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Abstract— This paper addresses the challenge of limited ob-
servations in non-cooperative multi-agent systems where agents
can have partial access to other agents’ actions. We present
the generalized individual Q-learning dynamics that combine
belief-based and payoff-based learning for the networked in-
terconnections of more than two self-interested agents. This
approach leverages access to opponents’ actions whenever pos-
sible, demonstrably achieving a faster (guaranteed) convergence
to quantal response equilibrium in multi-agent zero-sum and
potential polymatrix games. Notably, the dynamics reduce to the
well-studied smoothed fictitious play and individual Q-learning
under full and no access to opponent actions, respectively. We
further quantify the improvement in convergence rate due to
observing opponents’ actions through numerical simulations.

I. INTRODUCTION

Limited access to other agents’ actions is a significant
challenge for multi-agent systems, particularly for networked
interconnections [1]. In the absence of observations, the lit-
erature often focuses on the extreme case of no observation,
i.e., payoff-based dynamics [2], [3]. However, payoff-based
dynamics ignoring partial observations available can suffer
from slow convergence to equilibrium though asymptotic
convergence guarantees might still be possible.

This paper addresses the limited access to opponent ac-
tions by proposing novel learning dynamics that combine
belief-based and payoff-based learning for self-interested
agents in non-cooperative environments. To this end, we
focus on polymatrix games [4], where agents have network
separable pairwise interconnections while they can only
observe the actions of the agents in proximity, as illustrated
in Fig. 1 over two separate layers. We present the generalized
individual Q-learning dynamics, in which agents leverage
opponents’ actions that they can observe so that they can
accelerate their learning process. The dynamics reduce to
the well-studied smoothed fictitious play [5] and individual
Q-learning [2], in scenarios with access to the actions of
every or none of the other agents, respectively.

This paper is related to the broad literature of learning
in games studying whether simplistic learning or adaptation
rules of self-interested agents can reach equilibrium, e.g.,
see the overview [5]. Such behavioral rules are generally
based on the simplifying assumption that the opponents play
according to some stationary strategies and the agents adapt
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Layer 1

Layer 2

Fig. 1: An illustration of observability and interconnect-
edness over two layers. Nodes connected by dashed lines
across layers represent an agent. In Layer 1, observability
is depicted, where directed edges indicate that agents can
observe the actions of others, forming the observability
graph. In Layer 2, agents interact and can affect each other’s
payoffs, as represented by the directed edges, forming the
interaction graph.

their act either based on beliefs, as in the smoothed fictitious
play [5], or payoffs, as in the individual Q-learning [2].
The smoothed fictitious play is known to reach equilibrium
in two-agent zero-sum and multi-agent potential games [5].
On the other hand, the individual Q-learning dynamics are
known to reach equilibrium in two-agent zero-sum and two-
agent potential games [2]. Here, we show that they indeed
also reach equilibrium in multi-agent zero-sum and multi-
agent potential polymatrix games.

Notably, the experience-weighted attraction (EWA) learn-
ing unifies the belief-based and payoff-based learning for
normal-form games with some parameter controlling the
weight of experiences (similar to the beliefs formed) and
attractions (based on the payoffs received) in the actions
taken [6]. However, agents still need to have access to
opponent actions unless the attractions have the full weight,
i.e., it is fully payoff-based. On the other hand, partial
access to opponent actions can also lead to heterogeneous
dynamics, as studied in [7]. They only study two-agent zero-
sum games where belief-based and payoff-based dynamics
can play against each other.

In this paper, we demonstrate that the generalized indi-
vidual Q-learning dynamics converge to quantal response
equilibrium in multi-agent zero-sum and potential polymatrix
games almost surely. Furthermore, we quantify the signif-
icant improvement in convergence rate achieved through
access to opponents’ actions using numerical simulations.

The rest of the paper is organized as follows. We describe
polymatrix games in Section II. We present the new dy-
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namics in Section III. We provide analytical and numerical
results, resp., in Sections IV and V. We conclude the paper
with some remarks in Section VI.

