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Abstract— We study the problem of containment control in
an adversarial environment, where some of the agents may be
adversarial. We identify the security issue of a containment
control protocol in such adversarial environment. We propose
a resilient containment control protocol that ensures the state
of each non-adversarial (normal) follower agent converges to
the convex hull spanned by the states of the normal leader
agents. Specifically, our protocol is based on the method of
resilient convex combination and works for agents with a vector
state. For multi-agent networks consisting of one follower agent
and multiple leaders, we provide a sufficient condition on the
communication topology that guarantees the success of our
proposed protocol. In addition, we provide a set of numerical
simulations to demonstrate the success of our protocol and
verify our theoretical results.

I. INTRODUCTION

As a fundamental problem in networked systems, con-
tainment control has received great attention since the early
work [1]. The study of containment control is motivated by
numerous practical applications such as search missions and
convoy missions [2]. For a multi-agent network consists of
follower agents and leader agents, the objective of contain-
ment control is to design a protocol such that the state of each
follower agent will asymptotically converge to the convex
hull spanned by the states of the leader agents. In the past
decade, numerous containment control protocols have been
proposed [3], [4]. A common underlying assumption of these
protocols is that all agents in the network are cooperative.
Namely, every agent is willing to follow a preset protocol
and cooperate with other agents. Such assumption may not
hold if an agent is compromised by attackers and becomes
adversarial. This security concern motivates the problem
of resilient containment control, which seeks to design a
protocol such that the state of each non-adversarial (normal)
follower agent will asymptotically converge to the convex
hull spanned by the states of normal leader agents.

There is, however, a very limited literature that addresses
the problem of resilient containment control [5]–[8]. In [5],
under the assumption that the identities of the normal agents
are known, a protocol based on the use of a virtual resilient
communication layer that secures the communication be-
tween the normal agents is proposed. The construction of
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such a resilient layer, however, faces a challenge in practice:
it is unlikely to provide full security on every communication
between the normal agents, especially as the size of the
network scales. Furthermore, the underlying assumption that
the identities of the normal agents are known is unrealistic
because the targets of the attackers are generally not known
in prior. To achieve resilient containment control without
knowing the identities of the adversarial agents, protocols
[6]–[8] based on resilient consensus algorithms are pro-
posed. These resilient-consensus-based algorithms typically
rely on the assumption that the the graph that describes
the communication topology of the agents maintains certain
connectivity. Depending on whether they are applicable to
networks consisting of agents with a vector state, these
protocols can be divided into two categories: scalar protocols
[6], [7] and vector protocols [8]. The scalar protocols are
limited to agents with a scalar state because they are based on
resilient scalar consensus algorithms. One potential approach
to extend a resilient scalar containment protocol to a vector
one is by applying the protocol component-wisely. However,
this only guarantees the state of each normal follower to
converge to the minimum hypercube that contains the states
of the normal leader agents. Since the minimum hypercube
takes the convex hull spanned by the states of the normal
leader agents as a subset, resilient containment control is
not achieved. On the other hand, the vector protocol [8] is
applicable to agents with a vector state because it is based
on a resilient vector consensus algorithm. The sufficient
condition on the communication graph for the vector protocol
to work requires the leader agents to have a certain amount
of in-neighbors. This condition, however, can not be met
because leader agents are agents that do not have any in-
neighbors in the context of containment control. As a result,
there is currently no resilient vector containment protocol
that works under reasonable assumptions in the literature.

In this work, we fill the gap in the literature and propose
a resilient containment control protocol that is applicable to
networks consisting of agents with a vector state. Specifi-
cally, our protocol is based on the method of resilient convex
combination [9] and only requires each follower agent to
know the upper bound of the number of adversarial in-
neighbors and to have a adequate amount of in-neighbors.
For networks consisting of one follower agent and mul-
tiple leader agents, we provide a sufficient condition on
the communication topology that guarantees the success of
our protocol. In addition, we provide a set of numerical
simulations to demonstrate the success of our protocol and
verify the theoretical results.
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II. NOTATION AND GRAPH TERMINOLOGY

