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Abstract— This paper considers a type of incremental ag-
gregated gradient (IAG) method for large-scale distributed
optimization. The IAG method is well suited for the parameter
server architecture as the latter can easily aggregate poten-
tially staled gradients contributed by workers. Although the
convergence of IAG in the case of deterministic gradient is well
known, there are only a few results for the case of its stochastic
variant based on streaming data. Considering strongly convex
optimization, this paper shows that the streaming IAG method
achieves linear speedup when the workers are updating fre-
quently enough, even if the data sample distribution across
workers are heterogeneous. We show that the expected squared
distance to optimal solution decays at O((1 + T )/(nt)), where
n is the number of workers, t is the iteration number, and
T/n is the update frequency of workers. Our analysis involves
careful treatments of the conditional expectations with staled
gradients and a recursive system with both delayed and noise
terms, which are new to the analysis of IAG-type algorithms.
Numerical results are presented to verify our findings.

I. INTRODUCTION

Distributed optimization is an important algorithmic
paradigm that has received immense attention due to its wide
applicability in machine learning, signal processing, control,
etc [1]–[3]. It is suitable for a broad range of circumstances
where data are dispersed across multiple entities, e.g., CPU
cores, computing clusters, wireless sensors, and wearable
devices [1]. Classical distributed optimization deals with the
case when each worker holds a fixed set of local data samples
that is available at any time, which is also referred to as
the batch data learning setting. However, with the growing
scenarios including federated learning [3] where the data are
acquired in an online fashion (e.g., online review and social
network platforms) and each data sample is allowed to be
used only once [2], it is important to adapt the distributed
optimization algorithms to the streaming data setting.

This paper is concerned with the following stochastic
optimization problem:

min
w∈Rd

1

n

n∑
i=1

Fi(w), Fi(w) := Eξi∼Di [fi(w; ξi)] , (1)

where Di represents the data distribution supported on the
sample space Ξi accessible by worker i. The optimization
problem shall be solved cooperatively by n workers. For
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Fig. 1: PS architecture. In this architecture, the PS keeps a
buffer of size n× d that stores the latest gradient computed
and sent by the workers and distributes the latest wt to the
workers.

i ∈ [n], ξi ∈ Ξi, the sampled local loss function fi(·; ξi) is
continuously differentiable and is known to the ith worker.
We denote by F (w) := (1/n)

∑n
i=1 Fi(w) the global

objective function and assume that F (w) is strongly convex.
Consider solving (1) in a distributed fashion under the

coordination of a central server communicating with the n
workers. Each of the worker has access to an independent
streaming data source Di and the latest iterate w stored at
the server, with which it computes stochastic estimates of
the gradient ∇Fi(w). We concentrate on an asynchronous
setting where workers can be idle in some iterations, due
to, e.g., network connection failure. Notice that using direct
average of the stochastic gradients may result in a non-
converging algorithm unless the local loss satisfies some
form of similarity conditions; see the related studies on
FedAvg in [4], [5]. Remedies such as designing stochastic
control variate have been proposed, e.g., [5], [6].

To deal with the worker asynchrony issue over hetero-
geneous data, this paper utilizes a parameter server (PS)
architecture [7], [8] for distributed optimization of (1). In
this setting, the PS maintains a buffer that stores gradient
information reported from the workers. The coordinating
server then aggregates the information stored in the buffer
to update its iterate. While performing gradient aggregation
seems to alleviate the reliance on data similarity, we note the
aggregated information may contain staled gradients due to
worker asynchrony that can affect convergence. To this end,
this work inquires the following questions:

Does the above distributed algorithm solve (1)? Can it
achieve linear speedup in convergence rate compared to
centralized/sequential SGD solving (1) taking one sample
per iteration?

Our Contributions. In this paper, we provide an affirmative
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answer to the above questions. We study a streaming incre-
mental aggregated gradient (sIAG) method adapted from the
incremental aggregated gradient (IAG) method [9] to handle
streaming data. Our key results are as follows:
• We show that the sIAG method converges in expectation

to the global optimum solution of (1) under mild condi-
tions and without requiring an explicit similarity condition
between Fi(w).

• Suppose that the maximum stateness of the aggregated
gradient is T , we show that the expected squared error
between the tth iterate and optimal solution to (1) is
O( 1t

σ2(1+T )
n ) for the sIAG method, where σ2 is the

variance of a gradient sample. As such, the sIAG method
achieves linear speedup despite that it utilizes staled gra-
dient information with asynchronous workers.