II. PRELIMINARY: POLYMATRIX GAMES

Consider n agents having pairwise interactions with each
other. We can represent their interactions via a graph (de-
picted in Figure 1, Layer 2) G = (I,E), where I is the
set of vertices and E ⊂ I × I is the set of directed edges,
such that vertices and edges, resp., refer to agents and the
pairwise interactions. Then, we can model their interactions
via a polymatrix game characterized by the tuple P =
⟨G,(Ai,ui)n

i∈I⟩, where Ai and ui : ∏ j∈I A j → R, resp., denote
agent i’s finite action set and payoff function. Furthermore,
the payoff function ui(·) can be written as

ui((at)t∈I) = ∑
j:(i, j)∈E

ui j(ai,a j) ∀(at ∈ At)t∈I , (1)

for some sub-payoff function ui j : Ai ×A j → R depending
on the actions of the pair (i, j) only. Indeed, the separability
of the payoff function in (1) is the defining characteristic
of the polymatrix games [8]. Without loss of generality, we
let ui j(ai,a j) = 0 for all (ai,a j) if (i, j) /∈ E. Furthermore,
we let each agent i randomize their actions based on some
mixed strategy π i ∈ ∆i independently, where ∆i denotes the
probability simplex over Ai.

For example, we say that P is a zero-sum polymatrix
game if ∑i∈I ui(a) = 0 for all a ∈ A := ∏i∈I Ai. Correspond-
ingly, we say that P is a potential polymatrix game if there
exists some potential function φ : A → R satisfying

φ(ãi,a−i)−φ(ai,a−i) = ui(ãi,a−i)−ui(ai,a−i), (2)

for all ai, ãi ∈ Ai, a−i ∈ A−i := Π j ̸=iA j, and i ∈ I.
We define agent i’s smoothed best response bri :R|Ai| → ∆i

by

bri(q) := argmax
µ∈∆i

{
µ

T q+ τH(µ)
}

∀q ∈ R|Ai|, (3)

where τ > 0 is the temperature parameter controlling the ex-
ploration level and H(µ) =−∑a µ(a) log µ(a) is the entropy
regularization. There exists a unique smoothed best response
due to the strict concavity of the regularization. Indeed, the
smoothed best response bri(q) can also be written as [9]

bri(q)(a) =
exp(q(a)/τ)

∑ã∈Ai exp(q(ã)/τ)
∀a ∈ Ai. (4)

Note also that the smoothed best response has an inherent
exploration property since every action have positive proba-
bility, i.e., bri(q)(a)> 0 for all a ∈ Ai.

Based on the smoothed best response, we focus on quantal
response equilibrium (QRE) [10] as a solution concept for
P . We say that a strategy profile π = (π i ∈ ∆i)i∈I for P is
QRE provided that

π
i = bri (ui(·,π−i)

)
∀i ∈ I, (5)

where π−i = (π j) j ̸=i.1 Correspondingly, the QRE-gap of any

1Given any function f : A → R, we let f (µ) = Ea∼µ [ f (a)] for any
probability distribution µ over A, with a slight abuse of notation for simpler
expressions.

strategy profile π is defined by

QRE(π) := ∑
i∈I

∣∣ui(π i,π−i)−ui (bri(ui(·,π−i)),π−i)∣∣ . (6)

III. GENERALIZED INDIVIDUAL-Q LEARNING

We first describe the individual Q-learning dynamics [2]
for the repeated play of two-agent normal-form games where
agents do not have access to opponent actions. Each agent
i assumes that the opponent j ̸= i plays according to some
stationary mixed strategy π j ∈ ∆ j in the repeated play of the
underlying game. Then, the value of action ai ∈ Ai, called
the Q-function and denoted by qi : Ai → R, is given by

qi(ai) = ui(ai,π j) ∀ai ∈ Ai. (7)

