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Abstract— We consider distributionally robust optimal control
of stochastic linear systems under signal temporal logic (STL)
chance constraints when the disturbance distribution is unknown.
By assuming that the underlying predicate functions are
Lipschitz continuous and the noise realizations are drawn from a
distribution having a concentration of measure property, we first
formulate the underlying chance-constrained control problem
as stochastic programming with constraints on expectations
and propose a solution using a distributionally robust approach
based on the Wasserstein metric. We show that by choosing
a proper Wasserstein radius, the original chance-constrained
optimization can be satisfied with a user-defined confidence level.
A numerical example illustrates the efficacy of the method.

I. INTRODUCTION

Control of stochastic systems under temporal logic finds
application in a wide range of domains, including robotics,
autonomous systems, and cyber-physical systems. The formal
specification of system properties that can be formulated in
a probabilistic setting, enabling a systematic approach to
quantifying uncertainty and handling feasibility, lies at the
core of this problem [1]. Signal temporal logic (STL) is a
formal language that allows us to encode time-constrained
tasks using both Boolean and quantitative semantics [2], [3].
When systems are subject to stochastic disturbances and STL
specification, a typical probabilistic approach is to formulate
the problem as a chance-constrained program (CCP) [4].

Most recent results in the probabilistic STL context
focus on applying probability or risk measures to individual
predicates. To address the impact of critical tail events
when STL formulas are violated, [5] propose Risk Signal
Temporal Logic, incorporating risk constraints over predicates
while preserving Boolean and temporal operators. Authors
in [6] introduce probabilistic signal temporal logic, allowing
expression of uncertainty by incorporating random variables
into predicates. Similarly, in [7], chance-constrained temporal
logic formulates chance constraints as predicates to model
perception uncertainty for autonomous vehicles. Stochastic
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temporal logic introduced in [8] is similar in syntax to chance-
constrained temporal logic but is designed for stochastic
systems, where perturbations affect system dynamics rather
than predicate coefficients.

Top-down approaches study STL probabilistic verification
of stochastic systems considering chance constraints on the
entire specification [9]. More closely related to our work
is [10], in which the authors transform chance constraints into
linear constraints using concentration of measure inequalities
to provide a conservative approximation of the feasible
domain. Due to the nonconvex feasible domains typically
induced by CCPs, many studies focus on numerical methods
to handle CCPs, such as randomized optimization where the
original optimization is approximated by a scenario program
(SP) by sampling the uncertainty space. SP approaches have
been studied for convex [11], [12], and nonconvex CCPs [13].

Unlike stochastic optimization settings where the proba-
bility distribution is assumed to be known, distributionally
robust optimization (DRO) addresses the lack of information
on the probability distribution by considering the worst-
case distribution within an ambiguity set. Various methods
exist for constructing ambiguity sets, such as moment
ambiguity [14], Kullback–Leibler divergence-based ball [15],
and Wasserstein-based ball [16]. The Wasserstein ambiguity
set represents a statistical ball within the space of probability
distributions surrounding the empirical distribution, with its
radius measured using Wasserstein distance. Wasserstein DRO
offers a probabilistic guarantee based on finite samples within
a tractable formulation [17] and has attracted significant
attention recently [18].

In the DRO literature, several works have addressed CCP
directly. An explicit reformulation for both individual and
joint CCPs was presented in [19], where uncertainties are
modeled as affine functions. The authors of [20] reformulated
CCP as a conditional value-at-risk (CVaR) mixed-integer
program for affine functions. A more general approach for
CCP has been proposed in [21]. However, dealing with
expectation-constrained programs (ECPs) preserves linearity
and convexity, making it often computationally simpler and
more straightforward compared to evaluating or approximat-
ing CCPs, particularly for non-standard distributions.

An SP approach has been proposed in [22] for solving a
general CCP by transforming it into an ECP assuming that
1) the underlying distribution of the uncertain parameters
satisfies a concentration of measure property and exhibits
bounded variance, and 2) the constraint function is Lipschitz
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continuous in the uncertainty parameters.
In this paper, we formulate a stochastic optimal control

problem as a CCP, where the underlying system is subject to
stochastic disturbances with unknown distribution and a set
of STL specifications. We first assume that the disturbance
realizations follow a concentration of measure property and
that the underlying predicate functions involved in the STL
constraints are Lipschitz continuous in the perturbation param-
eters. We build upon the results in [22] and transform the CCP
to stochastic programming with expectation constraints. Since
the exact distribution is assumed to be unknown, we propose
a data-driven Wasserstein distributionally robust approach
that guarantees STL satisfaction in a probabilistic sense.