We remark that our analysis utilizes new analysis techniques
to yield the tight bound for sIAG; see Sec. III.
Related Works. The studies of IAG method and its variants
based on batch data have generated substantial interests after
[9]. Notably, [10]–[12] have worked on analyzing the con-
vergence rate of IAG under the bounded delay assumption.
Extensions have been considered to speed up convergence,
e.g., [13], [14] studied adaptive strategies for gradient aggre-
gation, [15] utilized local Hessian information.

On the other hand, the study of IAG-like methods under
the streaming data setting has received attention from the
machine learning community. The closest work to ours is
[16] that studied an sIAG method with smooth objective
function under stronger assumption than ours, e.g., draw-
ing independent samples for staled gradient. As mentioned,
federated learning algorithms such as FedAvg [4], FedProx
[17], SCAFFOLD [5] adopted similar aggregation technique
for the local information reported from the workers.

II. STREAMING IAG METHOD

This section introduces the sIAG method and discusses
its implementation in a distributed optimization setting with
the PS. To motivate the algorithmic idea of sIAG method,
below we first briefly review the IAG method for (1) with
batch data [9].

Consider a distributed computing architecture with a PS
and n workers [7]; see Fig. 1. The IAG method assumes that
each worker i ∈ [n] has full access to an oracle that queries
the gradient of its local loss function Fi(w) at any point
w ∈ Rd, e.g., when the local dataset is fixed. The workers
send their computed gradient to the PS that keeps a buffer
of n gradient vectors storing the most recent copy of the
computed gradient from each worker. Note that during most
iterations, this buffer may contain staled gradient when the
workers is idle at the current iteration.

To fix notations, we letAt ⊆ [n] to be set of active workers
at iteration t and define

τi(t) = max
{
τ : τ ≤ t, i ∈ Aτ

}
. (2)

In other words, τi(t) ≤ t indicates the iteration number
in which the gradient stored in the PS from worker i

Algorithm 1 sIAG Algorithm

1: input: Initialization w0, step sizes {ηt}t≥0.
2: At the PS, initialize the buffer with g−1

i = 0 for i =
1, . . . , n.

3: for t = 0, 1, 2, . . . do
4: A set of workers At ⊆ [n] is selected/active.
5: for each worker i ∈ At do
6: Take wt from the PS and draw a sample ξti ∼ Di.
7: Compute the stochastic gradient ∇fi(wt; ξti) and

send back to the PS.
8: end for
9: Update the buffer as

gt
i ← ∇fi(wt; ξti) for i ∈ At,

gt
i ← gt−1

i for i /∈ At

10: Compute sIAG update: wt+1 ← wt−(ηt/n)
∑n

i=1 g
t
i .

11: end for

is computed. In iteration t ≥ 0, the coordinating server
performs the update:

wt+1 = wt − η

n

n∑
i=1

∇Fi(w
τi(t)), (3)

where η > 0 is the step size. Observe that the server directly
aggregates all local (possibly staled) gradients in the PS as
the descent direction.

Despite that (3) utilizes some staled gradients in the
updates, a key result established in [11], [12] is that IAG
admits linear convergence towards the optimal solution of
(1) when F (w) is strongly convex and smooth, similar
to a centralized gradient method for (1) under the same
setting. Especially, this convergence rate holds regardless
of the differences between the local loss functions Fi(w).
In comparison, without the aggregation step performed with
the PS, the distributed algorithm that relies on aggregating
only the current gradients reported by At may converge
sublinearly and requires further modification such as taking
a diminishing step size [18].

Streaming IAG Method. We are interested in a variant of
the IAG method utilizing streaming data. We consider the
generic form for (1) where each of the local loss function is
(possibly) stochastic. Unlike the IAG method, the streaming
IAG (sIAG) method considers that each worker only has
access to a stochastic oracle that queries an unbiased and
independent estimate for the gradient of local loss function,
denoted by

∇fi(w; ξi), ξi ∼ Di. (4)

Note that E[∇fi(w; ξi)] = ∇Fi(w). The sIAG method reads

wt+1 = wt − (ηt/n) g
t, (5)

for any t ≥ 0, where ηt > 0 is a (possibly time varying) step
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size and

gt :=

n∑
i=1

∇fi(wτi(t); ξ
τi(t)
i ) (6)

denotes the aggregated stochastic gradients. Note that in the
above, we adopted the same notations as in the IAG method
where the index τi(t) was defined in (2).