Since the agents do not observe the opponent actions, they
estimate the Q-function based on the payoff received (differ-
ent from the belief-based dynamics such as fictitious play).
Let qi

k : Ai → R be agent i’s estimate at the kth repetition.
Then, agent i can update the estimate qi

k according to

qi
k+1(a

i) = qi
k(a

i)+α
i
k(a

i) ·
(
ui

k −qi
k(a

i)
)
, (8)

where ui
k = ui(ai

k,a
j
k) is the payoff received when the action

profile (ai
k,a

j
k) is played and α

i
k(a

i)∈ [0,1] is some step size.
Observe that agents only receive the payoff for the current

action profile (ai
k,a

j
k). Therefore, we have α

i
k(a

i) = 0 for all
ai ̸= ai

k. Correspondingly, the estimates for the actions taken
frequently get updated frequently. However, this leads to
asynchronous update of the Q-functions for different actions.
The individual Q-learning dynamics address this issue via
the step sizes normalized by the probability of the current
action gets played, i.e., bri(qi

k)(a
i), so that the Q-functions

of every action get updated synchronously in the expectation
[2]. Particularly, the step size α

i
k is given by

α
i
k(a

i) = I{ai=ai
k}

min

{
1,

αk

bri(qi
k)(a

i)

}
∀ai ∈ Ai, (9)

where αk ∈ (0,1) is some reference step size decaying to zero
and I{·} is the indicator function. We further threshold the
ratio αk/bri(qi

k)(a
i) from above by 1. The threshold ensures

that the step size α
i
k(a

i) ∈ [0,1] for all ai so that the update
(8) is the convex combination of the current estimate and the
payoff received, and therefore, the estimates remain bounded
as the payoffs are bounded if the initialization is from zero.

Due to the threshold in (9), the estimates for every
action do not necessarily get updated synchronously in the
expectation. However, the bounded estimates ensure that the
denominator bri(qi

k)(a
i) is uniformly bounded from below

by some ε > 0. Therefore, the decaying {ak}k≥0 ensures
that eventually the threshold does not have any impact on
the step size α

i
k, i.e., there exists some K (not depending on

the trajectory) such that αk/bri(qi
k)(a

i)< 1 for all k > K.
Next, we generalize the individual Q-learning to the re-

peated play of multi-agent polymatrix games where agents
have limited access to opponent actions. To this end, we
introduce the observability graph (depicted in Figure 1, Layer
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1) G=(I,E) where E ⊂ I×I is the set of directed edges such
that (i, j) ∈ E if agent i can observe agent j’s actions.

When agent i has access to agent j’s action, agent i can
form a belief π

j
k ∈ ∆ j about agent j’s strategy (assumed to be

stationary) based on the action history. For example, agent i
can take the weighted empirical average of the past actions,
as in the widely studied fictitious play dynamics. Hence, we
let agent i use the reference step size αk ∈ (0,1) in the update
of the belief π

j
k as

π
j

k+1 = π
j

k +αk · (a j
k −π

j
k ) (10)

for all j : (i, j) ∈ E, where we view the action a j
k as a

degenerate mixed strategy giving probability one to the
associated action.

Similar to (7), agent i’s Q-function is now given by

qi(ai) = ui(ai,π−i) = ∑
j ̸=i

ui j(ai,π j), (11)

where the second equality follows from (1). Then, based on
the observability graph G, we can write the Q-function as

qi(ai) = ∑
j:(i, j)∈E

ui j(ai,π j)+ ∑
j:(i, j)/∈E

ui j(ai,π j). (12)

Agent i can estimate the first summation on the right-hand
side as

q̂i
k(a

i) := ∑
j:(i, j)∈E

ui j(ai,π j
k ) (13)

based on the beliefs π
j

k formed for all j such that (i, j) ∈ E.
Indeed, (10) yields that q̂i

k(·) evolves according to

q̂i
k+1(a

i) = q̂i
k(a

i)+αk · (û
i
k(a

i)− q̂i
k(a

i)) ∀ai ∈ Ai, (14)

where
ûi

k(a
i) := ∑

j:(i, j)∈E

ui j(ai,a j
k) ∀ai ∈ Ai. (15)

