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Abstract— We study a setting where a detector wishes to
detect and deter adversarial manipulation in an electronic
voting machine. An adversary tries to win the election by
tampering the votes while obfuscating its manipulation. We pose
this problem as a game between the detector and the adversary
and characterize the equilibrium payoffs for the players and
the asymptotic nature of these payoffs. We find that if the
detector is too cautious, then in equilibrium the adversary wins
with a probability higher than its prior probability of winning.
We derive an expression for the deterrence threshold, i.e., the
minimum level of false-alarm that the detector should endure
so that the adversary is not any better off by the manipulation.
With this, asymptotically, the detector can ensure that the
probability of missed-detection becomes zero by appropriately
adjusting the rate of decay of probability of false-alarm. But
if this rate of decay is too ‘fast’, then the adversary can get
an arbitrarily high probability of winning in spite of having
a vanishing prior probability of winning. We then extend
the results to a setting where the detector has incomplete
information about the adversary.

I. INTRODUCTION

An Electronic Voting Machine (EVM) is a digital voting
machine that records the votes of individuals and is used
in numerous countries during elections [1]. In an EVM,
votes are recorded in a storage device by pressing a button
allotted to a certain party or individual. Elections being one
of the pillars of democracy, it is of interest to detect and
deter any fraudulent manipulation. Suppose an investigating
entity (detector) can only read the votes that are recorded
in the EVM. We ask the following question – how well can
this entity detect any fraudulent manipulation in the voting
process? Is there a way to deter the manipulation by any
adversary? And when does the adversary succeed?

EVM manipulation has a few peculiarities. The EVM can
be hacked by an adversary who can replace the original
votes recorded in it by any set of votes. This is in contrast
with a paper ballot where the manipulation effort grows
with the number of votes manipulated. In elections, usually
an independent provision (say through social identity cards)
tracks the number of votes cast. Thus, in any manipulation
the adversary is constrained to keep the total votes constant.

Elections are also a sensitive and expensive affair. The
detector faces a dilemma of balancing the real-world require-
ment of both catching fraud, but also of being very cautious
and certain when calling for it. Frequent or indiscriminate
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Fig. 1: A detector tries to detect fraud using EVM data

raising of alarms does catch and deter frauds, but also leads
to significant degradation in the public’s faith in the electoral
process, and damages the detector’s credibility. The knowl-
edge that the detector is faced with this dilemma makes it
possible for an adversary to manipulate stealthily to improve
its chances of winning. Motivated by this, we propose a
game-theoretic model to address the above questions.

We consider a setting where an EVM can be manipulated
by an adversary such that the recorded votes are modified.
A detector can read the votes from the EVM and declare
‘no manipulation’ (H0) or ‘some manipulation’ (H1). This
is depicted in Figure 1. When the detector declares H1, the
entire election is scrapped and the adversary’s efforts, if any,
are in vain. We assume that the votes are generated by a fixed
distribution that is known by adversary and the detector.

We study this problem under a hypothesis testing-like
framework where the detector encounters two types of errors
based on its decisions – false-alarm and missed-detection.
A false-alarm error occurs when the detector declares H1

where there was no manipulation. A missed-detection error
occurs when the detector declares H0 when there was some
manipulation. The adversary aims to modify the votes so
that they lie in a certain winning set and that the detector
decides H0. We call this as the event of winning. We
pose the problem as a game between the detector and the
adversary where the detector minimizes the missed-detection
probability subject to a bound on the false-alarm probability.
The adversary maximizes the probability of winning.

We allow randomized strategies and study the problem
under two settings. In the first setting, the detector perfectly
knows the winning set. Although the game is a non-zero sum
game, we show that under a non-degeneracy requirement,
it reduces to a constant-sum game. We get the remarkable
finding that if the false-alarm bound is below a certain
threshold, then in any equilibrium, the adversary wins with
a probability higher than its prior probability of winning.
This leads us to define the notion of deterrence threshold,
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that is the minimum false-alarm error that the detector must
bear to ensure that the posterior probability of winning is no
more than the prior probability of winning. The deterrence
threshold is given by pw(1 − pw), where pw is the prior
probability of winning. We then study the asymptotic nature
of the equilibrium by assuming votes are generated i.i.d.
according to a certain distribution, and determine conditions
under which the probabilities of false-alarm and missed-
detection approach zero and determine their rates of con-
vergence. We show that despite the adversary bearing no
cost for its manipulation, the detector can ensure that the
missed-detection probability becomes zero by appropriately
adjusting the rate of decay of false-alarm probability. We
also show that if this rate is too ‘fast’, i.e., the detector is
too cautious in making a false-alarm, then the adversary can
get an asymptotically arbitrarily high probability of winning.
This holds despite of a vanishing prior winning probability.