A. Notation

The set of real numbers is denoted by R, the set of natural
numbers by N, and the set of non-negative integers by Z≥0.
The identity matrix in Rp×p is denoted by Ip. A vector in
Rp with all its components equal to 1 is denoted by 1p.
The zero matrix in Rp×q is denoted by 0p×q and the zero
vector in Rp by 0p for simplicity. For two vectors x and
y in Rp, x ≥ y means every component of x − y is non-
negative. The operation of Kronecker product is denoted by
⊗. The transpose of a matrix M in Rm×n is denoted by
MT ∈ Rn×m. Let Z = {z1, z2, . . . , zm} be a set of m ∈ N
points in Rp. The convex hull of Z is given by {

∑m
i=1 θizi :

θi ≥ 0,∀i = 1, 2, . . . ,m,
∑m

i=1 θi = 1} and is denoted by
H(Z). Any point in H(Z) is said to be a convex combination
of Z . A square matrix M =

[
mij

]
in Rp×p is row-stochastic

if mij ≥ 0, for all i, j = 1, 2, . . . , p, and
∑p

j=1 mij = 1, for
all i = 1, 2, . . . , p.

B. Graph Terminology

A directed graph, or just digraph, is denoted by G =
(V, E), where V is the node set and E ⊆ V×V is the directed
edge set. A directed edge from node j to node i, denoted by
(j, i), implies that node j can transmit information to node
i and node i can receive information from node j. If edge
(j, i) ∈ E , then node i is said to be an out-neighbor of node
j and node j is said to be an in-neighbor of node i. The
in-neighborhood of node i is defined as Ni = {j|(j, i) ∈ E}.
A directed path from node i to node j is a sequence of
nodes l1, l2, . . . , lm such that l1 = i, lm = j and (ln, ln+1) ∈
E ,∀n = 0, 1, . . . ,m− 1. The cardinality of a finite set S is
denoted by |S|. Suppose |V| = N and V = {1, 2, . . . , N}.
A row-stochastic matrix M =

[
mij

]
in RN×N is said to

be associated with G if the following conditions hold: (a)
mii > 0,∀i ∈ V , (b) mij > 0 if (j, i) ∈ E , and (c) mij = 0
if (j, i) /∈ E . Throughout the rest of this paper, we use the
terms ‘nodes’ and ‘agents’ interchangeably.

III. PROBLEM FORMULATION

A. Multi-agent Network Model

Consider a multi-agent network consisting of N agents.
Specifically, let there be NF follower agents and NL = N−
NF leader agents, where a leader agent is an agent with
no in-neighbors and a follower agent is an agent with in-
neighbors. The communication topology of these agents is
described by a digraph G = (V, E). The set of leader agents
is denoted by VL ⊂ V and the set of follower agents by
VF = V \ VF .

B. Agent Model

The dynamics of each agent i ∈ V is described by

xi[k + 1] = xi[k] + ui[k], (1)

where k ∈ Z≥0 is the discrete-time index, xi[k] ∈ Rp and
ui[k] ∈ Rp are the state and control input of agent i at time
k, respectively, and p ∈ N.

C. Threat Model

Let the N -agent network be operating in an adversarial
environment in which some of the agents become adversarial
(malicious) after being attacked. Specifically, the N -agent
network is assumed to be under a F -local malicious attack
[10], which is a threat model that has been widely studied
in the context of consensus [11], [12]. In the following, we
present this threat model.

An agent i ∈ V is said to be malicious if it either
does not follow a preset update rule or sends out the same
arbitrary state information to all its out-neighbors at any
time k ∈ Z≥0. An agent i ∈ V is said to be normal if
it is not malicious. The set of malicious agents is denoted
by A ⊂ V and the set of normal agents is denoted by
R = V \ A. Notice that both leader agents and follower
agents can become malicious after being attacked. The set
of normal leader agents is denoted by RL = VL ∩ R
and the set of normal follower agents by RF = VF ∩ R.
Furthermore, let NR = |R| denote the number of normal
agents, NRF = |RF | the number of normal follower agents,
and NRL = NR − NRF the number of normal leader
agents. To capture the worst case scenario, we further make
the following two assumptions on the malicious agents.
First, the identities of the malicious agents are unknown to
the normal agents. Second, the malicious agents know the
communication graph G and can collaborate with each other
to maximize their threats to the normal agents.

Definition 1 (F -local malicious attack): The N -agent ne-
twork is said to be under a F -local malicious attack if each
normal agent i ∈ R has no more than F malicious in-
neighbors, i.e., |Ni ∩ A| ≤ F .

