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Abstract— This article presents a distributed model predic-
tive controller with time-varying partitioning based on the
augmented Lagrangian alternating direction inexact Newton
method (ALADIN). In particular, we address the problem of
controlling the temperature of a heat transfer fluid (HTF) in
a set of loops of solar parabolic collectors by adjusting its
flow rate. The control problem involves a nonlinear prediction
model, decoupled inequality constraints, and coupled affine
constraints on the system inputs. The application of ALADIN to
address such a problem is combined with a dynamic clustering-
based partitioning approach that aims at reducing, with min-
imum performance losses, the number of variables to be
coordinated. Numerical results on a 10-loop plant are presented.

I. INTRODUCTION

Over the last decades, solar energy technologies have
become increasingly efficient and cost-effective, and they are
now essential for the transition towards a sustainable power
system. In 2021, solar power was ranked the top power
generation source installed worldwide, and has recently
surpassed the threshold of 1 terawatt of installed capacity [1].
While solar photovoltaics are being the kingpin for the
growth of solar technologies, there are about 6 gigawatts
of installed concentrating solar power (CSP), and over 1
gigawatt under construction [2]. Moreover, the incorporation
of thermal energy storage systems makes CSP plants capable
of dispatching power on demand, which is of particular
interest to support other forms of renewable generation [3].

This paper focuses on solar parabolic trough plants, which
represent the most extended CSP technology [4]. Parabolic
trough plants obtain thermal energy by concentrating the
solar rays on a tube through which circulates a heat transfer
fluid (HTF). In this regard, the solar field consists of a set of
parallel loops, which are rows of parabolic collectors with a
tube running along their focal line. One of the main control
problems that arise in this context is to control the HTF tem-
perature around a given reference by manipulating its flow
rate. While different control methods have been explored
to address the latter, model predictive control (MPC) has
received special attention both at research and commercial
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levels. See [5] (Chapter 5) for a review, and [6] and [7] for
recent contributions.

Traditionally, all loops of collectors receive the same HTF
flow. However, several works have pointed out that higher
efficiencies can be attained by optimally allocating the flow
that circulates specifically through each loop since they may
exhibit disparate dynamics [8, 9]. This is because the loops
may receive different irradiance levels due to cloud shading,
have different optical efficiencies due to changes in their
mirrors reflectivity, etc. The resulting MPC problem is a
constrained optimization where the goal is then to optimally
distribute the total HTF available in the plant. The sheer size
of these plants, which may comprise more than 800 loops
as in SOLANA [10], hinders the applicability of centralized
MPC. Pursuing increased scalability, a number of articles
have explored distributed MPC (DMPC) strategies where
multiple agents control subsets of loops, e.g., [11, 12]. In
addition, DMPC is also favourable in terms of monitoring
and maintenance. For example, if some of the loops are not
operating, it will only affect some of the agents, while the
rest could continue operating normally.

Within the DMPC framework, dual decomposition and the
alternating direction method of multipliers (ADMM) have
been extensively used for coordinating control decisions [13,
14]. Both of them involve iterative (sub)gradient methods,
which often require many iterations to converge to a solution.
Moreover, their theoretical properties do not generally apply
in the nonconvex setting [15]. Considering these issues,
this paper explores the augmented Lagrangian alternating
direction inexact Newton method (ALADIN) [15, 16], which
has been recently studied for optimizing power transfers in
electrical networks [17, 18]. Particularly, ALADIN combines
ideas of augmented Lagrangian methods and sequential
quadratic programming, and is designed to solve potentially
nonconvex optimization problems in a distributed manner.
In contrast to ADMM, ALADIN uses both gradient and
Hessian information at every iteration, and has been shown
to converge faster [16]. This is beneficial for the real-time
control problem underlying our solar plants application.

The main contribution of this article is a DMPC based
on ALADIN with time-varying system partitioning. The
proposed controller optimizes the HTF flow rates in every
loop to track reference outlet temperatures, and integrates
clustering methods to further increase scalability with min-
imum performance losses. In this regard, the solar field
is dynamically partitioned into clusters of similar loops
to reduce the number of optimization variables, and thus
simplify the distributed computations.
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The rest of the article is organized as follows. Section II
presents the system dynamics, the control objectives, and
the associated centralized problem. Section III describes the
clustering formation, formulates the DMPC problem, and
presents the proposed ALADIN-based control algorithm.
Finally, Section IV presents our simulation results.