We finally study a setting where the detector does not
exactly know the winning set of the adversary. We show
that under a similar non-degeneracy requirement, the game
reduces to a constant-sum game and the equilibria of the
game are characterized by a linear program. We then present
analogous conditions on the threshold for deterrence.

The adversarial hypothesis problem was introduced by
Barni and Tondi in [2]. They study a setting where an
adversary wishes to deceive a detector by manipulating the
samples subject to a cost. Further discussion and variants can
be found in [3]. The work closest to our setting is the work
of Yasodharan and Loiseau in [4] where they study a game
between an adversary and a detector where the adversary
deceives by choosing the distribution for generating the
samples. They show the existence of the Nash equilibrium
and determine the asymptotic nature of the equilibrium. The
adversarial setting is studied in sequential hypothesis testing
problem by Zhang and Zou in [5], Jin and Lai in [6], Pan
et al. in [7] and Cao et al. in [8]. Our setting where the
adversary is interested in winning and faces no cost, has, to
the best of our knowledge, not been studied before.

The problem is formulated in Section II. The reduction
to a constant-sum game and its analysis is discussed in
Section III. The asymptotics are discussed in Section IV.
In Section V, we discuss a case when detector has imperfect
information of the winning set. We conclude in Section VI.

II. PROBLEM FORMULATION

A. Notation

All random variables are discrete and denoted by
upper-case letters, say, X,Y, Z and their instances by
x, y, z. Script letters X ,Y,Z denote their alphabet spaces.
PX denotes the probability of the source. The upper-
case letter Q, with an appropriate subscript, denotes
the strategies of the detector and adversary. P(X )
denotes the space of probability distributions on X .
For a sequence x ∈ Xn, Px denotes the empirical
distribution where Px(i) := |{k : xk = i}|/n, ∀i ∈ X .
P(A) denotes the probability of an event or a
set A computed under the underlying measure.

supp(P ) denotes the support of a distribution P .
We write

∑
x,y∈Cn PX(x)QY |X(y|x)QZ|Y (H0|y) =

(PXQY |XQZ|Y )(H0),
∑
x∈Cn PX(x)QY |X(y|x) =

(PXQY |X)(y) and
∑
i∈Θ,x,y∈Cn Pθ(i)PX(x)QY |X(y|x)×

QZ|Y (H0|y) = (PθPXQY |X,θQZ|Y )(H0).

B. The EVM manipulation game

An EVM records the votes of n voters as n-length strings
X from Cn where C = {0, . . . , q − 1} is a finite set of
candidates. The votes are assumed to be generated i.i.d.
according to PX(x) =

∏
i PX(xi), x ∈ Cn for a fixed

PX ∈ P(C). We denote the votes that are stored in the EVM
as Y ∈ Cn. In the absence of any interference, Y = X . In the
presence of an adversary, there may be a manipulation such
that Y may not equal X . Note that the i.i.d. nature of PX
and string structure of X are invoked for the asymptotics;
they are not required for the one-shot formulation.

The detector, on observing Y , has to take a decision of no
adversarial manipulation (H0

∼= Y = X) or some adversarial
manipulation (H1

∼= Y 6= X). The decision of the detector is
denoted as Z ∈ H = {H0, H1} and is chosen according to
the conditional distribution QZ|Y ∈ P(Cn|Cn). The adver-
sary can also observe the votes stored in the EVM and can
alter them according to the distribution QY |X ∈ P(Cn|Cn).
The false-alarm error is the event {Y = X,Z = H1} and a
missed-detection error is the event {Y 6= X,Z = H0}. The
respective probabilities are

PF (QY |X , QZ|Y ) = P (Y = X,Z = H1)

=
∑
x∈Cn

PX(x)QY |X(x|x)QZ|Y (H1|x),

PM (QY |X , QZ|Y ) = P (Y 6= X,Z = H0)

=
∑

x,y∈Cn,y 6=x

PX(x)QY |X(y|x)QZ|Y (H0|y).

The adversary is concerned with a winning set W ⊆ Cn.
The adversary wins in the event {Y ∈ W, Z = H0}. The
probability of winning is then given as

PW (QY |X , QZ|Y ) = P (Y ∈ W, Z = H0)

=
∑

x∈Cn,y∈W
PX(x)QY |X(y|x)QZ|Y (H0|y). (1)

We formulate this problem as a simultaneous-move game
between the detector and the adversary. We define

uD(QY |X , QZ|Y ) = PM (QY |X , QZ|Y ),

uA(QY |X , QZ|Y ) = PW (QY |X , QZ|Y ).

