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Abstract— When applying the Bayesian manifold regular-
ization method to function estimation problem with manifold
constraints, the direct implementation has computational com-
plexity O(N3), where N is the number of input-output data
measurements. This becomes particularly costly when N is
large. In this paper, we propose a more efficient implementation
based on the Kalman filter and smoother using a state-
space model realization of the underlying Gaussian process.
Moreover, we explore the sequentially semi-separable structure
of the Laplacian matrix and the posterior covariance matrix.
Our proposed implementation has computational complexity
O(N) and thus can be applied to large data problems. We
exemplify the effectiveness of our proposed implementation
through numerical simulations.

Index Terms— Bayesian manifold regularization, Kalman
filter and smoother, Sequentially semi-separable matrix

I. INTRODUCTION

In the past decade, kernel-based regularization (KRM) has
attracted increasing attention and become a complement to
the prediction error/maximum likelihood (PE/ML) method
(see, e.g., [1]–[3]). There are two key issues in KRM: one
is the kernel design, which determines the model structure
and embeds the prior knowledge of the function to be
estimated; the other one is the estimation of the parameter in
the kernel, often known as the hyper-parameter estimation,
which determines the model complexity. Many interesting
results have been obtained for KRM, e.g., the regularization
design [4]–[10] and the efficient implementation [11]–[13].
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One of these results is the Bayesian manifold regular-
ization method proposed in [10]. It provides a Bayesian
interpretation of the manifold regularization method [4],
[7] and incorporates the prior knowledge of, among others,
local smoothness of the function to be estimated, i.e., the
more closely the inputs lie on the manifold, the closer
the corresponding outputs. Unfortunately, since the direct
implementation of hyper-parameter estimation and the cor-
responding function estimation in [10] has computational
complexity O(N3), where N is the number of input-output
data points, such implementation is expensive to be applied
to data with large N .

In this paper, we will address this problem and focus
on developing an efficient implementation for the Bayesian
manifold regularization method, when applied to a function
estimation problem with manifold constraint. We will first
propose to use a simulation-induced (SI) kernel such that its
corresponding zero-mean Gaussian process has a state-space
model realization, and then transform the function estimation
problem into a Kalman filtering and smoothing problem.
Moreover, we exploit the sequentially semi-separable (SSS)
structures of the Laplacian matrix and the posterior covari-
ance matrix to further reduce the computational complexity
of hyper-parameter and function estimation. The primary
contribution of this paper is the introduction of a proposed
implementation with a computational complexity of O(N)
and its efficiency is illustrated by numerical simulations.

The remaining parts of this paper are organized as follows.
In Section II, we introduce some preliminaries and then the
problem statement. In Section III, we propose an efficient
implementation with computational complexity O(N). In
Section IV, we present numerical simulations to demonstrate
the efficiency of our proposed implementation. In Section V,
we give the conclusion of this paper.

II. PRELIMINARIES AND PROBLEM STATEMENT

In this section, we first present some background materials
and then the problem statement of this paper.

A. Function Estimation Problem

We consider the function estimation problem as follows,

yj =f(tj) + vj , tj = jTs, j = 1, · · · , N, (1)

where tj ∈ R+ = {x|x ≥ 0, x ∈ R} is the jth time
instant, Ts > 0 is the sampling interval, f(tj), vj , yj ∈ R
are the unknown function, the measurement noise and the
measurement output at the jth time instant, respectively,

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 6217



vj is assumed to be independent and identically Gaussian
distributed (i.i.d.) with zero mean and variance σ2 > 0, i.e.,

vj ∼ N (0, σ2), (2)

and N is the number of measurements. We assume that the
function f : R+ → R is locally smooth, i.e., f satisfies the
following widely used assumption (e.g., [4], [10]).

Assumption 1: For i, j = 1, · · · , N , if ti and tj are close
over the manifold where they lie on, then so are yi and yj .