The sIAG method (5), (6) is motivated by an instantaneous
gradient computation model that can be readily implemented
on the parameter server architecture; as summarized in Algo-
rithm 1. Observe that the algorithm requires active workers
to return the stochastic gradient before the current iteration
concludes. This restriction, while mild as only stochastic
gradients are required, might be relaxed by allowing further
delays between the sampled gradient and the iterate in which
it is computed. However, in the interest of space, we focus
on a current simplified setting.

We recall that as τi(t) = t for i ∈ At and τi(t) < t
for i /∈ At, we may express the aggregated gradient (6)
alternatively as an incremental update via

gt = gt−1−
∑
i∈At

∇fi(wτi(t−1); ξ
τi(t−1)
i )+

∑
i∈At

∇fi(wt; ξti).

We remark that the above update recursion for gt is related
to the famous SAG method [19]. It is reduced to the SAG
method when fi ≡ f , ξti = ξt, and Di ≡ D has a finite
support for all i ∈ [n].

While convergence guarantees for the IAG method (3)
are well known, the stochastic variant, sIAG, considered
in (5), (6) has received less attention. As the first step
towards understanding the behavior of sIAG, the next section
analyzes the convergence rate of sIAG under the standard
setting when F (w) is strongly convex and smooth.

III. CONVERGENCE ANALYSIS
Missing proofs in this section can be found in the online

appendix1. We shall begin by stating some assumptions on
(1) and the sIAG method that are necessary for our analysis.
First,

Assumption 1. Problem (1) satisfies: (i) F (w) is µ-strongly
convex with µ > 0; (ii) for any i ∈ [n], the gradient ∇fi(w)
is L-Lipschitz continuous.

The above specifies the function class of interest for (1). We
define w⋆ = argminw∈Rd F (w). We also assume:

Assumption 2. There exists a constant σ ≥ 0 such that

E∥∇fi(w; ξi)−∇Fi(w)∥22 ≤ σ2(1 + ∥w −w⋆∥2), (7)

for all i ∈ [n], w ∈ Rd.

Assumption 3. There exists T ≥ 0 such that

τi(t) ≥ t− T, ∀ i ∈ [n], t ≥ 0. (8)

The above assumptions state that the stochastic gradients
computed in sIAG has bounded variance, and the staled

1https://www1.se.cuhk.edu.hk/˜htwai/pdf/
sIAG-cdc23.pdf

gradient delay is bounded by T . Notice that n/T corresponds
roughly to the number of workers that are active at any
iteration.

We define respectively the following notations for the tth
suboptimality gap and its delayed version:

Et := E∥wt −w∗∥22, Emax
t := max

s∈[(t−2T )+,t]
Es, (9)

where x+ := max{x, 0} for x ∈ R. Furthermore, it is
instrumental to define the following filtration:

Ft := σ(ξsi , i ∈ [n], s = 0, . . . , t− 1), (10)

where σ(·) denotes the sigma algebra generated by the
random variables in the operand. Observe that for any t ≥
0, wt is measurable with respect to (w.r.t.) Ft. We shall
use the shorthand notation Et[·] := E[·|Ft] for conditional
expectation.

From (5), we deduce that for any t ≥ 0,

Et+1=Et−2ηtE
[〈
wt−w⋆,

1

n
gt

〉]
+η2tE

[∥∥∥∥ 1ngt

∥∥∥∥2
]
. (11)

We shall control the last two terms in the above decompo-
sition. Observe the following lemmas:

Lemma 1. Suppose that Assumptions 1–3 hold. Then,

E∥(1/n)gt∥22 ≤
2σ2

n
+CL max

s∈[(t−T )+,t]
Es, (12)

for any t ≥ 0, where CL := 20L2 + 2σ2

n .

The above is a natural consequence of (6), where the bound
(12) depends on both the stochastic gradient variance σ2 and
the delayed optimality gap maxs∈[(t−T )+,t] Es ≤ Emax

t .
The next lemma controls the inner product term in (11):

Lemma 2. Suppose that Assumptions 1–3 hold. Then

E
〈
wt −w∗, (1/n) gt

〉
(13)

≥ µ

4
Et −

[
CLTηt−T +

(
µ

4
+

5L2

2µ

)
CLT

2η2t−T

]
Emax
t

−
[
2Tηt−T +

(
µ

2
+

5L2

µ

)
T 2η2t−T

]
σ2

n
, ∀ t ≥ 0.

The above lemma shows that the inner product term is lower
bounded by (µ/4)Et with (negative) perturbation terms that
are controllable by the step sizes.