The remainder of the paper is organized as follows. In
Section II, we present the system setup, the STL formulation
and the control synthesis problem we study. The construction
of a stochastic program, its connection to the original CCP
through the concentration of measure, and the distributionally
robust solution of the stochastic program are in Section III.
A numerical study is in Section IV, and concluding remarks
are in Section V.

II. PROBLEM FORMULATION

A. Discrete-Time Stochastic Linear Systems

We consider systems in discrete time with state space
X ⊆ Rn, input space U ⊆ Rm, and disturbance set W ⊆ Rn,
that can be modeled by linear difference equations perturbed
by stochastic disturbances:

xk+1 = Axk +Buk + wk, (1)

where xk ∈ X denotes the state of the system at time instant
k, uk ∈ U denotes the control input at time instant k, and
wk ∈ W is a random vector that has an unknown probability
distribution P supported on W . Matrices A ∈ Rn×n, and
B ∈ Rn×m, and initial state x0 are assumed to be known. In
the view of (1), for any k ∈ N, xk is a function of x0, input
sequence vector u0:k := [u⊤0 , . . . , u

⊤
k−1]

⊤, and the process
noise w0:k := [w⊤

0 , . . . , w
⊤
k−1]

⊤:

xk = Akx0 +

k−1∑
i=0

Ak−i−1 (Bui + wi) . (2)

B. STL specifications

We consider signal temporal logic (STL) formulas defined
recursively according to the grammar [23]:

φ ::= T | π | ¬φ | φ ∧ ψ | φU[a,b] ψ,

where T is the true predicate; π is a predicate whose truth
value is determined by the sign of a predicate function of
state variables, i.e. π = {α(x) ≥ 0} with α : Rn → R; ψ is
an STL formula; ¬ and ∧ indicate negation and conjunction
of formulas; and U[a,b] is the until operator with a, b ∈ N.
A finite run ξ := {x0, x1, x2, . . . , xN} satisfies φ at time k,
denoted by (ξ, k) |= φ with the Boolean semantics of STL
formulas defined as follows:

(ξ, k) |= π ⇔ α(xk) ≥ 0,

(ξ, k) |= ¬φ ⇔ ¬((ξ, k) |= φ),

(ξ, k) |= φ ∧ ψ ⇔ (ξ, k) |= φ ∧ (ξ, k) |= ψ,

(ξ, k) |= φU[a,b] ψ ⇔ ∃k′ ∈ {a, . . . , b}, (ξ, k + k′) |= ψ

∧ ∀k′′ ∈ {k, . . . , k′}, (ξ, k′′) |= φ,

Additionally, we derive the disjunction operator as φ ∨ ψ :=
¬(¬φ∧¬ψ), the eventually operator as □[a,b] φ := T U[a,b]φ,
and the always operator as □[a,b] φ := ¬ □[a,b] ¬φ. Thus
(ξ, k) |= □[a,b] φ if φ holds at some time instant between
a + k and b + k and (ξ, k) |= □[a,b] φ if φ holds at every
time instant between a+ k and b+ k.

STL Robustness. In contrast to the above Boolean semantics,
the quantitative semantics (a.k.a. robustness function) of
STL [24] assigns to each formula φ a real-valued function
ρφ of signal ξ and k such that ρφ > 0 implies (ξ, k) |= φ.
The robustness of a formula φ with respect to a run ξ at time
k is defined recursively as

ρ⊤(ξ, k) = +∞
ρµ(ξ, k) = α(xk)

ρ¬ϕ(ξ, k) = −ρϕ(ξ, k)
ρϕ∧ψ(ξ, k) = min(ρϕ(ξ, k), ρψ(ξ, k))

ρϕU[a,b] ψ(ξ, k) = max
k′∈{a,...,b}

(
min (ρψ(ξ, k + k′),

min
k′′∈{k,...,k′}

ρϕ(ξ, k′′))
)
.

Therefore, the value of the robustness function ρϕ(ξ, k) can
be interpreted as how much the trajectory ξ satisfies a given
STL formula ϕ. The robustness of the formulas □[a,b] φ and
□[a,b] φ are

ρ □[a,b] φ(ξ, k) = max
k′∈{a,...,b}

ρφ(ξ, k + k′),

ρ□[a,b] φ(ξ, k) = min
k′∈{a,...,b}

ρφ(ξ, k + k′).