To encode the local smoothness of f mentioned in As-
sumption 1, one possible way is to define the manifold
constraint of f by using its weighted gradient operator
(see, e.g., [10]). More specifically, we first let ωj,j+1 ≥ 0
measure the smoothness between f(tj) and f(tj+1) for
j = 1, · · · , N − 1, where the larger ωj,j+1, the closer f(tj)
and f(tj+1), and ωj,j+1 = 0 denotes that tj and tj+1

are lie on different manifolds. For convenience, we define
a new set {j|ωj,j+1 > 0} with size NZ , which can be
reindexed as {a1 < · · · < aNZ}. Then for i = 1, · · · , NZ and
j = 1, · · · , N , we define the (i, j)th element of the weight
matrix L ∈ RNZ×N as

[L]i,j =


√
ωai,ai+1, if j = ai,
−√ωai,ai+1, if j = ai + 1,
0, otherwise,

(3)

where ωai,ai+1 is often parameterized by σω ∈ Rdω . Then
L(ωai,ai+1(σω)) can be regarded as a weighted gradient op-
erator on f to describe its smoothness (one example is given
in [10, Example 1]) and we often write L(ωai,ai+1(σω))
as L for simplicity. Similar to [10], [14], the smoothness
constraint of f takes the following form,

LfE = 0 ∈ RNZ (4)

with fE = [f(t1), · · · , f(tN )]T , which is also known as the
manifold constraint.

By rewriting (1) in compact form and adding pseudo
measurement noise D ∈ RNZ to (4), we have

Y =fE + V, (5a)
Z =LfE +D, (5b)

where Y = [y1, · · · , yN ]T , V = [v1, · · · , vN ]T , Z ∈ RNZ is
often known as the pseudo observation, and D is assumed
to be

D ∼ N (0, η2INZ
) with η2 > 0, (6)

and independent of V , and INZ
denotes an NZ-dimensional

identity matrix.
For the function estimation problem, our objective is to

estimate the function f with soft manifold constraint [10]
Z = 0 based on the input-output data {tj , yj}Nj=1 as well as
possible.

B. Bayesian Manifold Regularization Method

To estimate the function f with Z = 0, we apply the
Bayesian manifold regularization method proposed in [10].
Here, the function f(tj) is modeled as a Gaussian process:

f(tj) ∼ GP (0, k(tj , tj′ ;α)) , (7)

k(tj , tj′ ;α) = E
[
f(tj)f(tj′)

T
]
, (8)

where j, j′ = 1, · · · , N , GP (0, k(tj , tj′ ;α)) represents a
Gaussian process with zero mean and covariance func-
tion k(tj , tj′ ;α), E(·) denotes the mathematical expectation,
k(tj , tj′ ;α) : R+ × R+ → R the covariance function (also
called the kernel), α ∈ Ω ⊂ Rd with d ∈ N the hyper-
parameters of k(tj , tj′ ;α). Moreover, it is assumed that for
any j = 1, · · · , N , f(tj) is independent of V and D in (5).

For simplicity, we define X = {tj}Nj=1. Based on the soft
manifold constraint Z = 0, it follows from [15, p. 16] and
[10, Proposition 1, Theorem 2] that

fE |Y,X ∼ N
(
f̂E ,ΣfE

)
, (9a)

Z|Y,X ∼ N (f̂Z ,ΣZ), (9b)

fE |Y,Z = 0, X ∼ N (f̂M ,ΣfM ), (9c)

where

f̂E = K(K + σ2IN )−1Y, (10a)

ΣfE = K −K(K + σ2IN )−1K, (10b)

f̂Z = Lf̂E , (10c)

ΣZ = LΣfEL
T + η2INZ

, (10d)

f̂M = K(K + σ2IN + (σ2/η2)MK)−1Y, (10e)

and moreover, K ∈ RN×N and for j, j′ = 1, · · · , N , its
(j, j′)th element is

[K]j,j′ = k(tj , tj′ ;α), (11)

and M = LTL is the Laplacian matrix. Note that ΣfM is
not required in this paper and its expression is omitted here.

C. Kernel Design and Hyper-parameter Estimation

There are two main concerns in the Bayesian manifold
regularization method: kernel design and hyper-parameter
estimation.