Notation: Given two time steps k and n ≥ k, and a
variable x, x(n|k) indicates the predicted value of x for
time n realized at k. Given a set S, say S = {1, 2, ..., |S|},
[xi]i∈S = [xi]

|S|
i=1 is the vector [x1, x2, ..., x|S|]

⊤. Also, | · |
denotes the cardinality when referring to a set, and the
absolute value when used with scalars. Capital caligraphic
letters are used for sets, whereas bold letters represent
sequences. Finally, 1m and 0m are the all-ones and all-zeros
vectors of dimension m× 1.

II. PROBLEM FORMULATION

Consider a solar parabolic trough plant comprising a set
of loops N = {1, 2, ..., Nloops} equipped with inlet valves.

A. System dynamics

The dynamics of the HTF temperature at the outlet of any
loop i ∈ N , i.e., T out

i [◦C], can be modeled considering the
variation of its internal energy as follows:1

Ci
dT out

i

dt
= ηiIi − qiPi(T

out
i − T in)−hi, (1)

where T in [◦C] is the inlet temperature, and qi [m3/s]
represents the HTF flow rate in loop i. Also, Ci [J/ºC] is
the thermal capacity of the loop, Pi [J/(m3◦C)] is related
to its geometrical and thermal properties, hi [W] weights
the heat losses of loop i, and ηiIi [W] considers the power
received from the sun. In particular, ηi weights the optical
and geometric efficiency of the collectors in i, and Ii = SIi,
with S [m2] being the loops’ reflective surface and Ii [W/m2]
the direct normal irradiance. Finally, note that some of the
parameters in (1) vary as a function of the temperature. In
particular, we will consider the following:2

ρi = 903− 0.672Tm
i , Pi = ρici,

ci = 1820 + 3.478Tm
i , Ci = ρiciAL,

hi = S
(
0.00249(Tm

i − T a)2 − 0.06133(Tm
i − T a)

)
,

(2)

where Tm
i = (T out

i + T in)/2, T a [◦C] is the ambient
temperature, A [m2] is the cross sectional area of the tube,
and L [m] is the loops length.

1) Cluster-based model: Similar to (1), a cluster of
loops C ⊆ N can be described by the following lumped
parameter model:

CC
dT out

C
dt

= ηCIC − qCPC(T
out
C − T in)−hC , (3)

where T out
C denotes the outlet temperature of cluster C,

and qC =
∑

i∈C qi is the total HTF pumped to the loops in C.

1For the sake of clarity, the continuous time index is omitted in
Subsections II-A and II-B.

2The definitions in (2) consider the HTF (Therminol 55) and heat losses
of the ACUREX plant, which was located in the south of Spain [5].

In what follows, we will consider T out
C =

∑
i∈C(qiT

out
i )/qC ,

whereas T in is the same for all loops, and hence for
all clusters. Also, parameters CC , PC and hC are defined
analogously to (2), and ηCIC =

∑
i∈C ηiIi. Note that if

C = N , then (3) provides a lumped model of the entire
solar field; whereas if C = {i}, model (3) is equivalent to (1).

B. Control objectives

The proposed controller should dynamically update
flows qi for all i ∈ N to track varying references on the
loops outlet temperature while satisfying the following:∑

i∈N
qi ≤ QT, (4a)

qmin ≤ qi ≤ qmax, Tmin ≤ T out
i ≤ Tmax, ∀i ∈ N , (4b)

where QT is the maximum available HTF flow in the
plant, qmin and qmax denote respectively the minimum and
maximum flows allowed in the loops, and Tmin and Tmax are
similarly the minimum and maximum desired temperatures.
Note that, as long as constraint (4a) is satisfied, the total
available HTF can be unevenly distributed among the set
of loops, e.g., higher flow rates can be pumped to loops
receiving greater irradiance. Finally, the proposed controller
should be scalable and approximate the optimal performance
with reduced computational and communication burden.

