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Abstract— The Industrial Internet of Things (IIoT) gradually
becomes a new paradigm for information exchange in the in-
dustrial production environment. To ensure the high reliability
of IIoT services, an efficient resource allocation method with
good robustness is urgently needed under complex industrial
environments. This paper considers the distributed constraint-
coupled resource allocation problem with noisy information
exchange over an undirected network, where each agent holds
a private cost function and obtains the solution via only
local communications. Communication noise poses a challenge
to gradient-tracking based algorithm as the impact of noise
will accumulate and its variance tends to infinity when the
noise is persistent. Adopting noise-tracing scheme, we propose
an exact noise-robust distributed gradient-tracking algorithm
to achieve cost-optimal distribution of resources, which can
avoid noise-accumulation in the tracking step. Moreover, noise
suppression parameters are introduced to further attenuate the
impact of noise. With diminishing suppression parameters, it
is theoretically proved that the proposed algorithm is able to
achieve exact convergence to the optimal solution. Finally, a
numerical example is provided for verification.

I. INTRODUCTION

As an emerging and prospective paradigm, the Industrial
Internet of Things (IIoT) enables intelligent manufacturing
via the interconnection and interaction of industrial pro-
duction elements. Distributed constraint-coupled resource
allocation problem (DRAP) is an important term associated
with the IIoT, providing a efficient way to make systems
more flexible and computation friendly [1], e.g. it has wide
applications in software-defined networks [2] and MEC
systems [3]. The goal of DRAP is achieving the cost-optimal
distribution of limited resources among users to meet their
demands, local constraints, and possibly certain coupled
global constraints. In this paper, we focus on solving the
following DRAP with a linear coupled constraint

min
W∈Rnp

f(W ) =

n∑
i=1

fi(wi)

s.t.

n∑
i=1

Aiwi =

n∑
i=1

di, wi ∈ Ωi,∀i, (1)
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where fi : Rp → R is the agent i’s private cost function,
W =

[
wT

1 , · · · ,wT
n

]T
, wi ∈ Rp is the decision vector of

agent i and di denotes the local resource demand. Ωi is a
local convex and compact set which encodes local constraints
of agent i. Ai ∈ Rm×p is the nonzero coupling matrix.

Compared with centralized methods, distributed ones that
operate with only local information have better scalability
and robustness to possible node failures, especially for large-
scale systems [4]. There are extensive efforts devoted to
solving optimization problems with only simple coupling
between agents, i.e., all Ai are identity matrices, from either
the primal or the dual perspectives [5]–[7]. Considering
DRAP (1), distributed algorithms are proposed in [8], where
the tracking technique is employed to track the constraint
deviation. With Ωi in (1) being a polyhedron, ref. [9]
proposed a dual consensus ADMM method. And a proximal
diffusion strategy is developed in [10] and its convergence
is established even in the presence of nonsmooth terms.

It is noted that aforementioned distributed algorithms have
been designed under the assumption of ideal communication
networks without any distortion and noise. In practice, the
communication channels might be corrupted by additive
noise [11]. Quantization before transmission to reduce com-
munication burden is another source of communication noise
[12]–[14]. To alleviate the impact induced by quantization,
the diminishing noise suppression parameter is introduced in
[14]. Ref. [15] proposed a gradient-tracking based algorithm
to solve optimization problems with stochastic gradient.
To avoid the noise-accumulation problem issue, the noise-
tracing scheme is proposed in [16] and it ensures that
the global gradient estimation is unbiased with bounded
variance. By incorporating diminishing suppression param-
eters with noise-tracing scheme, a distributed algorithm is
proposed in [17], which has guaranteed optimality even
under noisy interference. We note that [14]–[17] only deals
with the special case of DRAP with only consensus con-
straints. Extension to the DRAP with a simple coupling
constraint is performed in [18]. Moreover, a dual method
is proposed in [19], but it can only reach a neighborhood of
the optimum. As for solving the general DRAP (1), an nosie-
robust algorithm is proposed in [20] based on the stochastic
approximation technique. However, it requires exchanges of
global optimization variables among all agents.