The detector minimizes uD(QY |X , QZ|Y ) while ensuring
that PF (QY |X , QZ|Y ) stays below a threshold γ ∈ [0, 1].
The adversary maximizes uA(QY |X , QZ|Y ). We refer to this
as the EVM manipulation game and solve for the NE.

Definition 2.1: A pair (Q∗Y |X , Q
∗
Z|Y ) is a Nash equilib-

rium of the game if PF (Q∗Y |X , Q
∗
Z|Y ) ≤ γ and

uA(Q∗Y |X , Q
∗
Z|Y ) ≥ uA(QY |X , Q

∗
Z|Y ) ∀ QY |X ,

uD(Q∗Y |X , Q
∗
Z|Y ) ≤ uD(Q∗Y |X , QZ|Y ) ∀ QZ|Y .
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This game has coupled constraints [9], and standard results
on existence of equilibria [10] may not directly apply. How-
ever, we show that it can be analyzed by such techniques.

III. NASH EQUILIBRIUM OF THE GAME

In this section, we determine a class of equilibrium strate-
gies of the game. We then show that under a restriction on the
strategies of the adversary, the game reduces to a constant-
sum game whose saddle point corresponds to an equilibrium
from this class. Define f(γ,W) = max

{
1− γ/P(W), 0

}
.

Theorem 3.1: For all π ∈ [0, 1] and W ⊆ W , the pair
(Q∗Y |X , Q

∗
Z|Y ) are a class of Nash equilibria where

Q∗Y |X(y|x) =

{
1 y = x, x ∈ W
PX(y)/P(W) y ∈ W, x /∈ W

, (2)

Q∗Z|Y (H0|y) =

{
f(γ,W) y ∈ W
π y /∈ W

.

Further, P ∗F (Q∗Y |X , Q
∗
Z|Y ) = γ, P ∗M (Q∗Y |X , Q

∗
Z|Y ) = (1 −

P(W))f(γ,W), P ∗W (Q∗Y |X , Q
∗
Z|Y ) = f(γ,W). In particu-

lar, a Nash equilibrium exists.
Proof: Let Q∗Y |X be as given in (2). Then any strategy

QZ|Y in response to Q∗Y |X must satisfy

PF (Q∗Y |X ,QZ|Y ) =
∑
x∈W

PX(x)(1−QZ|Y (H0|x))

= P(W)−
∑
x∈W

PX(x)QZ|Y (H0|x) ≤ γ. (3)

Since supp(Q∗Y |X(.|x)) =W for all x and Q∗Y |X(y|x) = 0

if x ∈ W and y 6= x, we have uD(Q∗Y |X , QZ|Y ) =∑
x/∈W,y 6=x,y∈W PX(x)Q∗Y |X(y|x)QZ|Y (H0|y) = (1 −

P(W))×
∑
y∈W PX(y)QZ|Y (H0|y)/P(W)

≥ (1− P(W))
(

1− γ/P(W)
)

= (1− P(W))f(γ,W). (4)

The inequality in (4) follows from (3). For Q∗Z|Y , we get∑
y∈W PX(y)Q∗Z|Y (H0|y) = P(W)f(γ,W). Thus, Q∗Z|Y

satisfies (3) and achieves the lower bound in (4) and hence
is a best response to Q∗Y |X . Fixing Q∗Z|Y , for any QY |X , we
have uA(QY |X , Q

∗
Z|Y ) = f(γ,W)

∑
y∈W(PXQY |X)(y).

Since the payoff is the same for all QY |X supported on W ,
Q∗Y |X is a best response to Q∗Z|Y .
In equilibrium the adversary tries to ensure that all the votes
lie in the set W while obfuscating the output. The detector
declares a fraud (H1) with uniform probability ∀y ∈ W . For
y /∈ W , it can declare fraud (H1) with any probability.

Observe that taking W such that P(W) ≤ γ leads
to the equilibrium, where P ∗M (Q∗Y |X , Q

∗
Z|Y ) = 0 and

P ∗W (Q∗Y |X , Q
∗
Z|Y ) = 0. Also, the adversary does not gain by

manipulating x when it lies inW . Yet our formulation could
lead to equilibria where such manipulation is performed.
We view these equilibria as degenerate equilibria arising
primarily because there is no cost associated with manip-
ulation. Moreover, the highest payoff of the adversary in
the above equilibria is max {1− γ/P(W), 0} which occurs

whenW =W . With this motivation and to avoid degenerate
equilibria, we restrict the strategies of the adversary to

QA =
{
QY |X : QY |X(x|x) = 1 ∀ x ∈ W

}
. (5)

Taking W = W , Theorem 3.1 gives a set of equilibria
(Q∗Y |X , Q

∗
Z|Y ) where Q∗Y |X ∈ QA. The following result

shows that the game reduces to a constant-sum game and
hence, the payoffs are the same under all equilibria. Define

QD =
{
QZ|Y ∈ P(Cn|Cn) :

∑
x∈W

PX(x)QZ|Y (H1|x) ≤ γ
}
.