D. Resilient Containment Control Objective

The objective of resilient containment control is to design
a control protocol ui[k] for each agent i ∈ V such that, when
the N -agent network is under a F -local malicious attack, the
state of each normal follower will converge to the convex hull
spanned by the states of the normal leaders.

IV. RESILIENT CONTAINMENT CONTROL

A. Security Issue of a Containment Control Protocol

Let each agent i ∈ V be preset to follow the (cooperative)
containment control protocol [3] given by

ui[k] =
∑
j∈Ni

dij(xj [k]− xi[k]), if i ∈ VF

ui[k] = 0, if i ∈ VL

(2)

where dij is the (i, j)-th entry of a row stochastic matrix D
associated with the G. An alternative representation of (2) is
given by

ui[k] = (diixi[k] + (1− dii)vi[k])− xi[k], if i ∈ VF

ui[k] = 0, if i ∈ VL

(3)

where vi[k] =
∑

j∈Ni
dij(1 − dii)

−1xj [k]. Let XNi
[k] :=

{xj [k],∀j ∈ Ni} denote the set of states of agent i’s
neighbors. Notice that vi[k] is a convex combination of
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XNi
[k] since

∑
j∈Ni

dij = 1 − dii and dij(1 − dii)
−1 ≥ 0,

∀j ∈ Ni. When the multi-agent network is not under a
F -local malicious attack, if G contains a united directed
spanning tree, then the state of each follower agent i ∈ VF

will asymptotically converge to the convex hull spanned by
the states of the leader agents [3].

Definition 2 (united directed spanning tree): G contains a
united directed spanning tree if, for each follower agent i ∈
VF , there exists a directed path from a leader agent j ∈ VL

to follower agent i.
Suppose the multi-agent network is under a F -local ma-

licious attack. Consider a normal follower agent i ∈ RF .
Suppose Ni ∩ A ≠ ∅ and agent l ∈ Ni is malicious.
Recall that malicious agent l can send out the same arbitrary
state information xl[k] to all its out-neighbors at any time
k ∈ Z≥0. By letting xl[k] such that vi[k] = xi[k], i.e.,
xl[k] = xi[k]−

∑
j∈Ni\{l} dijd

−1
il (xj [k]− xi[k]), it follows

that ui[k] = 0. This implies that normal follower agent i
becomes autonomous and, thus, its state may not converge to
the convex hull spanned by the states of the normal leaders.
To mitigate the adversarial influence of the malicious agents,
one effective way is to replace vi[k] by a resilient convex
combination of XNi [k], i.e., a convex combination of states
of agent i’s normal in-neighbors.

B. Resilient Convex Combination
Recall the definition of a F -local malicious attack. When

the network is under a F -local malicious attack, each normal
agent has no more than F malicious in-neighbors. In other
words, each normal agent i ∈ R has at least |Ni| − F
normal in-neighbors. Thus, if a point lies in every convex
hull spanned by |Ni| − F points in XNi

[k], then such a
point is a convex combination of states of agent i’s normal
in-neighbors. To see this, notice that such a point lies in the
convex hull spanned by the states xi[k] of any |Ni| − F
normal in-neighbors of agent i. In the following, we present
an effective method called resilient convex combination [9]
to find such a point.

Given a set of m ∈ N points in Rn, denoted by X =
{x1, x2, . . . , xm}, and a non-negative integer κ ∈ Z≥0,
resilient convex combination [9] is a method for finding a
point that lies in every convex hull spanned by m−κ points
in X . Let M = {1, 2, . . . ,m} and let M(κ) be the set
of all subsets of M with cardinality ρ := m − κ. Notice
that r := |M(κ)|, i.e., the total number of such a subset,
is given by

(
m

m−κ

)
. Furthermore, if Mi ∈ M(κ), then let

XMi = {xj ,∀j ∈ Mi}. Notice that if a point lies in every
convex hull spanned by m − κ points in X , then such a
point lies in the intersection of every convex hulls spanned
by m−κ points in X . Thus, I, the set of all points that lies
in every convex hull spanned by m−κ points in X , is given
by

I =
⋂

Mi∈M(κ)

H(XMi
).