As described above, the robustness function is commonly
defined with its arguments being the system trajectory and
the time index. However, for the scope of this study, it is
more comprehensible to explicitly define the robustness as a
function of the control input and the disturbance. In essence,
as in (2), the system trajectory is determined by the initial
state, input, and disturbance sequence. Therefore, we define
the dynamic-dependent function ϱφ as follows:

ϱφ(uk:N , wk:N , xk, k) := ρφ(ξ, k).

Moreover, at time k = 0 for a given x0, we eliminate xk and
k from the argument of ϱφ and define

ϱφ0 (u,w) := ϱφ(u,w, x0, 0),

where u := u0:N and w := w0:N .

In the following, we make a regularity assumption on
the STL predicate functions. This assumption allows us to
establish the Lipschitz continuity of robustness functions,
define a well-defined chance constraint for the robustness
function, and utilize the concentration of measure property.
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Assumption 1. We assume that the predicate functions are
Lipschitz functions.

C. Chance-constrained optimization

In the following, we introduce the STL chance-constrained
optimization. Our aim is to provide a control input u such
that the function ϱφ0 becomes positive, or specifically lower
bounded by a pre-defined positive robustness level r0. Since
this function is affected by the unknown disturbance w, the
purpose would be to satisfy the inequality

ϱφ0 (u,w) ≥ r0

with probability at least a given threshold. We denote the
N -fold product of the probability measure P by P := PN
supported on the Cartesian product space W := WN , and
we denote U := UN . We then define the probability space
(W,F , P ) and the following chance-constrained program
(CCP):

CCP :

{
minu∈U EP [J(u,w)] ,

s.t. P {ϱφ0 (u,w) ≥ r0} ≥ 1− ε,
(3)

where ε ∈ (0, 1) is the constraint violation tolerance and
J is a lower semi-continuous cost function. The aim of
this optimization is to find an optimal control sequence that
minimizes the expected value of a performance function J
while ensuring that the STL constraint, with robustness level
r0, is satisfied with a probability of at least 1 − ε. Under
Assumption 1 and for the linear system in (1), where the
mapping from the disturbances to the system trajectory is
continuous, the above optimization is well-defined and attains
a solution if it is feasible [22]. This is due to the continuity
of the robustness function under Assumption 1, which arises
from the continuity of functions containing min and max
operators with continuous arguments.

D. Concentration of measure property

In this paper, we make the following assumptions on the
distribution of w.

Assumption 2. (Light-tailed distribution). The distribution of
random variable w is a Light-tailed distribution. More specifi-
cally, there exists a > 1 such that C := EP [exp ∥w∥a] <∞.

Assumption 2 holds for many distributions, e.g., multivari-
ate normal distribution, exponential distribution, log-normal
distribution, and all distributions with bounded support.

Assumption 3. (Concentration of Measure). There exists a
monotonically decreasing function h : R≥0 → [0, 1] such that

P {|f(w)− E [f(w)] |≤ t} ≥ 1− h(t), ∀t ≥ 0, (4)

holds for any Lipschitz continuous function f : W → R with
Lipschitz constant 1.

We recall that a function f : W → R is a Lipschitz
continuous function if there exists L ≥ 0 such that for any
two vectors w1,w2 ∈ W, |f(w1)−f(w2)|

dW(w1,w2)
≤ L holds, where

dW denotes a metric on the set W. Constant L is referred

to as the Lipschitz constant. Throughout this paper, we use
the 2-norm on W to calculate the Lipschitz constants, given
by dW(w1,w2) =

√
⟨w1 −w2,w1 −w2⟩. Note that, by

employing alternative metrics, the general results of the paper
remain valid, and changing the metric only affects the values
of the Lipschitz constant.

Assumption 2 will be utilized in deriving a data-driven
solution to (3) in Section III. We use Assumption 3 to
construct a stochastic program for finding a (possibly sub-
optimal) solution of CCP (3). Note that Assumption 3
also holds for many distributions. Examples of different
distributions with the concentration of measure property and
corresponding h functions can be found in [22]. For instance,
the standard multi-variate Gaussian distribution satisfies (4)
with h(t) = min{2e−2t2/π2

, 1} [25], [26]. Note that if we
substitute h(·) with another monotonically decreasing function
h̄(·), and h̄(·) satisfies h̄(·) ≥ h(·), then the inequality (4)
remains valid when using h̄(·).