C. Centralized MPC problem

In what follows, consider a discrete-time setting, let ∆ts be
the integration step size, and let k be the discrete time index,
i.e., step k refers to instant k∆ts. Likewise, let ∆tc = δc∆ts

be the sampling time considered in the control models,
where δc ∈ N+. Then, the centralized MPC problem
underlying this article can be formulated as follows:

min
[qi(k)]i∈N

∑
i∈N

∑
n∈H

(
wee

2
i (n+ δc|k) + wqq

2
i (n|k)

)
s.t.
T out
i (n+ δc|k) = T out

i (n|k)

+
∆tc

Ci(n|k)

(
ηi(k)Ii(k)−hi(n|k)

)
− ∆tc

Ci(n|k)
qi(n|k)Pi(n|k)

(
T out
i (n|k)− T in(k)

)
,

(5a)

T out
i (k|k) = T out

i (k), (5b)

Tmin ≤ T out
i (n+ δc|k) ≤ Tmax, (5c)

qmin ≤ qi(n|k) ≤ qmax, (5d)∑
l∈N

ql(n|k) ≤ QT, (5e)

∀i ∈ N , ∀n ∈ H, (5f)

where ei(n+ δc|k) = T out
i (n+δc|k)− T ref(n+δc) denotes

the outlet temperature error of loop i, with T ref(·) being
the reference temperature. Also, H = {k, k + δc, k +
2δc, ..., k + δcNp} is the set of time instants considered in
the prediction horizon, with Np being a tuning parameter,
qi(k) = [qi(k|k), qi(k + δc|k), ..., qi(k + δcNp|k)]⊤ is the
flow rate sequence of loop i, and we and wq are positive
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Fig. 1. Architecture of the proposed control approach. The agents control
the flows in different clusters of loops, e.g., agent 1 controls loops 1 and 2.

definite weighting scalars. Likewise, (5a) is a discrete-time
version of model (1), where Pi(n|k), Ci(n|k) and hi(n|k)
are computed considering (2) and the predicted mean temper-
ature Tm

i (n|k) = (T out
i (n|k)+T in(k))/2. Note that, for the

sake of simplicity, the inlet temperature, effective irradiance,
and ambient temperature, are assumed to mantain their value
at k during the entire prediction horizon. Finally, notice also
that prediction model (5a) introduces nonconvex terms both
in the cost function and in constraint (5c), making (5) a
potentially nonconvex optimization problem.

III. CLUSTERING-BASED DMPC USING ALADIN
Centralized problem (5) may involve a large number of

loops and lacks convexity guarantees as mentioned above.
Considering this issue, this article proposes the distributed
control architecture illustrated in Fig. 1, whose main features
are the following:

(i) The set of Nloops loops are dynamically partitioned
by a supervisor into a set of non-overlapping clus-
ters {C1, C2, ..., CNcl

}, such that
⋃Ncl

j=1 Cj = N ,
where Ncl ≤ Nloops denotes the number of clusters.

(ii) Each cluster Cj is assigned to MPC agent j, which
controls flow qi for all i ∈ Cj during a given time period.

(iii) The set of MPC agents coordinate their decisions to
optimize their collective performance using ALADIN,
which is designed to address (potentially nonconvex)
distributed problems.

The next subsections provide further details regarding the
partition selection and the proposed control algorithm.

A. Partition selection
Inspired by [19], our proposed DMPC approach exploits

similarities between the loops to reduce the control prob-
lem complexity. In particular, the solar field is dynami-
cally partitioned into clusters of loops whose dynamics are
approximately characterized by the same parameters. To
this end, mean temperature Tm

i (k) and current effective
irradiance ηi(k)Ii(k) are periodically collected for all i ∈ N
so that we build the following data set:

D(k) = {[ηi(k)Ii(k), Tm
i (k)]}i∈N . (6)

Note that, given (5a), those loops for which these two
features are equal will have identical prediction models.
Using clustering methods, the loops in N can then be
partitioned into a number of clusters, say Ncl(k) ≤ Nmax

cl ,
according to the data in D(k). In this respect, Nmax

cl denotes
the maximum number of clusters, which is directly related
with the number of MPC agents available in the system.
Without loss of generality, we consider the well-known
centroid-based algorithm K-means [20], together with the
elbow method to select the optimal number of clusters.