On the other hand, agent i does not form a belief about
agents whose actions cannot be observed. Instead, agent i
can estimate the second summation based on the payoff
ui

k = ui(ai
k,a

−i
k ) received as in the individual Q-learning

dynamics (8). However, the payoff received depends also
on the pairwise interactions with the agents whose actions
can be observed. Agent i can still isolate the payoffs coming
from the pairwise interactions with the agents whose actions
cannot be observed by

ûi
k := ui

k − ûi
k(a

i
k) ∈ R. (16)

Then, the estimation for the second term on the right-
hand side of (12), denoted by q̂i

k : Ai → R, can be updated
according to

q̂i
k+1(a

i) = q̂i
k(a

i)+α
i
k(a

i) · (ûi
k − q̂i

k(a
i)) ∀ ai ∈ Ai, (17)

where the step size α
i
k(a

i) ∈ [0,1] is as described in (9).
Given the estimates q̂i

k and q̂i
k, the Q-function estimate is

given by

qi
k(a

i) := q̂i
k(a

i)+ q̂i
k(a

i) ∀ai ∈ Ai. (18)

Algorithm 1 Generalized Individual Q-learning Dynamics

initialize: the estimates q̂i
0, q̂

i
0 ∈ RAi

arbitrarily
for each stage k = 0,1, . . . do

set qi
k = q̂i

k + q̂i
k

play ai
k ∼ bri(qi

k)
receive the payoff ui

k = ui(ai
k,a

−i
k )

observe the opponent actions (a j
k) j:(i, j)∈E partially

set ûi
k(a

i) = ∑ j:(i, j)∈E ui j(ai,a j
k) for all ai ∈ Ai

set ûi
k = ui

k − ûi
k(a

i
k)

update the estimates

q̂i
k+1(a

i) = q̂i
k(a

i)+αk · (û
i
k(a

i)− q̂i
k(a

i)) ∀ ai ∈ Ai

q̂i
k+1(a

i) = q̂i
k(a

i)+α
i
k(a

i) · (ûi
k − q̂i

k(a
i)) ∀ ai ∈ Ai

with the step sizes αk ∈ (0,1) and

α
i
k(a

i) = I{ai=ai
k}

min

{
1,

αk

bri(qi
k)(a

i)

}
∀ai ∈ Ai

end for

Therefore, agent i can play ai
k ∼ bri(qi

k), as in the individ-
ual Q-learning dynamics. Algorithm 1 is a description of
the generalized individual Q-learning dynamics for agent i.
Note that the dynamics presented reduces to the smoothed
fictitious play and individual Q-learning if E = E or E =∅,
respectively.

Remark 1. We highlight the resemblance between (14) and
(17). They differ in the step sizes αk ∈ [0,1] vs α

i
k ∈ [0,1]A

i

and the targets ûi
k ∈RAi

vs ûi
k ∈R. The distinct target values

arise from the need to account for counterfactual payoffs
without directly observing opponents’ actions. While agent i
knows what ûi

k is for other possible actions, ûi
k is only known

for the current action taken by agent i. However, as shown
later, both update have identical structures in the expectation
conditioned on the play history due to the normalization in
(9) (and for sufficiently large k due to the threshold in (9)).

IV. CONVERGENCE RESULTS

In this section, we characterize Algorithm 1’s convergence
properties for any observability graph structure. Agents can
have full, partial, or no access to observations. They can
even have heterogeneous accesses, as in [7] yet beyond two
agents.

We make the following assumption on the step sizes used.

Assumption 1. The step size αk ∈ (0,1) satisfies the follow-
ing standard conditions:

lim
k→∞

αk = 0,
∞

∑
k=0

αk = ∞, and
∞

∑
k=0

α
2
k < ∞ (19)

for stochastic approximation.

The following theorem shows that Algorithm 1 reaches
equilibrium in the sense that the weighted empirical averages
of the actions taken, π i

k’s, converges to QRE almost surely
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in multi-agent zero-sum and potential polymatrix games.
Furthermore, the Q-function estimates, qi

k’s, track the Q-
functions associated with those empirical averages.