In the following, we provide a lemma and a theorem that
enable us to use the concentration of measure property in the
context of STL and robustness function.

Lemma 1. For any two Lipschitz functions f1 : X → R
and f2 : X → R, max(f1, f2) and min(f1, f2) are Lipschitz
functions with L := max(L1, L2), where Li is the Lipschitz
constant of fi, i ∈ {1, 2}.

Proof. The proof is given in the appendix of [27]. ■

Note that Lemma 1 can be extended for the cases where we
have more than two functions inside the min or max operators.
In this case, one can readily verify that min(f1, . . . , fn)
and max(f1, . . . , fn) are Lipschitz functions with constant
max{L1, . . . , Ln} when fi is a Lipschitz function with
constant Li for all i ∈ {1, . . . , n}. Moreover, the result holds
for the combination of min and max with any number of op-
erators. For instance, min(f1, . . . ,max(fj , . . . , fl), . . . , fn)
with 1 ≤ j ≤ l ≤ n, is a Lipschitz function with constant
max{L1, . . . , Ln}. The following theorem uses Lemma 1
and shows that the robustness of an STL specification for
linear systems is a Lipschitz function. Moreover, it provides
the corresponding Lipschitz constant.

Theorem 1. For any STL specification φ with Lipschitz
atomic predicates, ϱφ0 (u,w) is Lipschitz continuous with
respect to w for the system defined in (1). The Lipschitz
constant will be Lφ = L1L2, where L1 is the maximum
Lipschitz constant of atomic predicates appearing in φ.
More specifically, consider the STL formula φ consists of J
subformula with atomic predicate αj , j ∈ {1, . . . ,J }, then:

L1 := max
j∈{1,...,J}

Lαj ,

where Lαj is the Lipschitz constant of αj for j ∈ {1, . . . ,J }.
Constant L2 is the maximum Lipschitz constant of xk, the
state at time k ∈ {1, 2, . . . , N}, with respect to w, which is
bounded by:

L2 =

√√√√N−1∑
i=0

∥Ai∥2, (5)
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where ∥Ai∥ is the induced 2-norm of the matrix Ai and N
is the length of the sequence w.

Proof. The proof is given in the appendix of [27]. ■

Theorem 1 enables us to use the results of [22] in the
context of STL by providing an explicit formula for the
Lipschitz constant. The next section details the proposed
solution for the CCP in (3).

III. SOLUTION APPROACH

In the following, we use Assumption 3 for the Lipschitz
continuous function ϱφ0 (u,w) (cf. Theorem 1) and provide
an under approximation for CCP (3).

Theorem 2. Under Assumption 3, the feasible domain of
the CCP (3) includes the feasible domain of the following
expectation-constrained program (ECP):

ECP :

{
minu∈U EP [J(u,w)] ,

s.t. EP [ϱφ0 (u,w)]− Lφh
−1(ε) ≥ r0,

(6)

where h is given by the class of distribution and Lφ is the
Lipschitz constant of ϱφ0 (u,w) with respect to w given in
Theorem 1.

Proof. The proof is given in the appendix of [27]. ■

Note that the feasible domain of CCP (3) has been under-
approximated by the tighter feasible domain of ECP (6)
with constraints on the expectation and tightening function
h−1. Problem (6) can then be solved via: 1) computing the
expectations EP [·], 2) utilizing knowledge of the family of
distributions or an upper bound on the function h related to
the concentration of measure property, and 3) computing the
robustness Lipschitz constant Lφ.

In determining 2) and 3), knowledge of the exact distribu-
tion P is not necessary. However, to compute expectations
in 1) one requires P . For instance, sample averaging is an
often employed technique to approximate expectations numer-
ically. Nonetheless, this approach necessitates a sufficiently
large sample size to ensure the accuracy of the empirical
expectation compared to the exact one.