Lemma 1 ([9]): The set I ≠ ∅ if m ≥ κ(n+ 1) + 1.
To solve for a point in I, consider an alternative expression
of I in terms of equality and inequality constraints. For each

Mi = {i1, i2, . . . , ir} ∈ M(κ), define

Yi =
[
xi1 xi2 · · · xiρ

]
∈ Rn×ρ.

Furthermore, let

X = diag{Yi, i = 1, 2, . . . , r} ∈ Rnr×ρr

be a block diagonal matrix with diagonal blocks Yj , j =
1, 2, . . . , r. Let C ∈ Rr×r be a circulant matrix with the
first row in the form of

[
1 −1 0 · · · 0

]
. Then, I can

be expressed as

I =

1

r
(1T

r ⊗ In)Xβ :

(C ⊗ In)Xβ = 0nr

(Ir ⊗ 1T
ρ )β = 1r,∀β ∈ Rρr

β ≥ 0ρr

 .

For any β =
[
βT
1 βT

2 · · · βT
r

]
∈ Rρr such that β ≥

0, where βi ∈ Rρ, for all i = 1, 2, . . . , r, the equality
constraints (C ⊗ In)Xβ = 0 and (Ir ⊗1T

p )β = 1r force all
Yiβi to be identical and each Yiβi to lie in the convex hull
spanned by every XMi . Thus, for any β ∈ Rρr that satisfies
the equality and inequality constraints, 1

r (1
T
r ⊗ In)Xβ is a

point that lies in every convex hull spanned by m−κ points
in X .

By expressing I in terms of equality and inequality
constraints, a point z ∈ I be can obtained by solving the
quadratic programming problem given by

β∗ := argmin
β∈Rρr

1

ρ
||β − 1

ρ
1ρr||22

subject to (C ⊗ In)Xβ = 0nr

(Ir ⊗ 1T
ρ )β = 1r

β ≥ 0ρr

(4)

and letting

z =
1

r
(1T

r ⊗ In)Xβ∗. (5)

Through the rest of the paper, we let RCC(X , κ) be a
function that takes the finite set X and integer κ as inputs and
returns, according to (4) and (5), a point z that lies in every
convex hull spanned by |X | − κ points in X . Furthermore,
we say the point z is a resilient convex combination of X
with parameter κ.

C. Resilient Containment Control Protocol

Under the assumption that each follower agent i ∈ VF

knows in prior the upper bound F on the number of its
malicious in-neighbors and |Ni| ≥ F (p+1)+1, we propose
a resilient containment control protocol given by

ui[k] = (αixi[k] + (1− αi)ri[k])− xi[k], if i ∈ VF

ui[k] = 0, if i ∈ VL

(6)

where 0 < αi < 1 and ri[k] := RCC(Xi[k], F ). Since ri[k]
is a resilient convex combination of XNi

[k] with parameter
F , it lies in the convex hull spanned by the states of in-
neighbors of agent i. Thus, ri[k] is a convex combination of
XNi∩R[k] := {xj [k],∀j ∈ Ni ∩R} and can be expressed as

ri[k] =
∑

j∈Ni∩R
d̄ij [k]xj [k],
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for some weights d̄ij [k] such that d̄ij [k] ≥ 0,∀j ∈ Ni ∩ R,
and

∑
j∈Ni∩R d̄ij [k] = 1. In the next section, we first

assume that every agent is preset to follow the resilient
containment control protocol (6) and the network is under
a F -local malicious attack. Then, we study the closed-loop
dynamics of the normal agents. Last, we focus on networks
consisting of a follower agent and multiple leader agents and
provide a sufficient condition on the communication topology
that is required for the protcol (6) to work.

V. ANALYSIS OF THE RESILIENT CONTAINMENT
CONTROL STRATEGY

By substituting R-CCP (6) into the agent dynamics (1),
it follows that the closed-loop dynamics of each normal
follower agent i ∈ RF and each normal leader agent l ∈ RL

are, respectively, given by

xi[k + 1] = xi[k] + ui[k]

= αixi[k] + (1− αi)ri[k]

= αixi[k] + (1− αi)
∑

j∈Ni∩R
d̄ij [k]xj [k]