Theorem 3.2: Any equilibrium (Q∗Y |X , Q
∗
Z|Y ) of the

game, where Q∗Y |X ∈ QA, also solves the minimax problem

min
QZ|Y ∈QD

max
QY |X∈QA

PM (QY |X , QZ|Y ). (6)

Further, for all such equilibria P ∗M (Q∗Y |X , Q
∗
Z|Y ) = (1 −

P(W))f(γ,W) and P ∗W (Q∗Y |X , Q
∗
Z|Y ) = f(γ,W).

Proof: For all QY |X ∈ QA and QZ|Y , we write
(PXQY |XQZ|Y )(H0) =∑

x,y∈Cn,y 6=x

PX(x)QY |X(y|x)QZ|Y (H0|y)

+
∑

x,y∈Cn,y=x

PX(x)QY |X(x|x)QZ|Y (H0|x)

= PM (QY |X , QZ|Y ) +
∑
x∈Cn

PX(x)QY |X(x|x)

− PF (QY |X , QZ|Y ).

For all x ∈ Cn, the payoff of the adversary in
(1) is only determined by QY |X(y|x) where y ∈
W . Hence, without loss of optimality we assume that
supp(QY |X(·|x)) ⊆ W ∀x ∈ Cn. Using this, we
have (PXQY |XQZ|Y )(H0) = PW (QY |X , QZ|Y ). More-
over, QY |X ∈ QA, gives

∑
x PX(x)QY |X(x|x) =

P(W). Thus, PW (QY |X , QZ|Y ) = PM (QY |X , QZ|Y ) +
P(W) −

∑
x∈W PX(x)QZ|Y (H1|x). This equality im-

plies that the adversary maximizes PM (QY |X , QZ|Y ) by
choosing QY |X ∈ QA. While the detector minimizes
PM (QY |X , QZ|Y ) subject to

∑
x∈W PX(x)QZ|Y (H1|x) ≤

γ. If γ ≥ P(W) then trivially QZ|Y (H1|x) = 1 ∀x ∈ W .
If γ < P(W) then

∑
x∈W PX(x)QZ|Y (H1|x) = γ. In any

case, PW (QY |X , QZ|Y ) − PM (QY |X , QZ|Y ) is a constant
in any equilibrium. Thus any equilibrium solves (6). The
minimax theorem holds since QA and QD are closed, convex
sets and the objective is linear in the strategies. Finally,
(Q∗Y |X , Q

∗
Z|Y ) from Theorem 3.1 with W = W solves (6).

Henceforth, (Q∗Y |X , Q
∗
Z|Y ) stand for the pair of strategies

from Theorem 3.1 where W =W .

A. Deterrence by controlling the threshold γ

The adversary would benefit from manipulation only if the
equilibrium winning probability is more than the prior prob-
ability of winning. Since the equilibrium winning probability
decreases with increasing threshold γ, there is a minimum
false-alarm probability that the detector must bear so that this
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probability is not more than the prior probability of winning.
Formally, we define this as a deterrence threshold.

Definition 3.1: A deterrence threshold, denoted as γD,
is the smallest value such that for all γ ≥ γD, we have
P ∗W (Q∗Y |X , Q

∗
Z|Y ) ≤ P(W).

Lemma 3.3: The deterrence threshold γD is given by
γD = P(W)(1− P(W)).

Proof: Suppose γ ≤ P(W). Then, P ∗W (Q∗Y |X , Q
∗
Z|Y ) ≤

P(W) gives 1− γ/P(W) ≤ P(W) and the value of γD.
Observe that γD is maximum when P(W) = 0.5. Intuitively,
this implies that when the adversarial candidate has a 50%
chance of winning without any interference, then the detector
must endure the highest possible false-alarm in order to
minimize the chance of missing the detection of interference.