B. Clusters-based MPC problem

Let P(k) = {C1, C2, ..., CNcl(k)} be the partition selected
at time k as described above. Then, we consider the following
MPC problem to find the HTF to be pumped to every cluster:

min
[qCj

(k)]∀Cj

Ncl(k)∑
j=1

|Cj |
∑
n∈H

(
wee

2
Cj
(n+δc|k) + wqq

2
Cj
(n|k)

)
s.t.
T out
Cj

(n+ δc|k) = T out
Cj

(n|k)

+
∆tc

CCj (n|k)
(
ηCj (k)ICj (k)−hCj (n|k)

)
− ∆tc

CCj
(n|k)

qCj
(n|k)PCj

(n|k)
(
T out
Cj

(n|k)− T in(n|k)
)
,

(7a)

T out
Cj

(k|k) =
∑
i∈Cj

(qi(k − 1)T out
i (k))/

∑
i∈Cj

qi(k − 1), (7b)

Tmin ≤ T out
Cj

(n+ δc|k) ≤ Tmax, (7c)

qmin
Cj
≤ qCj (n|k) ≤ qmax

Cj
, (7d)∑Ncl(k)

l=1
qCl

(n|k) ≤ QT, (7e)

∀j ∈ {1, 2, ..., Ncl(k)}, ∀n ∈ H, (7f)

where eCj
(n + δc|k) = T out

Cj
(n + δc|k) − T ref(n + 1),

and qCj
(k) = [qCj

(n|k)]n∈H. Also, qmin
Cj

= |Cj |qmin and
qmax
Cj

= |Cj |qmax. Given the solution of (7), say q∗
Cj
(k) for

all Cj ∈ P(k), the HTF is uniformly distributed among the
loops in every cluster. That is, the implemented flows are
given by

qi(t) =
q∗Cj

(k|k)
|Cj |

, ∀i ∈ Cj , ∀t ∈ [k, k + 1, ..., k + δc). (8)

Remark 1. Problem (7) has the same form as problem (5)
but involves a reduced number of optimization variables.
In particular, while the number of flow variables in (5)
was NpNloops, here we deal with NpNcl(k).

Remark 2. Since the clusters are chosen to aggregate loops
with similar dynamics, the solution of (7) will approximate
that of (5). Particularly, we are replacing models of loops
that are nearly identical with a single lumped description.
This similarity among loops also motivates the uniform flow
allocation indicated in (8).
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1) Formulation to use ALADIN: As detailed in [15],
ALADIN is designed to solve optimization problems with
separable (potentially nonconvex) objective functions, de-
coupled inequality constraints, and coupled affine equality
constraints.

Note that, by definition, the objective function in (7) is
separable and can indeed be rewritten as

Ncl(k)∑
j=1

|Cj |
∑
n∈H

(wee
2
Cj
(n+δc|k) + wqq

2
Cj
(n|k)).︸ ︷︷ ︸

fCj
(eCj

(k),qCj
(k))

Likewise, given (7a), variables T out
Cj

(k+ κδc|k) for any κ ∈
{1, 2, ..., Np} can be computed as

T out
Cj

(k + κδc|k) = T out
Cj

(k)

+

k+(κ−1)δc∑
ñ=k

∆tc

CCj
(ñ|k)

(
ηCj

(k)ICj
(k)−hCj

(ñ|k)
)

−
k+(κ−1)δc∑

ñ=k

∆tc

CCj (ñ|k)
qCj (ñ|k)PCj (ñ|k)

(
T out
Cj

(ñ|k)− T in(k)
)
.

