 0 (epoch is completed) then

sample (xn0 )
Ntest
n=1 according to m0 ;

sample ((Q
〈k〉
j

)Kk=0)Jj=1 according to (1);

compute ($〈k〉(Θi+1
$ ))Kk=0 and ((v(n)〈k〉(Θi+1

v ))
Ntest
n=1)Kk=0 ;

compute MSE(εH ) and MSE(εB) according to (18).
end

end
Output: ΘI$ , ΘIv

V. NUMERICAL RESULTS

Here, we show how the a posteriori estimate (Theorem
1) ensures that our method has accurate approximations.
We validate our findings with a linear-quadratic model as
a benchmark. We use the Tensorflow library for the imple-
mentation.

We set T = 1 and K = 40 and assume the supply follows

dQ(t) =
(
bS(t)−Q(t)

)
dt+ σS(t)dW (t), (20)

where bS(t) = 3 sin(3πt), σS(t) = max{0.5 sin(2π(t −
0.25)), 0}, and Q(0) = 0. The Brownian noise affects the
time interval [0.25, 0.75] and causes deviations from the
expected value, as illustrated in Figure 1 with two sample
paths of the supply. The initial distribution m0 is a normal
distribution with mean m0 = − 1

4 and standard deviation
0.2. The sample size for the training is Ntrain = 30. We
train for 20 epochs, an epoch consisting of 500 training
steps. We compute the MC estimate of the a posteriori
estimate at the end of each epoch using J = 60 supply
samples and a population size of Ntest = 30. Empirically,
the previous training parameters solved the trade-off between
computational cost and accuracy.

(a) Supply realization. (b) Supply realization.

Fig. 1: Two supply realizations of (20). The grey window
highlights the times where noise operates.

We select L(x, v) = 1
2 (x− 1)

2
+ 1

2v
2 and uT (x) =

1
2e (x− 1)

2. Figure 2 shows the evolution of the a posteriori
estimate in Theorem 1. The balance error achieves enough
accuracy and slightly oscillates with a decreasing trend. The
optimality error also has a decreasing trend, but accuracy
does not improve, suggesting other combinations of training
and discretization parameters may be needed.
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(a) MSE(εB) (balance er-
ror).

(b) MSE(εH) (optimality er-
ror).

Fig. 2: Evolution of the a posteriori estimates during training.

Furthermore, we use the analytic solution derived in [13]
to verify the price approximation’s accuracy. In the linear-
quadratic framework, the price follows from the SDE system

dQ(t) = (bS(t)−Q(t))dt+ σS(t)dW (t),

dX(t) = Q(t)dt,

d$(t) =
(
X(t)− bS(t) +Q(t)− 1

)
dt− a3

2(t)+1

a4
2(t)+1

σS(t)dW (t),

(21)
with Q(0) = 0, X(0) = m0, and $(0) = w0. The

value w0 and a32 and a42 are determined by a system of
ordinary differential explicitly solvable. Figure 3 shows the
corresponding price approximation and exact price (obtained
from (21)) for the two supply realizations of Figure 1. The
decreasing trend in the errors observed Figure 2 is reflected in
the precise approximation observed in Figure 3. The effect
of the error in the time window [0.25, 0.75] decreases, as
expected, the accuracy of the approximation compared to
the time region [0, 0.25], where no noise is present.

(a) Price realization for Fig-
ure 1a.

(b) Price realization for Fig-
ure 1b.

Fig. 3: Exact price and RNN approximation for Figure 1.
The grey window highlights the times where noise operates.

As the figures show, our method has excellent performance
in approximating solutions in various noise regimes.

VI. CONCLUSIONS AND FURTHER DIRECTIONS

We extend the ML approach from [11], applying it to
the common noise scenario via RNN architectures for non-
anticipating controls, demonstrating accuracy and perfor-
mance similar to the deterministic case. Future research
could explore the method’s robustness against RNN and
discretization parameter changes, simultaneously addressing
computational cost versus accuracy. Comprehensive experi-
ments may identify optimal RNN layer and neuron number.
Improved coding strategies could further reduce computa-
tional costs while maintaining or enhancing accuracy. Ex-
tensions could also accommodate additional noise sources,

such as jump processes, and include the dependence of the
supply on the price.
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