IV. ASYMPTOTICS

Any election has finitely many and large number of voters.
Thus in addition to the limiting value of probabilities, it is
also of interest to know the rate at which these probabilities
approach their limits. Suppose the adversary tries to manip-
ulate votes to ensure that the candidate 0 wins. Let n denote
the number of votes. The winning set and the set of winning
distributions, denoted as Wn and PW respectively, are

Wn = {y ∈ Cn : Py(0) ≥ Py(i) ∀ i ∈ C} , (7)
PW = {P ∈ P(C) : P (0) ≥ P (i) ∀ i ∈ C}. (8)

We take the threshold on the false-alarm probability to be γn.
We define P ∗F (n) = γn, P ∗M (n) = (1 − P(Wn))f(γn,Wn)
and P ∗W (n) = f(γn,Wn). Here f(γn,Wn) is as defined
in Section III. Further, we define P ∗i = limn P

∗
i (n) for

i ∈ {F,M,W}, assuming these limits exist. The rate of
convergence of the probabilities to their limits is defined as

R∗i = lim sup
n→∞

− 1

n
log(P ∗i − P ∗i (n)) i ∈ {F,M,W}.

If there exists N ∈ N such that P ∗i (n) = 0 ∀n ≥ N , then
we define R∗i := ∞. We now compute the asymptotics of
P(Wn). For p ∈ Pn(C), define Unp =

{
x ∈ Cn : Px = p

}
,

where Px is the empirical distribution of x. For PX, the PX-
typical set for any ε > 0 is defined as TnPX,ε

=
{
x ∈ Cn :

|Px(i)−PX(i)| < ε
}

. Let P0 ⊆ P(C) be any set. Then, from
[11] Ch.2, problem 2.12, we have that

lim
n→∞

− 1

n
logP

( ⋃
Pn∈P0

UnPn

)
= inf
Q̄∈P0

D(Q̄||PX). (9)

Theorem 4.1: Let Wn be as in (7) and PW be as in (8).
1) If PX(0) < PX(i) for some i ∈ C, i 6= 0, then

limn P(Wn) = 0 and limn→∞− 1
n logP(Wn) =

infQ̄∈PW D(Q̄||PX).
2) If PX(0) > PX(i) ∀i ∈ C, i 6= 0, then

limn P(Wn) = 1 and limn→∞− 1
n log(1 − P(Wn)) =

infQ̄∈P(C)\PW D(Q̄||PX).
Proof: We write Wn =

⋃
Pn∈PW UnPn .

1) Choose ε > 0 such that PX(0)+ε < PX(i)−ε holds for
some i ∈ C, i 6= 0 and consider the PX-typical set TnPX,ε

. With
this ε, we have TnPX,ε

∩Wn = ∅ ∀n. Since limn P(TnPX,ε
) =

1, we have P(Wn) = 0. Moreover, using (9), we have
limn→∞− 1

n logP(Wn) = infQ̄∈PW D(Q̄||PX).
2) Choose ε > 0 such that PX(0) − ε > PX(i) +

ε ∀i ∈ C, i 6= 0 and consider the PX-typical set TnPX,ε
.

We have TnPX,ε
⊆ Wn ∀n and hence limn P(Wn) = 1.

Further, 1 − P(Wn) = P(
⋃
Pn∈P\PW UnPn). Using (9),

limn→∞− 1
n log(1− P(Wn)) = infQ̄∈P\PW D(Q̄||PX).

Let Q∗ := arg minQ̄∈PW D(Q̄||PX). Let γn = exp(−nα)
with α ≥ 0. Let γ0 := limn γn/P(Wn). The next theorem
characterizes the asymptotics of the equilibrium probabilities.

Theorem 4.2: Suppose limn P(Wn) = 0. Then,
1) For all α > 0, P ∗F = 0 and R∗F = α
2) P ∗M = P ∗W = max {1− γ0, 0}

• If α < D(Q∗||PX), then P ∗M = P ∗W = 0 and R∗M =
∞ and R∗W =∞

• If α > D(Q∗||PX), then P ∗M = P ∗W = 1 and R∗M =
R∗W = α−D(Q∗||PX)

Suppose limn P(Wn) = 1. Then,
A) For all α > 0, P ∗F = 0 and R∗F = α
B) For all α ≥ 0, P ∗M = 0 and R∗M =

infQ∈P(C)\PW D(Q||PX)
C) For all α > 0, P ∗W = 1 and R∗W = α

Proof: Let limn P(Wn) = 0. Since P ∗F (n) = γn,
1) follows. For 2), we have P ∗W = limn f(γn,Wn) =
max{1 − γ0, 0}. Since P ∗M (n) = (1 − P(Wn))P ∗W (n)
the claim follows for P ∗M . If α < D(Q ∗ ||PX), then γn
vanishes slowly than P(Wn) and hence γ0 > 1. Thus there
∃ N ∈ N such that γn/P(Wn) > 1 ∀n ≥ N and hence
P ∗M (n) = P ∗W (n) = 0 ∀n ≥ N . If α > D(Q∗||PX), then
γ0 = 0 and max{1− γ0, 0} = 1. Further, R∗M and R∗W are
determined by the rate at which γn/P(Wn) vanishes which
is α−D(Q∗||PX).