Before substituting (12), (13) into (11) to derive the con-
vergence rate of sIAG method, we highlight that Lemma 2
deviates from the standard analysis for SGD with strongly
convex objective function. In the case of standard SGD where
gt = ∇f(wt; ξt) with Et[g

t] = ∇F (wt), the law of total
expectation and the strong convexity of F imply that

E⟨wt −w⋆, gt⟩ = E⟨wt −w⋆,Et[g
t]⟩

= E⟨wt −w⋆,∇F (wt)⟩ ≥ µEt.

However, in the sIAG method, gt is a function of ξsi for i ∈
[n] and s = 0, 1, . . . , t. Note that for any i /∈ At, ξ

τi(t)
i is Ft-

measurable and thus Et[∇fi(wτi(t)
i ; ξ

τi(t)
i )] ̸= ∇Fi(w

τi(t)).
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This implies that gt is not independent of Ft and thus

E
〈
wt −w⋆, gt

〉
̸= E

〈
wt −w⋆,

n∑
i=1

∇Fi(w
τi(t))

〉
.

Our remedy is to consider2 the following decomposition for
the inner product:

⟨wt −w∗,∇fi(wτi(t); ξ
τi(t)
i )⟩

= ⟨wt −wτi(t) +wτi(t) −w∗,∇fi(wτi(t); ξ
τi(t)
i )⟩.

(14)

Observe that ∇fi(wτi(t); ξ
τi(t)
i ) is independent of

wτi(t) and thus the simplification Eτi(t)[⟨wτi(t) −
w⋆,∇fi(wτi(t); ξ

τi(t)
i )⟩] = ⟨wτi(t) −w⋆,∇Fi(w

τi(t))⟩.
Furthermore, we develop the following bound to control

the size of difference ∥wt −wτi(t)∥22:

Lemma 3. Suppose that Assumptions 1 and 2 holds and
{ηt}t≥0 is a monotonically non-increasing sequence. Then,
it holds for all i ∈ [n] and t ≥ 0 that

E[∥wt −wτi(t)∥22] ≤ T 2η2t−T

(
2σ2

n
+CLEmax

t

)
. (15)

Observe that the bound is composed of the stochastic gra-
dient’s variance and the (delayed) optimality gap. Note that
the proof is obtained as a consequence of Lemma 1.

Importantly, (15) allows us to handle the term
⟨wt − wτi(t),∇fi(wτi(t); ξ

τi(t)
i )⟩ through applying

Cauchy-Schwarz inequality.
Substituting Lemmas 1 and 2 into (11) directly yields the

following recursive system: for any t ≥ 0,

Et+1 ≤ (1− (µ/2) ηt) Et (16)

+

[
1 + 2T +

(
µ

2
+

5L2

µ

)
T 2ηt−T

]
CLη

2
t−TEmax

t

+

[
1 + 2T +

(
µ

2
+

5L2

µ

)
T 2ηt−T

]
η2t−T

2σ2

n
.

If we ignore the last term proportional to σ2/n, then (16)
reduces into a contracting recursion with delays that has been
studied by [10]. Subsequently, Et converges to zero at a linear
rate when a constant step size is used.

The introduction of the noise-related terms in (16) has led
to a new recursive system with delayed terms that have not
been covered in prior works. As an attempt to derive a tight
bound, we fix the step size as

ηt = β/(t+ γ) (17)

for some γ, β > 0 and obtain the following convergence
rates for Et using induction:

2We remark that [20] considered an algorithm that involve similar staled
aggregation property to sIAG but have employed a simplifying assumption
that wt is independent of gt. Leveraging this property, their algorithm
achieves linear speedup regardless of T . We conjecture that such linear
speedup cannot be obtained when considering the realistic conditions for
sIAG method that wt is not independent of gt.

Theorem 1. Suppose that β > 2/µ and

γ ≥ 2T +max

{
16CLβ

2

µβ − 2
ρ̄(T ),

√
8CLβ2

µβ − 4
ρ̄(T )

}
,

where ρ̄(T ) := 1 + 2T +
(

µ
2 + 5L2

µ

)
βT . Let

δ1 :=
32β2ρ̄(T )

µβ − 2
+ 1, δ2 = γ2E0.

Then, it holds for all t ≥ 0 that

Et ≤
δ1

γ + t

σ2

n
+

δ2
(γ + t)2

. (18)

The detailed proof can be found in Appendix A. Theorem
1 indicates that the expected squared distance to optimal
solution decays at O((1 + T )/(nt)). We note that in the
interest of space, the constants in the bound are not fully
optimized. In general, obtaining tight bounds for recursive
system of the form (16) is an interesting open problem of
independent interest.