Theorem 1 (Main Result) Consider a polymatrix game
characterized by P = ⟨G,(Ai,ui)i∈I⟩. Let every agent follow
Algorithm 1 and Assumption 1 holds. If P is a zero-sum
or potential polymatrix game, then the weighted empirical
averages of the actions (π i

k)i∈I evolving according to (10)
converge to QRE, i.e.,

QRE(πk)→ 0 (20)

as k → ∞ almost surely. Furthermore, the Q-function esti-
mates are asymptotically belief-based in the sense that

∥qi
k −ui(·,π−i

k )∥2 → 0 ∀i ∈ I, (21)

as k → ∞ almost surely.2

Proof: The proof methodology is based on the stochas-
tic approximation techniques [11]. The result follows from
the stochastic approximation of Algorithm 1 based on new
Lyapunov function formulations. We first focus on approxi-
mating discrete-time updates in Algorithm 1 via their limiting
ordinary differential equations (o.d.e.). For example, we can
write (10) as

π
i
k+1 = π

i
k +αk(bri(qi

k)−π
i
k +ω

i
k) ∀i ∈ I, (22)

where the stochastic approximation error is defined by

ω
i
k := ai

k −bri(qi
k). (23)

Correspondingly, the update (14) can be written as

q̂i
k+1 ≡ q̂i

k +αk

 ∑
j:(i, j)∈E

ui j(·,br j(q j
k))− q̂i

k + ŵi
k

 , (24)

where the stochastic approximation error is defined by

ŵi
k(a

i) := ∑
j:(i, j)∈E

(ui j(·,a j
k)−ui j(·,br j(q j

k))) ∀ai ∈ Ai. (25)

Recall the discussion that the threshold in the step size
α

i
k(a

i) is ineffective, i.e., α
i
k(a

i) < 1, for sufficiently large
k. Therefore, for sufficiently large k, we can write (17) as

q̂i
k+1 ≡ q̂i

k +αk

 ∑
j:(i, j)/∈E

ui j(·,br j(q j
k))− q̂i

k + ŵi
k

 , (26)

where the stochastic approximation error is defined by

ŵi
k(a

i) :=
I{ai=ai

k}
bri(qi

k)(a
i
k)

(
ûi

k − q̂i
k(a

i)

)

−

 ∑
j:(i, j)/∈E

ui j(ai,br j(q j
k))− q̂i

k(a
i)

 ∀ai ∈ Ai. (27)

Let xk = [q̂i
k; q̂i

k;π i
k]i∈I ∈Rd , where d := 3∏i |Ai|, and wk =

[ŵi
k; ŵi

k;ω i
k]i∈I . Given the filtration Fk := σ(xl ,wl ; l ≤ k), the

2We can view finite dimensional functions (such as qi
k : Ai →R) as vectors

(in R|Ai | since Ai is a finite set).

stochastic approximation errors (wk)k≥0 form a Martingale
difference sequence with E[ŵi

k | Fk]≡ 0 and E[ŵi
k | Fk]≡ 0,

where the expectation is taken with respect to the randomness
induced by randomized actions. This yields that the updates
(24) and (26) have identical structures in the expectation
conditioned on the history Fk, as discussed in Remark 1.

To have a simpler expression for the evolution of xk, we
define the function F(·) by

F

q̂i
k

q̂i
k

π i
k


i∈I

=

∑ j:(i, j)∈E ui j(·,br j(q̂ j
k + q̂ j

k))

∑ j:(i, j)/∈E ui j(·,br j(q̂ j
k + q̂ j

k))

bri(q̂ j
k + q̂ j

k)


i∈I

.