Now let limn P(Wn) = 1. Part A) follows from 1).
Further, P ∗M = limn(1 − P(Wn))P ∗W (n) = 0 ∀α. From
Theorem 4.1, we get R∗M = infQ∈P(C)\PW D(Q||PX). If
α > 0, then limn γn/P(Wn) = 0 and hence P ∗W = 1. The
rate R∗W is same as rate of convergence of γn to zero.
Notice that in the case where limn P(Wn) = 0, the adversary
loses in the absence of any manipulation. However, if the
adversary manipulates the votes and if the detector cannot
tolerate a rate of decay of P ∗F (n) slower than D(Q∗||PX),
then asymptotically, the adversary can win with arbitrarily
high probability with increasing n. Thus, if the detector is
too cautious about making a false-alarm error, it pays with a
higher missed-detection error which the adversary can use
to win surely. When the rate is slower than D(Q∗||PX),
the adversary can ensure that P ∗M (n) and P ∗W (n) become
zero at finite n. For the case where limn P(Wn) = 1,
the adversary wins in any case. However, the detector can
control the ‘rate’ at which the adversary wins by choosing
an appropriate α. Observe that the asymptotic results depend
only on f(γn,Wn) and not on the i.i.d. nature of the
sequence of votes x. This assumption is required only to
compute the rate of convergence of the probabilities.

Figure 2 shows the rates of the equilibrium probabilities
for the case when limn P(Wn) = 0. For α < D(Q∗||PX),
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Fig. 2: R∗M and R∗W as a function of R∗F when
limn P(Wn) = 0. The colour denotes the values of P ∗M =
P ∗W . The black line is R∗M = R∗W as a function of R∗F .

P ∗M (n) and P ∗W (n) are zero after some finite n. For α >
D(Q∗||PX), they tend to one at the rate α−D(Q∗||PX).

V. ADVERSARY WITH MULTIPLE TYPES

We now discuss a setting where the detector has imperfect
information about the winning set of the adversary. We model
this as an adversary having a type θ in a finite set of K
types Θ = {1, . . . ,K}. The corresponding winning set of
an adversary with type θ = i is given as Wi. We assume
that Wi ∩ Wj = ∅ ∀i, j ∈ Θ, i 6= j. The strategy of the
adversary is now given as QY |X,θ. The detector has a belief
over the set of types given by Pθ ∈ P(Θ). The strategy set
of the detector is same as in Section II. The probabilities are

PF (QY |X,θ, QZ|Y ) = P(Y = X,Z = H1)

=
∑

i∈Θ,x∈Cn
Pθ(i)PX(x)QY |X,θ(x|x, i)QZ|Y (H1|x),

PM (QY |X,θ, QZ|Y ) = P(Y 6= X,Z = H0)

=
∑

i∈Θ,x∈Cn,y 6=x

Pθ(i)PX(x)QY |X,θ(y|x, i)QZ|Y (H0|y),

PW (QY |X,θ, QZ|Y ) = P(Y ∈ W, Z = H0)

=
∑

i∈Θ,x∈Cn,y∈Wi

Pθ(i)PX(x)QY |X,θ(y|x, i)QZ|Y (H0|y).

The detector minimizes the probability PM (QY |X,θ, QZ|Y )
subject to a constraint on PF (QY |X,θ, QZ|Y ) while the
adversary maximizes PW (QY |X,θ, QZ|Y ). As in the Sec-
tion III, we restrict the strategies of the adversary to

QA :=
{
QY |X,θ : ∀ i ∈ Θ, QY |X,θ(x|x, i) = 1 ∀ x ∈ Wi

}
.

With this, PF (QY |X,θ, QZ|Y ) ≤ γ restricts QZ|Y to

QD =
{
QZ|Y :

∑
i∈Θ,x∈Wi

PX(x)Pθ(i)QZ|Y (H1|x) ≤ γ
}
.

Let uD(QY |X,θ, QZ|Y ) = PM (QY |X,θ, QZ|Y ) and
uA(QY |X,θ, QZ|Y ) = PW (QY |X,θ, QZ|Y ). The Nash
equilibrium of the game is defined as follows.

Definition 5.1: A pair (Q∗Y |X,θ, Q
∗
Z|Y ) is a NE if

uA(Q∗Y |X,θ, Q
∗
Z|Y ) ≥ uA(QY |X,θ, Q

∗
Z|Y ) ∀ QY |X,θ ∈ QA,

uD(Q∗Y |X,θ, Q
∗
Z|Y ) ≤ uD(Q∗Y |X,θ, QZ|Y ) ∀ QZ|Y ∈ QD.