In this paper, a fully distributed optimization algorithm
(ERDGA) is proposed to solve constraint-coupled DRAP
(1) with noisy information exchange. Compared with works
in [14]–[19], the proposed algorithm can tackle a more
general coupling constraint between agents. As for noise
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treatment, the noise-tracing scheme is introduced to obtain
the unbiased estimate of the global gradient with bounded
variance. To further eliminate steady state errors induced
by persistent noise, two diminishing noise suppression pa-
rameters are implemented, which poses a challenge to con-
ventional convergence analysis methods of gradient-tracking
based algorithms in [16], [19], [21]. Using martingale theory,
we theoretically prove that the ERDGA can achieve exact
convergence to the optimal solution for strongly convex cost
functions, which are not necessarily to be smooth.

The rest of the paper is organized as follows. Section II
provides preliminaries. The proposed algorithm is developed
in Section III and the theoretical analysis of its convergence
is given in Section IV. Then the algorithm is numerically
tested in Section V. Finally, Section VI concludes the paper.

Notations: Vectors default to columns if not otherwise
specified. The Kronecker product is denoted by ⊗. Let 1n be
the n-dimension vector with all one entries. For vectors, ‖·‖
denotes the 2-norm. For matrices, ‖ · ‖ denotes the spectral
norm. 4 denotes the element-wise less than or equal to.
We use blkdiag(X1, · · · , Xn) to refer to the block-diagonal
matrix with X1, · · · , Xn as blocks. For a random variable
x, we use E[x] to denote its expectation.

II. PRELIMINARIES

We make the following assumptions on the DRAP (1):
Assumption 1: Each cost function fi(w) is strongly

convex, i.e., for any w,w′ ∈ Rp, the relation (w −
w′)T (∇fi(w)−∇fi(w′)) ≥ µi‖w − w′‖2 holds, where
µi > 0. Define µ = mini{µi}.

The communication network over which agents exchange
information can be represented by an undirected graph G =
(N , E), whereN = {1, · · · , n} is the set of agents, E ⊆ N×
N denotes the set of edges, accompanied with a nonnegative
weighted matrixW = [wij ]. For any i, j ∈ N in the network,
wij > 0 denotes agent j can exchange information with
agent i. The collection of all individual agents that agent i
can communicate with is defined as its neighbors set Ni.

Assumption 2: The graph G is undirected and connected.
Under Assumption 2, the weight matrix W ∈ Rn×n is

doubly stochastic, i.e., W1n = 1n and 1TnW = 1Tn .
Assumption 3: The problem satisfies Slaters condition.
Assumptions 1-3 are standard when solving related prob-

lems. Under Assumptions 1, 3, the strong duality holds. Spe-
cially, Assumptions 3 is not needed when Ωi is a polyhedron.

In this paper, we focus on the error caused by noisy
communication links and/or quantization. In practice, the
communication channels can be corrupted by additive noise,
which was statistically modeled as Gaussian in [22]. In
addition, to alleviate heavy load to communication networks,
quantization techniques are particularly critical. Here, we
take the following random quantization scheme [14] for
example. For a single number x ∈ [l, u], we uniformly divide
the interval into B bins, whose end points are bounded by
τi, i.e., l = τ1 ≤ · · · ≤ τB = u and 4 , τi+1 − τi = u−l

B−1 .
Thus, b = log2 (B) bits can be used to index the {τi}. Given
x ∈ [τi, τi+1), we assign a probability based on its relative

location inside this interval and choose either τi or τi+1

to represent x at random: Q(x) = τi,w.p. 1 − x−τi
4 , and

Q(x) = τi+1,w.p. x−τi4 , where the random variable Q (x)

thus satisfies E[Q (x)] = x, E[(Q (x)− x)
2
] ≤ 4

2

4 .
In the following parts, we use two independent random se-

quences {nXk
}k>0, {nLk

}k>0 to summarize the aforemen-
tioned communication noise: nXk

:= [nTx1,k
, · · · ,nTxn,k

]
T ,

nLk
:= [nTl1,k , · · · ,n

T
ln,k

]
T , where nxi,k

, nli,k ∈ Rm denote
the noise encountered by agent i at iteration time k.