The design of kernel k(tj , tj′ ;α) in (8) determines the
model structure and should take into consideration at least
two issues: one is to embed the prior knowledge of the
function to be estimated, the other one is to ease the
computational complexity of (10e) and the hyper-parameter
estimation to be introduced shortly. For instance, for KRM
without manifold constraint, the simulation-induced (SI) ker-
nel is introduced in [6] such that its corresponding zero-mean
Gaussian process has a state-space model realization and then
it is possible to reduce the computational complexity of (10e)
and the hyper-parameter estimation by using Kalman filter
and smoother.

The estimation of hyper-parameter α determines the model
complexity and can be tackled using many methods, e.g., the
marginal likelihood (ML) method. In this paper, we first treat
σ2 in (2), σω mentioned after (3) and η2 in (6) as additional
hyper-parameters and assume the hyper-prior distribution,

p(η2) =
βαΓ

Γ

Γ(αΓ)
· 1

η2(αΓ+1)
· exp

(
−βΓ

η2

)
, (12a)

p([αT , σ2, σω]T |η2) ∝ const, (12b)
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where αΓ, βΓ ∈ R+, and const denotes a constant. Then we
estimate the hyper-parameter αMR = [αT , σ2, σω, η

2]T ,

α̂MR = arg min
αMR∈ΩMR

{JML + %JPML + JHP } , (13a)

where ΩMR = {αMR|α ∈ Ω, σ2 > 0, σω ∈ Rdω , η2 > 0},

JML = − log p(Y |X;α, σ2) (13b)

= const +
1

2
log |K + σ2IN |+

1

2
Y T (K + σ2IN )−1Y,

JPML = − log p(Z = 0|Y,X;σω, η
2)

= const +
1

2
log |ΣZ |+

1

2
f̂TZΣ−1

Z f̂Z , (13c)

JHP = − log p(η2) = const + (αΓ + 1) log(η2) +
βΓ

η2
,

(13d)

and moreover, |·| denotes the determinant of a square matrix,
and % ∈ [0, 1] controls the trade-off between JML and
JPML. When % = 1, (13) is the same as the hyper-parameter
estimation method proposed in [10, Section 3.2 (15)]; when
% = 0, (13) is reduced to the ML method together with the
hyper-prior assumption (12).

D. Problem Statement

To state the problem, we first recall that the direct im-
plementation of (10e) and (13) in [10] has computational
complexity O(N3) and will be expensive for large N .
In this paper, our objective is to develop more efficient
implementation of (10e) and (13) than [10] by using Kalman
filtering and smoothing, and exploring the rank structure of
ΣfE in (10b) and ΣZ in (10d); our secondary focus is to
obtain better estimates of fE than [10] by tuning % in (13a).

III. AN EFFICIENT IMPLEMENTATION

In this section, we propose an efficient implementation
algorithm for the function estimation problem with compu-
tational complexity O(N). We will first design k(tj , tj′ ;α)
(8) as a stationary SI kernel and derive the state-space model
realization of model (1). Then we rephrase the function
estimation problem into a Kalman filtering and smoothing
problem as stated in [13], [16]. Lastly, we explore the rank
structure of ΣfE in (10b) and ΣZ in (10d) to compute (13c)
and (10e) with the computational complexity O(N).

A. State-space Model Realization of (1)

If k(tj , tj′ ;α) (8) satisfies the following assumption, then
(7) has a state-space model realization.

Assumption 2: k(tj , tj′ ;α) (8) is a stationary SI kernel.
Recall that k(tj , tj′ ;α) is the covariance function of f(tj)

in (7). Then using the realization theory of linear systems
[17], the discrete-time state-space model realization of (7) is
given by

xj = Fxj−1 +Gwj−1, x0 ∼ N (0,Σ0),

f(tj) = Hxj , j = 1, · · · ,
(14)

where F ∈ Rr×r, G ∈ Rr and H ∈ R1×r are the system
matrix, the input matrix and the output matrix, respectively,

xj ∈ Rr is the state vector at the jth time instant, wj ∈ R is
i.i.d. Gaussian noise with zero mean and unit variance, wj
and vj′ are independent for j, j′ = 1, · · · , N , and Σ0 ∈ Rr×r
is the solution of the discrete-time Lyapunov equation Σ0 =
FΣ0F

T +GGT . Then, the state-space model realization of
(1) can be accordingly rewritten as follows

xj = Fxj−1 +Gwj−1, x0 ∼ N (0,Σ0), (15a)
yj = Hxj + vj , j = 1, · · · . (15b)

Now, we can convert the function estimation problem into a
Kalman filtering and smoothing problem based on (15).