To determine a class of Nash equilibria for the game, we
define the following linear program.

Definition 5.2: Consider an LP defined as

LP : min
c∈[0,1]|Θ|

∑
i∈Θ

Pθ(i)(1− P(Wi))ci

s.t
∑
i∈Θ Pθ(i)P(Wi)(1− ci) ≤ γ.

We now present a class of Nash equilibrium for the game in
terms of the optimal solution of the above LP.

Theorem 5.1: Let strategies of adversary be restricted to
QA. Then, the pair (Q∗Y |X,θ, Q

∗
Z|Y ) is a class of Nash

equilibrium of the game where, for all i ∈ Θ,

Q∗Y |X,θ(y|x, θ) =

{
1 x ∈ Wi, y = x, θ = i
PX(y)
P(Wi)

x /∈ Wi, y ∈ Wi, θ = i
,

Q∗Z|Y (H0|y) =

{
c∗i y ∈ Wi

1 else
,

where c∗ ∈ [0, 1]|Θ| is an optimal solution of the LP
in Definition 5.2. Furthermore, P ∗F (Q∗Y |X,θ, Q

∗
Z|Y ) = γ,

P ∗M (Q∗Y |X,θ, Q
∗
Z|Y ) =

∑
i∈Θ Pθ(i)(1 − P(Wi))c

∗
i and

P ∗W (Q∗Y |X,θ, Q
∗
Z|Y ) =

∑
i∈Θ Pθ(i)c

∗
i .

Theorem 5.2: Let the strategies of the adversary be re-
stricted to the set QA. Then, any Nash equilibrium of the
game is also a solution of the minimax problem

min
QZ|Y ∈QD

max
QY |X,θ∈QA

PM (QY |X,θ, QZ|Y ). (10)

Proof: For all QY |X,θ ∈ QA and QZ|Y , we
write (PθPXQY |X,θQZ|Y )(H0) = PM (QY |X,θ, QZ|Y ) −
PF (QY |X,θ, QZ|Y ) +

∑
x∈Cn PX(x)(PθQY |X,θ)(x|x). As

in the proof of Theorem 3.2, without loss of optimality
we can assume that the adversary with type i plays
QY |X,θ where

∑
y∈Wi

QY |X,θ(y|x, i) = 1 ∀x ∈ Cn. Thus
(PθPXQY |X,θQZ|Y )(H0) = PW (QY |X,θ, QZ|Y ). More-
over, QY |X,θ ∈ QA gives

∑
x∈Cn PX(x)(PθQY |X,θ)(x|x) =∑

i∈Θ Pθ(i)P(Wi) and PF (QY |X,θ, QZ|Y ) =∑
i∈Θ,x∈Wi

Pθ(i)PX(x)QZ|Y (H1|x). Thus,
PW (QY |X,θ, QZ|Y ) = PM (QY |X,θ, QZ|Y ) +∑
i∈Θ Pθ(i)P(Wi) −

∑
i∈Θ,x∈Wi

Pθ(i)PX(x)QZ|Y (H1|x).
Final arguments are similar to the proof of Theorem 3.2

We now prove Theorem 5.1.
Proof: From Theorem 5.2 it suffices to solve

(10) to determine a Nash equilibrium. Assume that
γ <

∑
i∈Θ Pθ(i)P(Wi). For any strategy QZ|Y , the best

response of the adversary is QY |X,θ ∈ QA where ∀i ∈ Θ
and x /∈ Wi,

∑
y∈W∗i

QY |X,θ(y|x, i) = 1 with W∗i :=

arg maxy∈Wi
QZ|Y (H0|y). Thus, uD(QY |X,θ, QZ|Y ) =∑

x/∈Wi,y∈W∗i
PX(x)(PθQY |X,θ)(y|x)QZ|Y (H0|y) =∑

i∈Θ Pθ(i)(1 − P(Wi)) maxy∈Wi
QZ|Y (H0|y). Thus, the

minimax problem is given as

min
QZ|Y ∈QD

∑
i∈Θ

Pθ(i)(1− P(Wi)) max
y∈Wi

QZ|Y (H0|y). (11)
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We show that the optimal strategy for the detector is a
strategy where QZ|Y (H0|y) = ci ∀y ∈ Wi, ∀i ∈ Θ, with ci
being a constant. Let Q̂Z|Y ∈ QD and take Q̂Z|Y (H0|y) =
c1 ∀y ∈ W1. Now consider Q′Z|Y ∈ QD such that
Q′Z|Y (H0|y) = Q̂Z|Y (H0|y) for y /∈ W1 and Q′Z|Y (H0|y)
is not a constant on W1. Since γ <