= d̃ii[k]xi[k] +
∑

j∈Ni∩R
d̃ij [k]xj [k],

(7)

where d̃ii[k] = αi,∀k ∈ Z≥0, and d̃ij [k] = (1 − αi)d̄ij [k],
and

xl[k + 1] = xl[k] + ul[k] = xl[k] = d̃ll[k]xl[k], (8)

where d̃ll[k] = 1,∀k ∈ Z≥0. Two observations about (7)
and (8) can be made. First, the closed-loop dynamics of
each normal agent is independent of the malicious agents.
Therefore, the adversarial influence of the malicious agents
is mitigated. Second, all normal leaders are autonomous and,
thus, xl[k] = xl[0],∀l ∈ RL. In addition, let XRL[k] =
{xl[k]}l∈RL

denote the set of states of normal leader agents
at time k. It follows that H(XRL[k]) = H(XRL[0]) at any
k ∈ Z≥0.

To further study how each normal agent interacts with
others, consider the subgraph G̃ of G formed by the set of
normal agents R. Without loss of generality, assume that
agents 1, . . . , NRF are normal follower agents and agents
NRF + 1, . . . , NR are normal leader agents. That is, RF =
{1, . . . , NRF } and RL = {NRF + 1, . . . , NR}. Thus, the
row-stochastic matrix D̃[k] =

[
d̃ij [k]

]
associated with G̃ is

an upper triangular matrix in the form of

D̃[k] =

[
D̃1[k] D̃2[k]

0NRL×NRF
INRL

]
. (9)

Let xR[k] =
[
xRF [k]

T xRL[k]
T
]T

denote the state of
normal agents, where xRF [k] =

[
x1[k]

T . . . xNRF
[k]T

]T
and xRL[k] =

[
xNRF+1[k]

T . . . xNR
[k]T

]T
denote the

state of normal follower agents and the state of normal leader
agents, respectively. The closed-loop dynamics of normal
agents is given by

xR[k + 1] = (D̃[k]⊗ INR
)xR[k]. (10)

For any integer m, let Πm
s=0D̃1[s] = D̃1[m − 1]D̃1[m −

2] · · · D̃1[0] if m ≥ 0 and Πm
s=0D̃1[s] = INF if m < 0. By

invoking (10) n ∈ N times and letting k = 0, the state of
normal agents at time n is given by

xR[n] =

(
n−1∏
s=0

D̃[s]⊗ INR

)
xR[0]

=

([
P1[n] P2[n]

0NRL×NRF
INRL

]
⊗ INR

)
xR[0],

(11)

where

P1[n] =

n−1∏
s=0

D̃1[s]

and

P2[n] =

n−1∑
t=0

(
n−2−t∏
s=0

D̃1[(n− 1)− s]

)
D̃2[t].

Specifically, the state of normal follower agents at time n ∈
N is given by

xRF [n] = (P1[n]⊗ INRF
)xRF [0] + (P2[n]⊗ INRL

)xRL[0].
(12)

Motivated by the ”Loyal Wingman” system [13], which
uses multiple unmanned aerial vehicles to protect a manned
vehicle on a mission, we now consider a multi-agent network
consisting of NF = 1 follower agent and NL ≥ 1 leader
agents. Specifically, the in-neighborhood of the follower
agent consists of all the leader agents. When the network
is under a F -local malicious attack, either RF = ∅ or
RF ̸= ∅ is true. For the case where RF = ∅, the problem
becomes trivial because there is no normal follower. For the
case where RF ̸= ∅, it follows that RF = VF = {1}
and xRF [k] = x1[k]. We show that the state of normal
follower agent 1 will converge to H(XRL[0]) when |N1| ≥
F (p+ 1) + 1.

Theorem 1: Consider a multi-agent network consisting of
NF = 1 follower agent and NL ≥ 1 leader agents whose
agent communication topology is described by a digraph
G = (V, E). Let the dynamics of each agent i ∈ V be
given by (1) and let each agent i be preset to follow
the resilient containment control protocol (6). Suppose the
network is under a F -local malicious attack and, without loss
of generality, there exists a normal follower whose index is 1.
If the in-neighborhood of the normal follower consists of all
leader agents and |N1| = NL ≥ F (p+1)+1, then the state
of the normal follower agent will converge to the convex hull
spanned by the states of the normal leader agents.