B. Kalman filter and smoother

The direct implementation of f̂E in (10a) and ΣfE in (10b)
is O(N3). To compute them more efficiently, we apply the
Kalman filter and smoother.

For j = 1, 2, · · · , m = 0, 1, · · · , N , we let x̂j|m ∈ R and
Σj|m ∈ Rr×r denote

x̂j|m = E[xj |y0:m], (16a)

Σj|m = E[(xj − x̂j|m)(xj − x̂j|m)T |y0:m], (16b)

where y0:m = {y0, · · · , ym} and y0 is a null value.
Then we apply the Kalman filter as follows,

ej = yj −Hx̂j|j−1, (17a)

Ej = HΣj|j−1H
T + σ2IM , (17b)

x̂j|j = Fx̂j−1|j−1 + Σj|j−1H
TE−1

j ej , (17c)

Σj|j = Σj|j−1 − Σj|j−1H
TE−1

j HΣj|j−1, (17d)

Σj+1|j = FΣj|jF
T +GGT , j = 1, · · · , N, (17e)

and the Kalman smoother as follows,

Jj = Σj|jF
TΣ−1

j+1|j , (18a)

x̂j|N = x̂j|j + Jj(x̂j+1|N − Fx̂j|j), (18b)

Σj|N = Σj|j + Jj(Σj+1|N − Σj+1|j)J
T
j , (18c)

f̂j|N = Hx̂j|N , j = N − 1, · · · , 1. (18d)

Note that for j, k = 1, · · · , N , the jth element of f̂E and
the (j, k)th element of ΣfE can be obtained by

[f̂E ]j =f̂j|N , (19a)

[ΣfE ]j,k =


HΣj|NH

T , if j = k,

H
∏j−1
i=k JiΣj|NH

T , if k < j,

HΣk|N
∏j
i=k−1 JjH

T , if j < k,

(19b)

which shows that the computations of f̂E and [ΣfE ]j,k
become linear of N .

C. Recursive Implementation of Hyper-parameter Estima-
tion

Since the computation of JHP in (13d) only involves
scalar operations, we mainly focus on the efficient imple-
mentation of JML in (13b) and JPML in (13c). It is worth
to note that the recursive computation of JML in (13b) has
been studied in [13, Proposition 2] and its complexity is
linear in N . Note that the implementation in [13, Proposition
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2] is designed for the spatial-temporal case and can hence
be reduced to the temporal case in this paper.

Given f̂E and ΣfE in the form of (19), the direct
implementation of JPML has computational complexity
O(NZN

2). To further reduce the computational complexity
of JPML, we explore the rank structure of ΣfE in (10b) and
ΣZ in (10d), and will show that they are both sequentially
semi-separable (SSS) in what follows. The definition of the
SSS matrix is given in the following.

Definition 1 ((1.1) in [18]): A block matrix A ∈ Rm×n
is said to be SSS if for i, j = 1, · · · , N , it can be factorized
as

Ai,j =


piqj , if i = j + 1,
piai−1 · · · aj+1qj , if j < i+ 1,
di, if i = j,
gihj , if j = i+ 1,
gibi−1 · · · bj+1hj , if j > i+ 1,

(20)

where Ai,j ∈ Rmi×nj ,
∑N
i=1mi = m,

∑N
i=1 nj = n,

pi+1 ∈ Rmi+1×r′i , ai ∈ Rr
′
i×r
′
i−1 and qi ∈ Rr′i×ni are said

to be the lower generators of A with order r′i, gi ∈ Rmi×r′′i ,
bi ∈ Rr

′′
i−1×r

′′
i and hi+1 ∈ Rr′′i ×ni+1 are said to be the upper

generators of A with order r′′i , and di ∈ Rmi×ni are said to
be the diagonal entry of A.