In the following, we aim to solve the ECP (6) for
the unknown distribution P with respect to the worst-
case distribution in an ambiguity set using a Wasserstein
distributionally robust approach and provide a finite sample
guarantee with respect to the exact ECP (6). More specifically,
the distributionally robust version of (6) can be written as
the following distributionally robust program (DRP):

DRP:

{
minu∈U supQ∈Q EQ [J(u,w)] ,

s.t. infQ∈Q EQ[ϱφ0 (u,w)]−Lφh−1(ε)≥r0,
(7)

where Q is an ambiguity set, defining a set of all distributions
around an empirical distribution Q̂ that could contain the true
distribution P with high confidence. In this paper, we use
the Wasserstein metric W : Q(W)×Q(W) → R≥0 to define
the ambiguity ball Q as

Q := {Q ∈ Q(W) |W (Q, Q̂) ≤ r}, (8)

where Q(W) denotes the set of Borel probability measures on
the support W and r ≥ 0 is the radius of the Wasserstein ball.
For any two distributions Q1, Q2 ∈ Q(W), the Wasserstein
metric W is defined as follows:

W (Q1, Q2) := min
κ∈Q(W2)

{∫
W2

∥w1 −w2∥dκ(w1,w2)∣∣∣Πjκ = Qj , j = 1, 2
}
, (9)

where Πjκ denotes the jth marginal of the joint distribution
κ for j = 1, 2. Note that, the sampling-based reformulation
in (7) stems from the need to make decisions under uncertainty
about the true distribution P that governs the random variable
w. Since the true distribution P is unknown, we rely on a
finite number of i.i.d. samples {wi}Mi=1 to infer information
about P . These samples provide an empirical approximation
Q̂ that can be constructed as follows:

Q̂ =
1

M

M∑
i=1

δwi , (10)

where δwi is the Dirac measure concentrated at wi. Consider
that, because Q̂ is constructed from a limited sample set, it
may not perfectly capture the true distribution P . To account
for this uncertainty, we introduced the ambiguity set Q in (8),
which includes all distributions that are close to the empirical
distribution Q̂ within a Wasserstein ball of radius r. The
parameter r reflects the confidence level: a larger r increases
the probability that Q contains the true distribution P , thereby
providing a more robust solution to the optimization problem.

Although the DRP (7) overcomes knowledge of the exact
distribution, it is tricky to solve in general since it contains
decision variables in the continuous probability measure space.
It is desirable to derive an (approximated) solution of (7)
based on the finite samples wi, ensuring both feasibility and
performance guarantees.

It is important to note that most of the date-driven DRO lit-
erature focuses on providing data-driven optimizations that are
equivalent to the original problem in convex optimization [17],
[19], [20]. In the field of stochastic optimization, many
guarantees, such as those for approximating expectations
from data, are also typically established when the function
within the expectation is convex [28].

However, since the robustness functions of STL are
generally non-convex, it is necessary to develop an equivalent
optimization approach that does not rely on this convexity
assumption. Inspired by [17] and results developed in [29],
the following theorem offers a data-driven equivalent solution
to the DRP (7) for the Wasserstein ambiguity set, defined
in (8), and with a finite number of samples that eliminates
the decision variables in the probability measure space. We
can guarantee that any feasible solution obtained from the
proposed optimization is a feasible solution to the DRP (7)
and, with a predefined confidence level, is a feasible solution
to the main ECP (6). Moreover, the obtained control input
minimizes an upper bound on the objective in (6) with high
confidence.
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Theorem 3. (Data-driven solution of the DRP) Consider
the following optimization:

inf
u∈U,λ1,λ2,yi1,y

i
2

λ1r +
1

M

M∑
i=1

yi1, (11a)

s.t. sup
w∈W

[
J(u,w)− λ1∥w −wi∥

]
≤ yi1,∀i ≤M, (11b)

sup
w∈W

[
−ϱφ0 (u,w)−λ2∥w−wi∥

]
≤yi2,∀i ≤M, (11c)

λ1 ≥ 0, λ2 ≥ 0, (11d)

− λ2r −
1

M

M∑
i=1

yi2 − Lφh
−1(ε) ≥ r0, (11e)

with the optimal solution and value of the objective function
denoted by û and Ĵ , respectively. Based on the Wasserstein
ambiguity set Q defined in (8)-(10), we have:

• Relation to the DRP (7): Optimization (11) is equivalent
to (7).

• Relation to the ECP (6): By choosing a proper
Wasserstein radius r, the following statements hold with
the probability of at least 1 − β for a user-specified
confidence level β ∈ (0, 1):
1) Any feasible solution to (11) is a feasible solution
to (6).
2) The cost function in (6), evaluated for the input û,
is upper-bounded by Ĵ . More specifically, the following
out-of-sample performance guarantee holds:

EP [J(û,w)] ≤ Ĵ . (12)

Proof. The proof is given in the appendix of [27]. ■

Note that the term data-driven, as used in e.g., [17], [19],
[21], refers to optimization that utilizes a set of samples to
construct the DRP. In the control literature, this term has
also been used in contexts where the system matrices are
unknown. However, this is beyond the scope of our paper,
which assumes that the system matrices are known in advance.