The bound (18) shows that the sIAG method converges
(in expectation) towards the optimal solution of (1) at the
rate of O( 1t ·

(1+T )σ2

n ). We notice that: (A) the sublinear
rate of O(1/t) is similar to that of existing analysis with
stochastic gradient methods [21] and is in the same order
of the minimax lower bound [22], (B) the constant factor
(1 + T )σ2/n indicates that linear speedup can be achieved
when the delay satisfies T = O(1). This rate is reasonable
since the number of samples taken per iteration is approxi-
mately n/T , the linear speedup ratio should be of the same
order. We note that similar slow down due to the delay T is
also reported in the analysis for IAG [11], [12].

IV. NUMERICAL SIMULATIONS

We evaluate the empirical performance of the sIAG algo-
rithm on synthetic data. We independently generate n param-
eters w∗

1 ,w
∗
2 , . . . ,w

∗
n according to the uniform distribution

on [0, 1]d. Each data point sampled by worker i takes the
form ξi = (Ai,yi), where Ai ∈ Rp×d and yi ∈ Rp.
The entries of Ai are independent and follow the Gaussian
distribution N (0, 1) and yi ∼ N (Aiw

∗
i , σ

2Ip). The loss
functions are defined as fi(w;Ai,yi) =

1
2∥Aiw− yi∥22 for

i ∈ [n]. If [A1; · · · ;An] is full-rank (which holds almost
surely when nd ≥ p), it is obvious that w∗ =

∑n
i=1 w

∗
i /n.

We compare sIAG with non-aggregated SGD, which uses
the following descent direction at the tth iteration:

gt
SGD :=

∑
i:τi(t)=t∇f(wτi(t); ξ

τi(t)
i ). (19)

We simulate three types of worker selection schemes. The
first selection scheme chooses one workers at each iteration
cyclically, i.e., at iteration t, the (tmodn + 1)th worker
is active. Notice that T = n in this case and there is no
linear speedup according to Theorem 1. The second selection
scheme chooses the workers uniformly at random. It models
the scenario when the workers are equally efficient. Further,
the workers will be selected at least once in no more than 15
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Fig. 2: Convergence of sIAG and SGD with: (Top) uniform
worker selection; (Bottom) non-uniform worker selection.

iterations. The third selection scheme adopts non-uniform se-
lection. It models a more realistic scenario when the workers
are heterogeneous in terms of efficiency. Specifically, worker
i is selected at least once in no more than Ti iterations,
where Ti is uniformly distributed on {10, . . . , 20}. The faster
workers are selected more frequently. Notice that T = 15 in
the second and third scheme.

Fig. 2 presents the convergence of two algorithms with
d = 20, p = 10, and σ = 0.1 under the uniform and non-
uniform selection schemes. Observe that under the uniform
selection scheme, the sIAG and SGD achieve comparable
convergence performance and both exhibit linear speedup as
the number of agents increases. We also observe that there is
no linear speedup with the cyclical selection scheme. On the
other hand, under the non-uniform worker selection scheme,
the sIAG still enjoys linear speedup while SGD is not con-
verging to an optimal solution, as the non-uniform selection
scheme has led to biased stochastic gradient. This validates
the necessity of aggregating (possibly) staled gradients in (5)
as opposed to using only the latest gradients in (19) in the
presence of system heterogeneity.

V. CONCLUSION
We proposed the sIAG algorithm for distributed optimiza-

tion over the parameter server architecture with heterogenous
streaming data. The sIAG method is adapted from the

classical IAG method on batch data. We established that
sIAG achieves linear speedup compared to the sequential
SGD for strongly convex problems. Our analysis relies
on careful treatments of the conditional expectations with
staled gradients (see (14)) and a new recursive system with
both delayed and noise-related terms (see (16)), which can
be of independent interest. Numerical results on synthetic
data verify our theoretical findings and show significant
advantages of sIAG over the non-aggregated SGD method
when the workers are not uniformly selected.
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APPENDIX

To simplify notations, throughout this appendix, we denote
gt
i := ∇fi(wt; ξti) and Gt

i := ∇Fi(w
t) as respectively

the stochastic gradient and exact gradient of the local loss
function for any i ∈ [n] and t ≥ 0.