Proof: Since RF = {1}, it follows that xRF [k] = x1[k]
and D̃1[k] = d̃11[k] = α1. By substituting xRF [k] = x1[k]
and D̃1[k] = αi into (12), the state of normal follower agent
1 at any n ∈ Z≥0 is given by

x1[n] = (P1[n]⊗ INRF
)x1[0] + (P2[n]⊗ INRL

)xRL[0]

= αn−1
1 x1[0] + (P2[n]⊗ INRL

)xRL[0],
(13)

where, in this case, P2[n] = (Σn−1
t=0 (Π

n−2−t
s=0 α1)D̃2[t]). An

observation about (13) can be made. If limn→∞ αn−1
1 = 0
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and limn→∞ P2[n]1NRL
= 1, i.e., P2[n] converges to some

row-stochastic matrix as n → ∞, then the state of normal
follower agent 1 will converge to H(XRL[0]). Since 0 <
α1 < 1, it follows that limn→∞ αn−1

1 = 0. Since D̃[k] is
row-stochastic and D̃1[k] = α1, D̃2[k]1NRL

= 1−α1,∀k ∈
Z≥0. This implies that

P2[n]1RL =

(
n−1∑
t=0

(
n−2−t∏
s=0

α1

)
D̃2[t]

)
1NRL

=

(
n−1∑
t=0

(
n−2−t∏
s=0

α1

)
D̃2[t]1NRL

)

= (1− α1)

n−1∑
t=0

(
n−2−t∏
s=0

α1

)

= (1− α1)
1− αn−1

1

1− α1

= 1− αn−1
1 .

Since 0 < α1 < 1, it follows that limn→∞ P2[n] = 1. Hence,
x1[n] will asymptotically converge to H(XRL[0]).

In the next section, we demonstrate this result through a
numerical simulation.

VI. SIMULATION

Consider a 7-agent network with NF = 1 follower agent
and NL = 6 leader agents whose agent communication
topology is described by a digraph shown in Figure 1. Specif-
ically, the in-neighborhood of the follower agent consists
of all leader agents. For illustration purpose, an index is
assigned to each agent. Agent 1 is the follower agent and
agents 2, 3, . . . , 7 are the leader agents. Thus, VF = {1},
VL = {2, 3, . . . , 7}, and N1 = VL. The dynamics of each
agent is given by (1) and let the agents be planar agents, i.e.,
p = 2. The states of the agents at time k = 0 are summarized
in Table I.

To show resilient containment control can be achieved
using the resilient containment control protocol (6) and can
not be achieved using the cooperative containment control
protocol (3), we consider the following three scenarios:
(i) each agent i ∈ V is preset to follow the cooperative
containment control protocol (3) and there are no malicious
agents in the network, (ii) each agent i ∈ V is preset to follow
the cooperative containment control protocol (3) and leader
agent 7 is malicious, and (iii) each agent i ∈ V is preset
to follow the resilient containment control protocol (6) and
leader agent 7 is malicious. Notice that, in both scenarios (ii)
and (iii), the network is under a F -local malicious attack,
where F = 1, and RL = VL \ {7}. Furthermore, in both

TABLE I
THE STATE OF EACH AGENT IN THE 7-AGENT NETWORK AT TIME k = 0.

i 1 2 3 4 5 6 7

xi[0]

[
4
0

] [
2
0

] [
1√
3

] [
−1√
3

] [
−2
0

] [
−1

−
√
3

] [
1

−
√
3

]

1 2

34

5

6 7

Fig. 1. A digraph that describes the communication topology of the agents
in the 7-agent network. The follower agent is represented by the circle
marker and the leader agents by the square markers. The number in each
marker is the index of each agent. For any two agents i, j ∈ {1, 2, . . . , 7},
if an arrow from agent j is pointing to agent i, then agent j is an in-neighbor
of agent i.

scenarios (ii) and (iii), by being malicious, leader agent 7
does not follow either preset protocol and changes its state
in a way described by

x7[k+ 1] = x7[k] + 0.3

[
sin (k/2)
cos(k/2)

]
+ 0.001k

[
3

−0.5

]
(14)

at every k ∈ Z≥0. For scenario (i), we show mathematically
that the state of the leader agent will converge to the convex
hull spanned by the states of normal leaders. For each of the
scenarios (ii) and (iii), we conduct a numerical simulation
to observe the state evolution of each agent from k = 0 to
k = 40. The simulation results of scenarios (ii) and (iii) are
shown in Figure 2(a) and Figure 2(b), respectively.