That is, they depend on T out
Cj

(k), T in(k), T a(k),
ηCj

(k)ICj
(k), and on the sequence of flow rates from

instant k up to k + (κ − 1)δc. Then, the ob-
jective function in (7) can be written as a func-
tion of zCj (k) = [T out

Cj
(k), ηCj (k)ICj (k), T

in(k), T a(k)],
Tref(k) = [T ref(n + δc)]n∈H, and qCj

(k). Similarly, con-
straint (7c) is of the form hCj

(zCj
(k),qCj

(k)) ≤ 0Np
,

where hCj
(·) is the corresponding constraint function. Fi-

nally, let us introduce a sink artificial loop, say loop 0,
and define C0 = {0} to keep the notation simple. Then,
problem (7) can be reformulated as follows:

min
[qCj

(k)]
Ncl(k)

j=0

Ncl(k)∑
j=1

fCj
(zCj

(k),Tref(k),qCj
(k))+fC0

(qC0
(k)))

s.t. hCj (zCj (k),qCj (k)) ≤ 0, ∀Cj ∈ P(k), (9a)

qmin
Cj

1Np
≤ qCj

(k) ≤ qmax
Cj

1Np
, ∀Cj ∈ P(k), (9b)

qC0(k) ≥ 0Np , (9c)∑Ncl(k)

l=0
qCl

(k) = QT1Np
, (9d)

with qC0
(k) being the flow surplus over QT that the agents

decide not to use. Likewise, fC0
(qC0

(k))) is a (possibly
nonzero) cost associated with sending flow to the sink loop.

C. Distributed coordination using ALADIN

Problem (9) is an optimal resource allocation problem
of the form of those that can be solved in a distributed
manner by implementing ALADIN. This algorithm involves
an iterative procedure that is briefly introduced below. Let
subscript p enumerate the iterations, λ be the multiplier
associated with constraint (9d), and consider some time
step k ∈ {0, δc, 2δc, ...}. Also, consider a positive definite
scaling matrix Σ, a termination tolerance ϵ, an initial guess
for the primal variables y0 = [y0

Cj
]
Ncl(k)
j=0 , and some λ0

and µ0, ρ0 > 0. Then, flow sequences qCj (k) for all Cj
are computed by implementing the following steps starting
from p = 0. See [15] and [16] for further details.

1. Parallelizable decentralized step: All agents j ∈
{1, 2, ..., Ncl} solve locally the following decoupled
nonlinear problem:

min
qCj

fCj (zCj ,T
ref ,qCj ) + (λp)⊤qCj+

ρp

2
∥qCj

− yp
Cj
∥2Σ

s.t. hCj (zCj ,qCj ) ≤ 0, (10a)

qmin
Cj

1Np
≤ qi ≤ qmax

Cj
1Np

, (10b)

where, for clarity, we have omitted time index k. For the
sink artificial loop, we consider additional agent j = 0,
which solves a similar problem considering fC0(qC0).

2. Let qp
Cj

be the solution of (10) for the j-th cluster. Then,
if ∥

∑Ncl

j=0 q
p
Cj
−QT∥ ≤ ϵ and ∥

∑Ncl

j=0(q
p
Cj
−yp

Cj
)∥ ≤ ϵ,

exit the algorithm.
3. Sensitivity evaluations: All agents j compute gradients

gpCj
= ∇fCj

(·), a positive definite Hessian approxima-
tion Hp

Cj
, and constraints Jacobian Gp

Cj
[15].

4. Coordination step: Solve the following overall quadratic
program (QP):

min
s,∆q

Ncl∑
j=0

(
1

2
∥∆qCj

∥2Hp
Cj

+ (gpCj
)⊤∆qCj

)
+ r(s, λp, µp)

s.t.
∑Ncl

j=0
(qp

Cj
+∆qCj

)−QT = s, (11a)

Gp
Cj
∆qCj

= 0,∀Cj ∈ P, (11b)

where ∆q = [∆qCj
]Ncl
j=0 and r(·) = λp⊤s+µp/2∥s∥2.

5. Finally, update the primal and dual variables as follows:

yp+1 = yp + βp
1(q

p − yp) + βp
2∆qp,

λp+1 = λp + βp
3(λ

p
QP − λp),

(12)

where qp = [qp
Cj
]Ncl
j=0, ∆qp is obtained from the solution

of (11), and λp
QP is the multiplier associated with

constraint (11a). Likewise, factors β1, β2, and β3 are
computed following [15].