Assumption 4: Noises nXk
, nLk

,∀k > 0 have zero mean
and bounded variance, i.e., E[nXk

] = E[nLk
] = 0 and

E[‖nXk
‖2] ≤ σ2

X , E[‖nLk
‖2] ≤ σ2

L for some σX , σL > 0.

III. ALGORITHM DEVELOPMENT

In this section, we will develop an exact noise-robust
distributed algorithm based on Lagrangian duality.

Introducing Lagrange multiplier x, we construct the La-
grangian L (W,x). Then, the dual problem of DRAP (1) can
be derived, which is equivalent to the following distributed
consensus problem (e.g., see [6] for details)

min
x∈Rm

n∑
i=1

Fi (x) =

n∑
i=1

Fi (xi)

s.t. x1 = x2 = · · · = xn = x ∈ Rm, (2)

in which the local cost function is Fi (x) , f∗i
(
−ATi x

)
+

xTdi, where f∗i
(
−ATi x

)
is the convex conjugate function

f∗i
(
−ATi x

)
= supw∈Ωi

(
−xTAiw − fi (w)

)
.

Under Assumption 1, f∗ is differentiable, 1
µ -Lipschitz

smooth, and the supremum related to f∗ is attainable [23].
It follows from Proposition B.25 in [24] that the gradient of
Fi (x) can be obtained as ∇Fi (x) = −Ai∇f∗i

(
−ATi x

)
+

di = −Ai · arg minw∈Ωi

{
fi (w) + xT ·Aiw

}
+ di.

Adopting gradient-tracking scheme in the above dual
problems (2) shows effectiveness in solving problem (1) in
noiseless situations [25]. However, with noisy information
exchange, such scheme suffers from poor convergence prop-
erties due to noise-accumulation:

n∑
i=1

li,k+1 =

n∑
i=1

(
∇Fi(xi,k+1) +

k−1∑
t=0

nli,t

)
, (3)

where the variable li,k+1 is used to directly track the gradient
information and its variance tends to infinity when the
noise is persistent, making it unreliable. To avoid noise-
accumulation, motivated by [16], [19], we adopt the variable
li,k+1 to record the impact of noise on gradient information
at iteration k instead, which is named as noise-tracing

li,k+1 =

n∑
j=1

wij · lj,k +∇Fi(xi,k+1) + nli,k ,∀i ∈ N . (4)

Here, li,k+1 − li,k is used for gradient-tracking at iteration
k, where the effect of the noise at iteration k − 1 can
thus be eliminated. When the initial condition

∑n
i=1 li,0 =∑n

i=1∇Fi(xi,0) holds, it can be derived by induction that
n∑
i=1

(li,k+1 − li,k) =

n∑
i=1

(
∇Fi(xi,k+1) + nli,k

)
, (5)
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i.e., the tracked information is the unbiased estimate of the
global gradient with bounded variance under Assumption 4.

Additionally, two noise suppression parameters ηk, γk
are introduced to alleviate the impact of noise. These two
parameters determine the degree to which variables from
the neighbors should be weighed against the local one
when proceeding algorithm updating. As shown in Algorithm
1 below, the introduction of ηk, γk causes the noise that
actually affects algorithm iterations to be ηk ·nxi,k

, γk ·nli,k .
Intuitively, without noise-accumulation, the error induced

by noise tends to zero as two noise suppression parameters
decay to 0. However, since ηk, γk also closely related to
the consensus process, the consensus constraint in (2) may
be difficult to satisfy if simply reduce two parameters to
zeros with iteration. Thus, a proper design of ηk, γk is further
needed, which will be elaborated in the next section.