Scenario (i): In this scenario, all agents are normal and are
preset to follow the cooperative containment control protocol
(3). Specifically, for follower agent 1, the weights d1j are
assigned as d11 = 0.7, d1j = 0.006, ∀j ∈ {2, 3, . . . , 6}, and
d17 = 0.27. Note that v1[k] =

∑
j∈N1

dij(1 − dii)
−1xj [k]

and that N1 = VL. Since all leader agents are normal and,
thus, autonomous according to (2), it follows that, v1[k] =
v1[0], ∀k ∈ Z≥0, and that, at any time n ∈ N, the state of
follower agent 1 is given by

x1[n] = dn−1
11 xi[0] +

(
n−1∑
t=0

(
n−2−t∏
s=0

d11

)
(1− d11)

)
v1[0]

= dn−1
11 xi[0] +

(
(1− d11)

1− dn11
1− d11

)
v1[0]

Since limn→∞ dn−1
11 = 0, it follows that

lim
n→∞

x1[n] = v1[0] =
∑
j∈VL

d1j
1− d11

xi[0] =

[
0.4

−0.6928

]
.

Since v1[0] is a convex combination of XVL
[0], the state of

follower agent 1 asymptotically converges to the H(XVL
[0]).

Scenario (ii): In this scenario, all agents except leader
agent 7 are normal. The normal agents follow the cooperative
containment control protocol (3) and the state of malicious
leader agent 7 evolves according to (14). Specifically, fol-
lower agent 1 assigns the same weights d1j to the states of
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(a) (b)

Fig. 2. The state xi[k] of each agent i in the 7-agent network from time k = 0 to k = 40 for scenarios (ii) and (iii). Here, (xi[k])j denotes the jth
entry, j ∈ {1, 2}, of the state vector xi[k]. The state of each agent at k = 0 is marked by the triangle marker, while the state at k = 40 is marked by
the square marker. The number next to each triangle marker is the index of each agent. The state trajectory of the normal follower agent is marked by the
dotted line, the state trajectory of the each normal leader agent is marked by the solid line, and the state trajectory of the malicious leader agent is marked
by the dash-dotted line. The boundary of each convex hull spanned by the states of the normal leader agents at k = 0 and k = 40 is marked by the dash
line. (a) In scenario (ii), the state of the (normal) follower agent 1 fails to converge to the convex hull spanned by the states of the (normal) leader agents
under the influence of the malicious leader agent 7. (b) In scenario (iii), the state of the (normal) follower agent 1 converges to the convex hull spanned
by the states of the (normal) leader agents despite the influence of the malicious leader agent 7.

its in-neighbors as in scenario (a). Since the normal leaders
are autonomous, the convex hull spanned by the states of the
normal leaders is given by H(XRL

[0]). Due to the existence
of the malicious leader agent 7 in the network, follower agent
1 fails to converge to H(XRL

[0]) as shown in Figure 2(a).
Scenario (iii): As in scenario (ii), in this scenario, all

agents except leader agent 7 are normal. The normal agents
follow the resilient containment control protocol (6) with
F = 1 and the state of the malicious leader agent 7 evolves
according to (14). The weight of follower agent 1 on its own
state is assigned as α1 = 0.7. Notice that follower agent 1
has |Ni| = 6 ≥ F (p + 1) + 1 = 4 in-neighbors. Thus,
according to Theorem 1, the state of follower agent 1 will
asymptotically converge to H(XRL

[0]) as shown in Figure
2(b).

VII. CONCLUSIONS

In this work, we study the problem of containment control
in an adversarial environment. Specifically, we consider a
multi-agent network consisting of follower agents and leader
agents. We identify the security issue of a cooperative
containment control protocol when the network is under a
F -local malicious attack. Under the assumption that each fol-
lower agent knows in prior the upper bound F on the number
of its malicious in-neighbors and has at least F (p + 1) + 1
in-neighbors, we propose a resilient containment control
protocol based on resilient convex combination. Furthermore,
if the network consists of one follower agent and multiple
leader agents, we provide a sufficient graph condition that
guarantees the success of our proposed protocol. Finally,
we provide a numerical simulation to verify our theoretical
results.
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