∑
i∈Θ Pθ(i)P(Wi),

the constraint in QD holds with equality and hence there
exists a y′ ∈ W1 such that Q′Z|Y (H0|y′) > c1. Thus,
maxy∈W1

Q̂Z|Y (H0|y) = c1 < maxy∈W1
Q′Z|Y (H0|y). We

can argue similarly for all types i ∈ Θ. Thus, the minimum
in (11) is attained by a strategy Q∗Z|Y where

Q∗Z|Y (H0|y) =

{
ci y ∈ Wi

1 else
.

with c ∈ [0, 1]|Θ| being constants. Substituting in (11), we
get that the optimal values of {ci}i∈Θ is given by the LP.

The following defines the deterrence thresholds for i ∈ Θ.
Definition 5.3: A deterrence threshold for the type i ∈ Θ,

denoted as γiD, is the smallest value such that for all γ ≥ γiD
and all equilibria (Q∗Y |X,θ, Q

∗
Z|Y ), we have

P(Z = H0, Y ∈ Wi|θ = i) ≤ P(Wi).
Theorem 5.3: Suppose P(Wi) 6= P(Wj) for all i, j ∈

Θ, i 6= j. Let c∗ ∈ [0, 1]|Θ| be an optimal solution of the
LP and let k ∈ Θ be such that c∗k > 0. Then,

c∗j =

{
0 P(Wj) < P(Wk)

1 P(Wj) > P(Wk)
.

Further, γkD =
∑
j∈Θ:P(Wj)<P(Wk) Pθ(j)P(Wj)+Pθ(k)(1−

P(Wk))P(Wk).
Proof: We write the Lagrangian of the LP as

L(c, µ, ν, λ) =
∑
i∈Θ

Pθ(i)(1− P(Wi))ci −
∑
i∈Θ

µici

+
∑
i∈Θ

νi(ci − 1) + λ
(∑
i∈Θ

Pθ(i)P(Wi)(1− ci)− γ
)
,

where µ, ν ∈ R|Θ|, µ, ν ≥ 0 are the Lagrange multipliers
corresponding to the constraints ci ≥ 0 and ci ≤ 1, and
λ ≥ 0 is the multiplier corresponding to the false-alarm
constraint. The optimal Lagrange multipliers, denoted by
(µ∗, ν∗, λ∗), must satisfy the KKT conditions, where ∀i,

Pθ(i)(1− P(Wi))− λ∗Pθ(i)P(Wi)− µ∗i + ν∗i = 0, (12)

λ∗
(∑

i∈Θ Pθ(i)P(Wi)(1 − c∗i ) − γ
)

= 0, µ∗i c
∗
i = 0 and

ν∗i c
∗
i = 0. Since c∗k > 0, we have µ∗k = ν∗k = 0 which

gives λ∗ = (1 − P(Wk))/P(Wk). Now take j ∈ Θ, j 6= k.
Substituting the value of λ∗ in (12), we get

Pθ(j)(1− P(Wj))−
1− P(Wk)

P(Wk)
Pθ(j)P(Wj)− µ∗j + ν∗j

= (Pθ(j)/P(Wk))(P(Wk)− P(Wj))− µ∗j + ν∗j = 0.

If P(Wj) < P(Wk), then it must be that µ∗j > 0 which gives
c∗j = 0. If P(Wj) > P(Wk), then ν∗j > 0 and c∗j = 1.

Now for γ = γkD, we have c∗k = P(Wk). From the
constraint, we get that

∑
j∈Θ Pθ(j)P(Wj)(1−c∗j )−γkD = 0.

This gives that γkD =
∑
j∈Θ:P(Wj)<P(Wk) Pθ(i)P(Wj) +

Pθ(k)P(Wk)(1− P(Wk)). This completes the proof.
The above theorem shows that if the adversary with type k
is deterred by the adversary, then all the types j ∈ Θ are
deterred where P(Wj) < P(Wk). The deterrence threshold
also depends on all P(Wj) with P(Wj) < P(Wk), but is
independent of P(Wj) with P(Wj) > P(Wk).

VI. CONCLUSION

We studied a game-theoretic setting where a detector
wishes to detect and deter adversarial manipulation in an
EVM and performed a static and asymptotic analysis. We
found that if the rate of decay of false-alarm probability is too
fast, then the detector misses detection and adversary wins
with arbitrarily high probability, while if it is low enough,
detection is possible. We defined a notion of deterrence
threshold on the false-alarm probability that ensures that the
posterior probability of winning of the adversary is always
lower than the prior winning probability. We then extended
the results to the case where the detector has imperfect
information about the winning set of the adversary.
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