We can show that ΣfE in (10b) is SSS.
Proposition 1: Under Assumption 2, ΣfE in (10b) is SSS

and the orders of its generators are r, where r is the order
of the state-space model in (15). In particular, ΣfE can be
put into the form of (20) with

di(ΣfE ) = HΣi|NH
T ∈ R, i = 1, · · · , N, (21a)

pi(ΣfE ) = HΣi|NJ
T
i−1 ∈ R1×r, i = 2, · · · , N, (21b)

ai(ΣfE ) = JTi−1 ∈ Rr×r, i = 2, · · · , N − 1, (21c)

qi(ΣfE ) = HT ∈ Rr, i = 1, · · · , N − 1, (21d)

gi(ΣfE ) = H ∈ R1×r, i = 1, · · · , N − 1, (21e)

bi(ΣfE ) = Ji−1 ∈ Rr×r, i = 2, · · · , N − 1, (21f)

hi(ΣfE ) = Ji−1Σi|NH
T ∈ Rr, i = 2, · · · , N, (21g)

where di(·), pi(·), ai(·), qi(·), gi(·), hi(·), bi(·) are the ith di-
agonal entry and upper (lower) generators as defined in (20).

By using (21), we can prove that ΣZ is also SSS.
Proposition 2: Under Assumption 2, ΣZ in (10d) is sym-

metric and SSS and the orders of its generators are 4r.
The expressions of generators of ΣZ are omitted due to the
limitation of space.

Therefore, it is possible to exploit the SSS structure of
ΣZ in Proposition 2 to compute the cost function (13c)
recursively in the following way.

Proposition 3: The cost function JPML in (13c) can be
computed by using

ΣZ =VZUZSZ , (22a)

log |ΣZ | =
NZ∑
j=1

log |dj(SZ)|, (22b)

f̂TZΣ−1
Z f̂Z =f̂TZ S

−1
Z UTZ V

T
Z f̂Z , (22c)

where VZ ∈ RNZ×NZ and UZ ∈ RNZ×NZ are triangular
orthogonal SSS matrices and SZ ∈ RNZ×NZ is a upper
triangular SSS matrix with diagonal elements dj(SZ) for
j = 1, · · · , NZ .

D. Recursive Implementation of function estimation
The direct implementation of f̂M in (10e) is O(N3). By

exploring its SSS structure, we can also compute f̂M more
efficiently.

Proposition 4: The matrix K + σ2IN + (σ2/η2)MK
contained in f̂M (10e) is SSS.

Based on the SSS structure in Proposition 4, f̂M can be
computed efficiently in the following way.

Proposition 5: The function estimate f̂M in (10e) can be
computed by using

K + σ2IN+(σ2/η2)MK = VMUMSM , (23a)

Y ′ =S−1
M UTMV

T
MY, (23b)

K =L1 + L2, (23c)

f̂M =L1Y
′ + L2Y

′, (23d)

where VM ∈ RN×N and UM ∈ RN×N are triangular
orthogonal SSS matrices, SM ∈ RN×N is an upper triangular
SSS matrix, and L1 ∈ RN×N and L2 ∈ RN×N are triangular
semi-separable matrices.

E. Summary of the Efficient Implementation and its Compu-
tational Complexity Analysis

The proposed implementation in Sections III-C and III-D
is summarized in Algorithm 1. To analyze its computational
complexity, note that r, the orders of the generators of ΣfE
defined in (10b), only depends on the structure of chosen
kernel and is often much smaller than N , and thus we ignore
the term r. Moreover, since NZ ≤ N , we let NZ = N for
brevity in the analysis of computational complexity.

Theorem 1: The proposed implementation shown in Al-
gorithm 1 has computational complexity O(N). In particular,
• the Kalman filter (17) and Kalman smoother (18) have

computational complexity O(N);
• the evaluation of the cost functions in (13) has compu-

tational complexity O(N);
• the function estimation (23) has computational com-

plexity O(N).

IV. NUMERICAL SIMULATIONS
In this section, we present numerical simulations to

demonstrate the efficacy and efficiency of our proposed
implementation.