We summarize the Exact noise-robust distributed
gradient-tracking algorithm (ERDGA) in Algorithm 1.

Algorithm 1 : ERDGA algorithm
1: Parameters: W = [wij ], ηk, γk > 0, βk > 0, ∀k;

Initialization: Arbitrary xi,0 ∈ Rm,wi,0 ∈ Rp, li,0 = −Aiwi,0+di.
2: for k = 0, 1, ... do
3: Dual variable update:

xi,k+1 = (1− ηk)xi,k + ηk

(∑n
j=1 wij · xj,k + nxi,k

)
−(li,k − li,k−1),

4: Primal variable update:
wi,k+1 = argmin

w∈Ωi

{
fi (w) + xT

i,k+1 ·Aiw
}

,

5: Auxiliary variable update:
li,k+1 = (1− γk) li,k + γk

(∑n
j=1 wij · lj,k + nli,k

)
+βk

(
−Aiwi,k+1 + di

)
.

6: end for

Similar treatment can be found in [17]. Although problem
(2) possesses similar structure with that in [17], we note that
the convergence cannot be guaranteed by directly adopting
their algorithm to solve (2), since an additional bounded
assumption for dual variable is needed. This assumption is
hard to satisfy when solving the DRAP (1) in this paper.

IV. CONVERGENCE ANALYSIS OF ERDGA

In this section, we will establish the convergence proper-
ties of the proposed algorithm.

For analysis, we define Xk = [xT1,k, · · · ,xTn,k]
T , Lk =

[lT1,k, · · · , lTn,k]
T , 1̂ = 1n ⊗ Im, x̄k = 1̂T

n Xk, X̄k = 1̂x̄k,
L̄k = 1̂1̂T

n Lk, F (Xk) =
∑n
i=1 Fi(xi,k), ∇F (Xk) =

[∇F1(x1,k)
T
, · · · ,∇Fn(xn,k)

T
]
T

, W = W ⊗ Im, A =
blkdiag(A1, · · · , An). Then, we will use a deterministic
counterpart of the supermartingale convergence result.

Lemma 1: [26] Let {Uk}, {Vk} be non-negative vector
sequences and {gk}, {hk} be non-negative scalar sequences
such that Uk+1 4 (Pk + gk11

T )Uk + hk1−QkVk,∀k > 0
holds, where {Pk}, {Qk} are non-negative matrices. If {gk},
{hk} satisfy

∑∞
k=1 gk < ∞ and

∑∞
k=1 hk < ∞, and there

exists positive vector π such that πTPk ≤ πT , πTQk ≥
0,∀k > 0 holds. Then we have 1) {πTUk} is convergent; 2)
{Uk} is bounded; 3)

∑∞
k=1 π

TQkVk <∞.

Denote Wηk := (1 − ηk)I + ηkW , Wγk := (1 −
γk)I + γkW ,∀k > 0. Under Assumption 2, the matrix
Wηk has a unique right eigenvector 1̂ (associated with
eigenvalue 1) satisfying 1̂T 1̂ = nIm and so does the matrix
Wγk . Moreover, the spectral radius of Wηk − 1̂1̂T

n =

I + ηk(W − I) − 1̂1̂T

n is equal to 1 − ηk|ρW−I |, where
ρW−I is an eigenvalue of W − I . Thus, we always have
‖Wηk − 1̂1̂T

n ‖ = 1 − ηk|ρW−I | < 1. Similarly, we can
derive that ‖Wγk − 1̂1̂T

n ‖ = 1 − γk|ρW−I | < 1. We use
λW := |ρW−I | in the following parts for simplicity.