D. Pseudocode

Finally, the pseudocode of the proposed algorithm is
summarized in Algorithm 1. Recall that ∆tc is the control
time step and that the system is simulated using a discrete-
time version of (1) for all i ∈ N , where the integration step
size is ∆ts. Likewise, the inlet temperature dynamics are
modeled considering the following transfer function:

T in(s)

T out(s)− 80
=

1

600s+ 1
, (13)

where T out is the overall outlet temperature of the solar field,
and T out − 80ºC approximates the outlet temperature of the
steam generator. In this regard, for all instants k, we consider
T out(k) =

∑
i∈N qi(k − 1)T out

i (k)/
∑

i∈N qi(k − 1).
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Algorithm 1 Control algorithm
Define a maximum number of clusters Nmax

cl , an initial
partition P(0)={C1, ..., CNcl(0)}, with Ncl(0) ≤ Nmax

cl , and
let the partition be updated every ∆tcl=δcl∆ts. Also, assign
each Cj to agent j, and the sink loop to agent 0. Then, at all
instants k, proceed as follows:

1: if k ∈ {0, δc, 2δc, ...} then
2: if k ∈ {δcl, 2δcl, ...} then
3: Update the clusters as described in Section III-A

and define partition P(k) = {C1, ..., CNcl(k)}.
4: else
5: Set P(k)← P(k − 1).
6: end if
7: All MPC agents j ∈ {0, 1, ..., N cl(k)} solve prob-

lem (7) in a distributed manner by using ALADIN
algorithm as described in Section III-C. As a solution,
the agents find the flow rates to be pumped to each
cluster Cj during interval [k, k + δc).

8: For each cluster Cj , define q∗i (t) = q∗Cj
(k|k)/|Cj | for

all i ∈ Cj and t ∈ [k, k + δc).
9: end if

10: Implement flow rates q∗i (k) for all loops i ∈ N .

IV. SIMULATION RESULTS

In this section, we simulate Algorithm 1 on a 10-loop
solar parabolic plant with different values of Nmax

cl and ∆tcl,
and considering the parameters in Table I. All simulations
were carried out in a 1.8 GHz Intel® CoreTM i7/16GB RAM
computer using Matlab®, software CasADi [21], and toolbox
ALADIN-α [16]. Also, we used ipopt and MA57 for
solving (10) and (11), respectively. The partitions were found
using function kmeans with the Calinski-Harabasz index.

As a reference, the results are compared with those
obtained considering statically the finest and coarsest par-
tition of the system. The former corresponds to run-
ning Algorithm 1 with initial singleton partition P(0) =
{{1}, {2}, . . . , {10}} and ∆tcl =∞. By contrast, the latter
corresponds to P(0) = {1, 2, ..., 10} and ∆tcl = ∞, i.e., a
single controller uses a lumped parameter model of the entire
solar field and distributes equally the flow among all loops.
For the sake of clarity, these two approaches will be denoted
as DMPCfin and MPCcoar, respectively.

The simulations consider a 7-hour period of a cloudy day
in which the irradiance and ambient temperature evolve as
in [19, Fig. 3]. The outlet temperatures and flows evolution
are shown in Fig. 2 (top) for Nmax

cl =5 and ∆tcl=2.5 min.

TABLE I
PARAMETERS USED IN THE SIMULATIONS

Value Unit Value Unit
qmin, qmax 0.2, 2 l/s ∆ts, ∆tc 0.5, 30 s
Tmin, Tmax 220, 305 ◦C we, wq 0.001, 1 -
A 5.067·10−4 m2 Np 5 -
L 142 m ϵ 1 · 10−5 -
S 267.4 m2 QT 9 l/s

As can be seen, the loops outlet temperatures follow closely
the reference, and the flows decrease as the irradiance falls.
However, the system performance underwent a significant
deterioration when using MPCcoar (Fig. 2 (bottom)). Note
that in the latter case all loops receive the same flow, and
hence there is no chance of adjusting it to the space-varying
conditions. Particularly, given (8), the maximum flow that the
loops can get with MPCcoar is QT/10 = 0.9 l/s, whereas in
the DMPC case we obtained maxi,k qi(k) = 0.95 l/s. Also,
if the overall outlet temperature approaches Tmax, controller
MPCcoar increases the flow in all loops, which decreases the
temperature even of those that were below the reference.