Remark 1. The min and max operators utilized in defining
robust semantic ϱφ0 in Section II-B are not smooth. Numerical
solvers commonly encounter difficulties when these operators
appear in the objective function or constraints. Inspired
by [30], we opt for smooth under-approximations for these
operators, as follows:

min([a1, . . . , am]⊤) ≈ − 1

C
log

(
m∑
i=1

exp(−Cai)

)
,

max([a1, . . . , am]⊤) ≈
∑m
i=1 ai exp(Cai)∑m
i=1 exp(Cai)

,

where C is a positive constant. It is noteworthy that these
approximations under-approximate the exact min and max
operators. Consequently, the robust semantics derived from
these approximations are not greater than the original robust
semantics. Hence, fulfilling the approximated robust semantics
ensures the satisfaction of the original semantics directly.
Additionally, as demonstrated in [30], for a sufficiently large

C, the approximated robust semantics converge to the original
semantics with the exact min and max operators.

Note that in transitioning from the CCP (3) to the ECP (6),
we can assume that the robustness function ϱφ0 is evaluated
using the exact min and max operators, ensuring the validity
of the Lipschitz constant Lφ as obtained from Theorem 1.
We then substitute the expectation of the exact robustness
with the expectation of the under-approximated robustness in
the constraint of (6). Therefore, the results of the paper, and
particularly the Lipschitz constant Lφ, remain valid when
employing these under-approximations of the exact min and
max operators.

IV. CASE STUDY

We consider the following two-dimensional stochastic
dynamics:

xk+1 =

[
1 1
0 1

]
xk +

[
0.5
1

]
uk + wk,

where uk ∈ U := [−1, 1] and wk ∈ W = R2 with Gaussian
distribution with unknown mean and covariance. Using (2)
and assuming x0 = [−8 , 0]⊤, the aim is to satisfy a safety
constraint [0 , 1]xk ≤ 0.75 for the whole bounded horizon
0 ≤ k ≤ N = 15 and reaching the region x⊤k Txk ≤ 1, with
T = diag( 14 ,

1
25 ), sometime at k ∈ [0, 15] with probability

at least 0.9 while optimizing the following quadratic cost:

J(u,w) = 10x⊤NxN +

N−1∑
k=0

(10x⊤k xk + u2k),

where xk is obtained from (2). The STL formula, described
above, can be expressed as φ = □[0 15] π1 ∧ □[0 15] π2,
where π1 and π2 are predicates with corresponding predicate
functions α1(x) = 1 − x⊤Tx and α2(x) = 0.75 − [0 , 1]x.
The robustness function ϱφ0 can be written as follows:

ϱφ0 (u,w) = min{ max
k∈{0,...,15}

α1(xk), min
k∈{0,...,15}

α2(xk)}.

As explained in Remark 1, we have chosen the smoothing
constant C as 100, 10, and 10 for the inner minimization, the
maximization, and the outer minimization in ϱφ0 , respectively.

Figure 1 shows the system trajectories using the proposed
DRP approach for the Wasserstein radius r = 10−3. As it can
be seen, the trajectories have greater distance with the bound
x2 = 0.75 compared to the sample averaging method and
the STL specification is satisfied for all trajectories. We have
employed 10 times more sampling for the sample averaging
method compared to the DRP method.

V. CONCLUSIONS

We have shown how to optimize control sequences for
stochastic linear systems to satisfy signal temporal logic (STL)
specifications probabilistically when the underlying predicate
functions are Lipschitz continuous, and the disturbance
distribution is unknown but attains a concentration of measure
property. These assumptions allow us to reformulate the
control problem as a chance-constrained program (CCP) and
present an efficient two-step solution. First, leveraging the
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Fig. 1. System trajectories for different realizations for deterministic system
(black), ECP solution using the sample average approximation (green), and
the proposed DRP solution (blue).

concentration of measure property, we transform the CCP into
an expectation-based optimization problem. To account for
unknown distributions, we proceed to the second step, where
we tackle a distributionally robust optimization problem,
which considers all distributions around the empirical one
using an ambiguity set based on the Wasserstein metric. In the
future, we plan to extend the method to multi-agent systems
and nonlinear dynamics.
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