A. Proof of Theorem 1

Let ρt := 1+2T+
(

µ
2 + 5L2

µ

)
T 2ηt−T . Since γ ≥ 2T , we

have ηt−T = β/(γ + t − T ) ≤ β/T , which further implies
that

ρt ≤ 1 + 2T +

(
µ

2
+

5L2

µ

)
βT = ρ̄(T ).

Thus, the recurrence relation (16) implies that

Et+1 ≤
(
1− µ

2
ηt

)
Et + ρ̄(T )CLη

2
t−TEmax

t

+ ρ̄(T )η2t−T

2σ2

n
. (20)

Then, we prove (18) by induction.
i) Base case: Since δ2 = γ2E0, we have

E0 ≤
δ1
γ

σ2

n
+

δ2
γ2

.

ii) Induction step: Suppose that for some t ≥ 0, it holds that

Es ≤
δ1

γ + s

σ2

n
+

δ2
(γ + t)2

, s = 0, . . . , t,

which implies that

Emax
t = max

s∈[(t−2T )+,t]
Es ≤

δ1
γ + t− 2T

σ2

n
+

δ2
(γ + t− 2T )2

.

Together with (20), this implies that

Et+1 ≤
(
1− µβ/2

γ + t

)
δ1

γ + t

σ2

n

+
ρ̄(T )CLβ

2δ1
(γ + t− T )2(γ + t− 2T )

σ2

n
+

2ρ̄(T )β2

(γ + t− T )2
σ2

n

+

(
1− µβ/2

γ + t

)
δ2

(γ + t)2
+

CLβ
2ρ̄(T )δ2

(γ + t− T )2(γ+t−2T )2
. (21)

We note that(
1− µβ/2

γ + t

)
1

γ + t
=

γ + t− 1

(γ + t)2
− µβ/2− 1

(γ + t)2

≤ 1

γ + t+ 1
− µβ/2− 1

(γ + t)2
, (22)

where the inequality holds because

γ + t− 1

(γ + t)2
≤ 1

γ + t+ 1
⇔ (γ + t)2 ≥ (γ + t)2 − 1.

We also note that(
1− µβ/2

γ + t

)
1

(γ + t)2
=

γ + t− 2

(γ + t)3
− µβ/2− 2

(γ + t)3

≤ 1

(γ + t+ 1)2
− µβ/2− 2

(γ + t)3
, (23)

where the inequality holds because

γ + t− 2

(γ + t)3
≤ 1

(γ + t+ 1)2
⇔ −3(γ + t) ≤ 2.

Thus, Plugging (22) and (23) into (21) gives

Et+1 ≤
σ2

n

[
δ1

γ + t+ 1
− (µβ/2− 1)δ1

(γ + t)2

+
CLβ

2ρ̄(T )δ1
(γ + t− T )2(γ + t− 2T )

+
2β2ρ̄(T )

(γ + t− T )2

]
+

δ2
(γ+t+1)2

− (µβ/2−2)δ2
(γ + t)2

+
CLβ

2ρ̄(T )δ2
(γ+t−T)2(γ+t−2T)2

. (24)

Moreover, γ ≥ 2T implies that

1

(γ + t− T )2
≤ 4

(γ + t)2
. (25)

Since β > 2/µ and γ ≥ 2T + 16CLβ2

µβ−2 ρ̄(T ), we have

CLβ
2ρ̄(T )δ1

γ + t− 2T
≤

(
µβ

2
− 1

)
δ1
8
. (26)

Besides, it follows from δ1 = 32β2ρ̄(T )/(µβ − 2) that

2β2ρ̄(T ) =

(
µβ

2
− 1

)
δ1
8
. (27)

Combing (25), (26), and (27) gives

CLβ
2ρ̄(T )δ1

(γ+t−T )2(γ+t−2T )
+

2β2ρ̄(T )

(γ+t−T )2
≤ (µβ/2−1)δ1

(γ + t)2
. (28)

Since β > 4/µ and γ ≥ 2T +
√

8CLβ2

µβ−4 ρ̄(T ), we have

CLβ
2ρ̄(T )

(γ + t− 2T )2
≤ 1

4

(
µβ

2
− 2

)
. (29)

Combining (25) and (29) gives

CLβ
2ρ̄(T )δ2

(γ + t− T )2(γ + t− 2T )2
≤ (µβ/2− 2)δ2

(γ + t)2
. (30)

Plugging (28) and (30) back into (24) yields

Et+1 ≤
δ1

γ + t+ 1

σ2

n
+

δ2
(γ + t+ 1)2

, (31)

which completes the proof of the induction step.
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