Lemma 2: Supposing that Assumptions 1-4 hold, the
sequences generated by ERDGA satisfy:

mk+1,1 ≤ mk,1 + c1,2k mk,2 +
(
b1,3k + c1,3k

)
mk,3

+ c1,4k mk,4 + d1
k − µβk−1E[‖Wk −W ?‖2]. (6)

where mk,1 = E[‖X̄k−X?‖2], mk,2 = E[F (X̄k)]−F (X?),
mk,3 = E[‖Xk − X̄k‖2], mk,4 = E[‖Lk−1 − L̄k−1‖2], W ?,
X? are optimal primal and dual variables, respectively and
parameters b1,3k , c1,2k , c1,3k , c1,4k , d1

k are given in appendix II.
Proof: See Appendix I.
The relation (6) shows that the iteration of mk,1 is

coupled with mk,2, mk,3 and mk,4. For analysis, we use
Mk = [mk,1,mk,2,mk,3,mk,4]T as a measure of conver-
gence, where the first two terms quantify the optimality gap,
and the rest terms quantify the consensus error among agents.

Lemma 3: Supposing that Assumptions 1-4 hold, the
sequences generated by ERDGA satisfy:

Mk+1 4(Bk + Ck)Mk +Dk −HkNk, (7)

where Nk = [E[‖Wk−W ?‖2], E[‖1̂T∇F (X̄k)‖2]]T and all
matrices have nonnegative elements as shown in Appendix.

Proof: See Appendix II.
On the basis of Lemmas 1-3, the convergence of ERDGA

is established in the following Theorem.
Theorem 1: Suppose that Assumptions 1-4 hold and pos-

itive sequences {ηk}, {γk}, and {βk} satisfy
∑∞
k=1 ηk =

∞,
∑∞
k=1 γk = ∞,

∑∞
k=1 βk = ∞,

∑∞
k=1 ηk

2 < ∞,∑∞
k=1 γk

2 < ∞,
∑∞
k=1

βk−1
2

ηk
< ∞, limk→∞

βk−1

ηk
=

0, limk→∞
γk−1

ηk
= Φ for some bounded Φ >

0. Then, the sequences generated by ERDGA satisfy
(i) limk→∞ E[‖Wk −W ?‖2] = 0, (ii) limk→∞ E[‖Xk −
X̄k‖2] = limk→∞ E[‖Lk − L̄k‖2] = 0.

Proof: From Lemmas 2-3, we can obtain that

Mk+1 4 (Bk + ck11
T )Mk + dk1−HkNk, (8)

where ck, dk are equal to the max elements of Ck, Dk, re-
spectively. Under the assumptions on sequences {ηk}, {γk},
{βk} in Theorem 1, we have

∑∞
k=1 ck <∞,

∑∞
k=1 dk <∞.

Define π = [π1, π2, π3, π4]T . We will prove that there
exists a positive vector π such that πTBk ≤ πT and
πTHk ≥ 0 hold for k ≥ T̄ with some large enough
T̄ ≥ 0. It can be verified that the above two conditions hold
when relations π1, π2 ≥ 0, π3 ≥ 2µ‖A‖2π1+‖A‖4π2

2λW

βk−1

ηk
,

π4 ≥ 2‖W−I‖2
λW2

γk−1

ηk
π3 are satisfied. The first two conditions
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π1, π2 ≥ 0 are easy to meet. Due to limk→∞
βk−1

ηk
= 0, for

any given π1, π2, we can always find a bounded π3 > 0 such
that the third inequality holds. Moreover, a bounded π4 > 0
can be found such that the forth inequality also holds after
other elements of π are fixed since limk→∞

γk−1

ηk
= Φ. Thus,

we can always find a π satisfying the above relations.
From Lemma 1, we have 1) {πTMk} is convergent; 2)

{Mk} is bounded; 3)
∑∞
k=1 π

THkNk <∞. So, the relation
lim infk→∞ E[‖Wk−W ?‖2] = 0 holds since

∑∞
k=1 βk =∞.

Since wk ∈ Ωi, the variable {Wk}k>0 is bounded. We can
find a convergent sub-sequence of {Wki}ki>0. Taking the
limit along ki →∞ yields limki→∞ E[‖Wki −W ?‖2] = 0.
Moreover, since W is a continuous function of X , {πTMk}
is convergent and contractive with respect to the optimum,
then we can derive that limk→∞ E[‖Wk −W ?‖2] = 0 [27],
i.e., the result (i) is proved.