A. Test Data Sets
We consider two test data sets: D1 and D2.

1) D1: We generate the noise-free output f(tj) in (1) as
the piece-wise constant data mentioned in [20], which
is defined as

f(tj) =


0, tj ∈ [0, 1

6 ) ∪ [ 2
6 ,

3
6 ) ∪ [ 4

6 ,
5
6 ),

1, tj ∈ [ 1
6 ,

2
6 ),

0.6, tj ∈ [ 3
6 ,

4
6 ),

0.4, tj ∈ [ 5
6 , 1],

(24)
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Algorithm 1 The Proposed Implementation
Input: data {tj , yj}Nj=1, kernel k(tj , tj′ ;α) and its corre-

sponding state-space model (15).
Output: f̂M .

Step 1: Hyper-parameter Estimation
• Kalman filter

Calculate (17);
Calculate JML (13b) using [13, Proposition 2];

• Kalman smoother
Calculate (18);

Calculate JPML (13c) by (21),
(22a) using [18, Theorems 6.1 and 6.3],
(22b), and (22c) using [18, Algorithm 6.4];

Calculate JHP (13d);
Step 2: Function estimation

Calculate (23a) using [18, Theorems 6.1 and 6.3],
(23b) using [18, Algorithm 6.4],
(23c) using L1 = tril(K), L2 = triu(K, 1),
and (23d) using [19, Algorithms C.1-C.2].

with N = 500 and Ts = 1/(N − 1) = 1/499. Then
f(tj) is corrupted with an additive measurement noise
v(tj), which follows Gaussian distribution with zero
mean and variance σ2 = 0.004, 0.005, 0.008, 0.010,
leading to 4 collections of measurement outputs. For
each value of σ2, we collect a data record with 500
pairs of input and measurement output, and then the
above procedure is repeated 25 times. As a result, we
obtain 4 data collections, each with 25 data records.

2) D2: We generate data sets using the same way as
that for D1 but with σ2 = 0.008 and N =
500, 1000, 4000, 16000, 32000.

B. Kernel Selection

For D1 and D2, we use the exponential kernel as intro-
duced in [21], which is a SI kernel (see [6, Proposition 4.2]),

k(tj , tj′ ;α) = δtρ
|tj−tj′ |, (25)

and its state-space model in the form of (15) with F = ρTs ,
G = 1 and H =

√
δt(1− ρ2Ts), where r = 1, α = [δt, ρ]T ,

δt > 0 and 0 < ρ < 1.

C. Hyper-parameter Estimation

For D1 and D2, when N is fixed, Ts is also fixed and then
{tj}Nj=1 are evenly distributed. Thus we set ωj,j+1(σω) = 1
to simplify the computation and the hyper-parameter in (13a)
is reduced to αMR = [αT , σ2, η2]T . To estimate αMR,
we apply the hyper-parameter estimation method recom-
mended in [10, Section 4] and our proposed one (13a)
with different values of %. In particular, for D1, we set
% = 0.02, 0.05, 0.1, 0.5, 0.8, 1; for D2, we set % = 0.02. For
both two types of methods, we set αΓ = βΓ = 5× 10−8. To
solve the minimization problems in above hyper-parameter
estimation methods, we use the fmincon function in Mat-
lab. It is worth to note that for our proposed implementation,
we use the same initial points as those for the recommended

method in [10, Section 4], which makes their performance
comparison fair.

D. Function Estimation

With the estimated hyper-parameter, we then compute the
function estimation f̂M in (10e). To evaluate the performance
of the estimation f̂M , we use the measure of fit, e.g., [22],

Fit = 100×

(
1− ||f̂M − fE ||2

||fE − f ||2

)
, f =

1

N

N∑
j=1

f(tj).

(26)

where fE = [f(t1), · · · , f(tN )]T is defined after (4). The
maximum value of Fit is 100, indicating the perfect estima-
tion of fE .

E. Simulation Setup

For D1 and D2, we first apply the kmeans function in
Matlab and divide {tj , yj}Nj=1 into 6 clusters such that {tj}
in each cluster are close over the manifold. As a result, we
have NZ = N−6. Then we apply the exponential kernel (25)
and two types of hyper-parameter estimation methods: the
recommended method in [10, Section 4], and our proposed
one (13a), to estimate fE .