Since bri(·) is Lipschitz continuous [12], we can show that
F(·) is also Lipschitz continuous. Then, for sufficiently large
k, we can write (22), (24), and (26) as

xk+1 = xk +αk(F(xk)− xk +wk). (28)

We can also show that the iterates xk remain bounded since
αk ∈ (0,1) and payoffs are bounded, as the updated values
are simply the convex combination of previous xk and the
bounded F(xk). Since the step sizes satisfy Assumption 1, we
can apply stochastic approximation methods and obtain the
limiting o.d.e. of (28) as ẋxx = F(xxx)−xxx [11]. More explicitly,
we have

dq̂̂q̂qi

dt
(·) = ∑

j:(i, j)∈E

ui j(·,br j (̂q̂q̂q j + q̂̂q̂q j))− q̂̂q̂qi(·) (29a)

dq̂̂q̂qi

dt
(·) = ∑

j:(i, j)/∈E

ui j(·,br j (̂q̂q̂q j + q̂̂q̂q j))− q̂̂q̂q(·) (29b)

dπππ i

dt
= bri(̂q̂q̂qi + q̂̂q̂qi)−πππ

i (29c)

for the continuous-time functions q̂̂q̂qi : [0,∞) → RAi
, q̂̂q̂qi :

[0,∞)→ RAi
, and πππ i : [0,∞)→ ∆i for all i ∈ I.

The discrete-time iterates xk almost surely converges to
a compact connected internally chain transitive set of the
o.d.e. (29). To characterize the limit behavior of (28) through
(29), we follow the approach in [11, Section 6.2] and call
a continuously differentiable function V : Rd → R by a
Lyapunov function for some compact invariant set Λ ⊂ Rd

provided that for any solution to (29), we have
• V̇ (xxx(t))< 0 for all xxx(t) /∈ Λ

• V̇ (xxx(t)) = 0 for all xxx(t) ∈ Λ.
Then, [11, Proposition 6.4] says that every internally chain
transitive set of (29) is contained in Λ provided that V (Λ) :=
{V (x) : x ∈ Λ} ⊂ R has empty interior.

Next, we formulate Lyapunov functions for (29). We
first focus on zero-sum polymatrix games and introduce the
candidate Vz(·) defined by

Vz(q̂, q̂,π) := ∑
i∈I

Li(q̂i
+ q̂i,π), (30)

where for each i ∈ I, the auxiliary Li(·) is defined by

Li(qi,π) := max
µ i∈∆i

{
qi(µ i)+ τH(µ i)

}
−
(

ui(π)+ τH(π i)

)
+∥qi −ui(·,π−i)∥2. (31)
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Fig. 2: Convergence of the QRE-gap (left), and qdiff (right) for different values of edge-connection probability p, in the
potential polymatrix games. The solid curves represent the mean over 50 independent trials and the shaded areas are ±0.5
standard deviations from the mean values.

Remark 2. The Lyapunov function Vz(·) reduces to the one
presented in [13] (and [9]) if agents have full access to
observations (and there are only two agents).

The following proposition shows that the candidate Vz(·)
is a Lyapunov function for (29), and (20) and (21) hold for
zero-sum polymatrix games.

Proposition 1. Given a zero-sum polymatrix game P and
the o.d.e. (29), the function Vz(·) is a Lyapunov function for

Λ := {(q̂, q̂,π) : π
i = bri(q̂i

+ q̂i) and q̂i
+ q̂i ≡ ui(·,π−i)}

and Vz(Λ) = 0.3

We next focus on potential polymatrix games with the
potential function φ(·) : A → R and introduce the candidate
Vp(·) defined by

Vp(q̂, q̂,π) := −φ(π)−∑
i∈I

τH(π i)

+2∑
i∈I

∥qi −ui(·,π−i)∥2. (32)

Remark 3. The Lyapunov function Vp(·) reduces to the one
in [9] if agents have full access to observations.

The following proposition shows that the candidate Vp(·) is
a Lyapunov function for (29) in potential polymatrix games.