The system performance is also numerically compared in
Table II, which provides the cumulative costs in different
simulations, i.e., Jcc =

∑
k∈K

∑10
i=1

(
wee

2
i (k) + wqq

2
i (k)

)
,

together with the maximum incurred temperature errors, i.e.,

ē = max
k∈K̃,i∈{1,...,10}

|T out
i (k)− T ref(k)|.

Above, K represents the set of all simulated time instants,
and K̃ ⊂ K contains the instants after the first 5 minutes.
Note that K̃ is used not to account for the errors at the
beginning of the simulations, which are mainly influenced by
the choice of the initial state. In addition, Table II indicates
the mean number of loops per cluster. As expected, finer
partitions and reduced ∆tcl resulted in better performance.
Note also that the temperature errors could be reduced if
accurate irradiance estimations are available.

Fig. 2. Loops outlet temperature and HTF flow rate using the pro-
posed DMPC with Nmax

cl =5 and ∆tcl=2.5 min (top), and using MPCcoar

(bottom). The dashed black lines indicate the reference temperature.
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TABLE II
CUMULATIVE PERFORMANCE COSTS AND CLUSTERS SIZE

Jcc ē
Mean no. of
loops/cluster

St
at

ic
pa

rt
. DMPCfin 172.08 9.84 1

MPCcoar 8.22·103 29.83 10
Nmax

cl ∆tcl [min]

Ti
m

e-
va

ry
in

g
pa

rt
iti

on

8 1.5 176.89 9.86 1.39
6 1.5 195.02 10.23 2.03
5 1.5 215.44 10.60 2.51
5 2.5 228.59 10.63 2.53
3 5.0 749.88 19.28 4.15

Regarding the computation times, Fig. 3 shows the values
of the following indexes:

τ̄NLP=
∑
k∈Kc

Ncl(k)∑
j=1

τNLP
Cj

(k)/|Kc|, τ̄QP=
∑
k∈Kc

τQP(k)/|Kc|,

τ̄ sum= τ̄NLP + τ̄QP +
∑
k∈Kc

Ncl(k)∑
j=1

τ sensCj
(k)/|Kc|,

which are associated with different steps of ALADIN algo-
rithm. Above, τNLP

Cj
(k) and τ sensCj

(k) denote respectively the
time spent by agent j solving nonlinear problem (10) and
computing the sensitives at time step k. In addition, τQP(k)
refers to the time spent solving QP (11), and Kc is the
set of instants in which the flow rates are updated. As
reflected in Fig. 3, finer partitions involve a greater number of
variables to coordinate, and led to higher computation times.
Notice also that, although steps 1 and 3 of ALADIN can be
performed in parallel, increasing the number of distributed
agents also demands more communication links.

V. CONCLUSIONS

A DMPC with time-varying partitioning for optimizing
the HTF flow rates in solar parabolic trough plants has been
presented. In this regard, clustering methods are considered
for dynamically partitioning the solar field into clusters of
similar loops, which are subsequently assigned to a set of
MPC agents. The article formulates the associated DMPC
problem so that it can be addressed implementing ALADIN
algorithm, and illustrates its effectiveness via simulations. In
particular, it is shown that the proposed approach can closely
approximate that of a DMPC with static finer partitions while

DMPCfin tcl = 1.5 min, 
 Ncl

max = 8
tcl = 1.5 min, 

 Ncl
max = 6

tcl = 1.5 min, 
 Ncl

max = 5
tcl = 2.5 min, 

 Ncl
max = 5

tcl = 5 min, 
 Ncl

max = 3

0

0.05

0.1

0.15

0.2

0.25

T
im

e 
[s

]

Fig. 3. Computation times of different steps of ALADIN algorithm. For
sake of clarity, τ̄QP is scaled by 50.

reducing the number of variables to be coordinated. Future
research will include a comparison with ADMM, as well as
exploring bi-level ALADIN. Also, we will extend our results
to larger plants, and consider the optimization of the setpoint
so as to maximize the net electricity production.
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