Note that for D1, our main focus is to compare estimation
performances of two types of hyper-parameter estimation
methods; while for D2, our main focus is to compare the
computing time of the cost function JPML in (13c) and
the function estimate f̂M in (10e) by using the proposed
implementation in Algorithm 1 and the direct implementation
in [10].

F. Illustration of Estimation Performance

For D1, the average Fits (26) of f̂M with hyper-parameter
estimated by the recommended method in [10, Section 4] and
our proposed one (13a) with different % are shown in Table
I. We can observe that for σ2 = 0.004, 0.005, 0.008, 0.01,

• the average Fit obtained by our proposed hyper-
parameter estimation method (13a) with % = 0.02 is
the largest, indicating that (13a) with % = 0.02 performs
best among all methods;

• the average Fits obtained by (13a) with % =
0.02, 0.05, 0.1 are all larger than that by the method
in [10, Section 4], while the average Fits obtained by
(13a) with % = 0.5, 0.8, 1 are all smaller than zero.
It implies that the trade-off between JML in (13b) and
JPML in (13c) plays an important role in the estimation
of hyper-parameter and also function. As long as we
select a suitable %, (13a) can outperform the method in
[10, Section 4].

Moreover, one example of f̂M with hyper-parameter esti-
mated by our proposed method (13a) with % = 0.02 and
the recommended one in [10, Section 4] is given in Fig. 1,
where f̂M obtained by our proposed method can give a better
estimate of fE than the method in [10, Section 4].
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G. Illustration of Computational Efficiency

For D2, the average computing time of the cost func-
tion (13c) and the function estimation (10e) by using our
proposed implementation in Algorithm 1 and the direct
implementation are shown in Table II. We can notice that as
N increases, the average computing time of (13c) and (10e)
using the direct implementation increases far more rapidly
than those using our proposed implementation. In particular,
when N = 32000, the average computing time of (13c) and
(10e) using our proposed implementation is around 160 and
250 times faster, respectively, than those using the direct
implementation.

TABLE I: The average Fits (26) for D1 by using the
exponential kernel (25) and the hyper-parameter is estimated
by the recommended method in [10, Section 4] and our
proposed one (13a) with different %. Note that we let the
value of % denote the method (13a) with % for simplicity.

Method σ2 = 0.004 σ2 = 0.005 σ2 = 0.008 σ2 = 0.010
[10, Sec. 4] 93.8944 92.9711 90.9012 88.7785
% = 0.02 96.5807 96.0852 94.6166 92.4518
% = 0.05 96.5379 96.0196 94.4620 92.2541
% = 0.1 96.4959 95.9463 94.2553 90.4969
% = 0.5 -0.0023 -0.0039 -0.0053 -0.0070
% = 0.8 -0.0023 -0.0039 -0.0053 -0.0070
% = 1 -0.0023 -0.0040 -0.0053 -0.0070

0 0.2 0.4 0.6 0.8 1 1.2

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Fig. 1: One data record of D1 with σ2 = 0.010 and
the corresponding f̂M with hyper-parameter estimated by
using our proposed method (13a) with % = 0.02 and the
recommended one in [10, Section 4].

TABLE II: The average computing time (in seconds) for D2
by using the proposed implementation in Algorithm 1 and
the direct one.

Cost Function (13c) Function Estimation (10e)
N Proposed Direct Proposed Direct
500 0.0967 0.1684 0.0631 0.1732
1000 0.1866 0.6378 0.1269 0.7554
4000 0.7531 11.1638 0.5194 11.3680
16000 3.0165 201.8097 2.0921 213.3657
32000 5.9993 968.7789 4.2279 1.0647e+03

V. CONCLUSION
In this paper, we proposed an efficient implementation

with computational complexity O(N) to tackle the func-
tion estimation problem by using the Bayesian manifold
regularization method, where N is the number of input-
output data points. We first converted the function estimation

problem into the Kalman filtering and smoothing problem
and then explored the sequentially semi-separable structures
of the Laplacian matrix and the posterior covariance matrix.
Our proposed implementation has been tested in numerical
simulations and shown to be more efficient than the direct
implementation. Note that our proposed implementation can
be extended and applied to the the spatial-temporal function
estimation and prediction problem, and will be studied in the
journal version of this paper.
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