Proposition 2. Given a potential polymatrix game P and
the o.d.e. (29), the function Vp(·) is a Lyapunov function
for Λ, which is defined in Proposition 1 yet Vp(Λ) is not
necessarily singleton.3

Note that Vp is continuously differentiable. Therefore,
Sard’s Lemma yields that Vp(Λ) has empty interior, e.g., see
[14, Corollary 3.28]. This implies that (20) and (21) also hold
for potential polymatrix games. This completes the proof of
Theorem 1.

3Proofs of Propositions 1 and 2 are provided in the extended version,
available at https://arxiv.org/abs/2409.02663.

V. ILLUSTRATIVE EXAMPLES

In this section, we present simulation results. We generate
fully-connected polymatrix games with uniformly distributed
edge-payoffs ui j for each edge in (i, j) : i < j. For zero-sum
games, we set u ji =−ui j, and for potential games, u ji = ui j.
In zero-sum games, payoffs sum to zero, ∑i∈I ui(a)= 0, while
in potential games, φ(a) = 1

2 ∑i∈I ui(a).
We focus on (n = 4)-agent games where each agent has 3

actions, i.e., |Ai|= 3 for all i. We set the temperature param-
eter τ = 0.25. We generate the observability graphs based on
the Erdős Rényi model with probabilities p∈ {0,0.5,0.75,1}
such that p = 0 and p = 1 correspond, resp., to the no and
full access to observations. We run 50 independent trials for
each p and at each trial, we generate a random observability
graph according to this model. We also run our simulations
over 106 repetitions of the underlying game.

To measure the performance of Algorithm 1, we use two
metrics: QRE-gap, as described in (6), and

qdiff(qk,πk) :=
1
n ∑

i∈I
∥qi

k(·)−ui(·,π−i
k )∥2 (33)

measuring the tracking error between qi
k and ui(·,π−i

k ) aver-
aged across agents, similar to (21). We plot the evolutions
of these metrics for potential polymatrix and zero-sum poly-
matrix games, resp., in Figs. 2 and 3. We observe that these
metrics decay to zero, as suggested by Theorem 1.

We achieve asymptotic convergence for any edge-
connection probability p, with the rate improving as p in-
creases. Convergence is slowest with no observations p = 0,
and fastest with full observations p= 1. We observe that even
though the QRE-gap decays at similar rates for the potential
and zero-sum games under full observations, i.e., p = 1, the
QRE-gap decays slower for the potential games than the
zero-sum games under partial/no observations, i.e., p < 1.
Indeed, the qdiff metrics also decay to zero slower for the
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Fig. 3: Convergence of the QRE-gap (left), and qdiff (right) for different values of edge-connection probability p, in the
zero-sum polymatrix games. The solid curves represent the mean over 50 independent trials and the shaded areas are ±0.5
standard deviations from the mean values.

Fig. 4: An illustration of π i
k’s over the probability simplex

∆i ⊂ R3 for each agent i at the end of 106 iterations and
over 50 independent trials for p = 1. Green and red dots are,
resp., for the potential and zero-sum games. The shaded areas
represent the standard deviations from the mean values.

potential games and this can slow down the QRE-gap’s decay
under partial/no observations. Exploration plays an important
role in minimizing the tracking error. The equilibrium for the
zero-sum game turns out to be more mixed than the potential
game, as illustrated in Fig. 4.

VI. CONCLUSION

We introduced the generalized individual Q-learning dy-
namics to address the challenge of limited observations in
non-cooperative multi-agent systems. By combining belief-
based and payoff-based learning, this approach demonstrates
faster convergence to quantal response equilibrium in net-
worked interconnections of more than two self-interested
agents. The proposed dynamics offer a significant improve-
ment over existing methods, establishing theoretical conver-
gence guarantees in multi-agent zero-sum and potential poly-
matrix games. Through numerical simulations, we validate
the effectiveness of our approach and experimentally observe

the benefits of observing opponents’ actions.
We can list some of the future research directions as fol-

lows: (i) generalizing other payoff-based dynamics to partial
observation settings, (ii) addressing limited access issue for
learning in stochastic games, and (iii) quantifying the impact
of the observations on the learning rate analytically.
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