Define M ′k =
[
E[‖Xk − X̄k‖2],E[‖Lk−1 − L̄k−1‖2]

]T
.

From relation (7), we have

M ′k+1 4(B′k + C ′k)M ′k +D′k

4(B′k + c′k11
T )M ′k + d′k1, (9)

where c′k, d′k are equal to the max elements of C ′k, D′k,
respectively, and all matrices have nonnegative elements:

B′k =

[
b3,3k b3,4k
0 b4,4k

]
, C ′k =

[
c3,3k 0

c4,3k 0

]
, D′k =

[
c3,2k mk,2 + d3

k

c4,2k mk,2 + d4
k

]
,

where parameters are given in appendix II. Note that mk,2 is
bounded as {Mk} is proved to be bounded before. Under the
assumptions on sequences {ηk}, {γk}, and {βk} in Theorem
1, we have

∑∞
k=1 c

′
k <∞,

∑∞
k=1 d

′
k <∞.

To prove (ii), we define π′ = [π′1, π
′
2, π
′
3, π
′
4]T . Similarly,

relations π′
T
B′k ≤ (1 − αγk−1)π′

T and π′
T
Hk ≥ 0

hold when there exists a positive vector π′ satisfying (1 −
ηkλW)π′1 ≤ (1 − αγk−1)π′1 and ‖W−I‖2

λW

γ2
k−1

ηk
π′1 + (1 −

γk−1λW)π′2 ≤ (1 − αγk−1)π′2 with some constant α > 0.
It can be verified that the needed two relations hold when
α, π′ satisfy α ≤ min{λW ηk

γk−1
, λW − π′1

π′2

γk−1

ηk
}, and we

can always find π′ such that λW − π′1
π′2

γk−1

ηk
is greater than

0, since limk→∞
γk−1

ηk
= Φ for some bounded Φ > 0. By

properly choosing vector π′, we can always find such α for
k ≥ T̄ for some large enough T̄ ≥ 0. Thus, multiplying both
sides of (9) by π′, we have

π′
T
M ′k+1 ≤(1 + c′k

π′
T
1

π′min

)π′
T
M ′k + d′kπ

′T1

− αγk−1π
′TM ′k, (10)

where the relation 1T 4 π′T

π′min
is used and π′min is the

minimum element of π′. Similarly, from Lemma 1, we have
that {π′TM ′k} is convergent and

∑∞
k=1 αγk−1π

′TM ′k <∞.
Thus, M ′k is convergent and limk→∞M ′k = 0 holds, i.e.,
relation (ii) is proved. The proof is completed. �

We emphasize that the requirement on the stepsize βk and
noise suppression parameters ηk, γk−1 in Theorem 1 can be
easily satisfied. For example, we can set βk = O(k−a), ηk =
γk−1 = O(k−b) with a, b ∈ (0.5, 1] and 2a− b > 1.

V. NUMERICAL EXPERIMENTS

In this section, we conduct numerical experiments to verify
our theoretical analysis. The proposed algorithm is tested
by the economic dispatch of multi-microgrid systems with
14 microgrids [8]. We consider the problem with quadratic
cost functions fi(wi) = tiw

2
i + uiwi + vi,∀i. The coupling

coefficients ai are randomly chosen and the parameters of
the generators are adopted from [19]. Set total load demand
dtotal =

∑n
i=1 di = 231MW . To model the noise interfer-

ence, the exchanged information is corrupted by independent
Gaussian noise N (0, 1). We set stepsize βk = 0.1

1+0.5·k ,
suppression parameters ηk = γk = 1

1+0.1·k0.8 , which satisfy
the conditions in Theorem 1.

We compare ERDGA with three state-of-the-art algorithm-
s, termed Dual coupled diffusion algorithm [10], SADAL
[20] and RDDGT [19], in terms of the error E [||Wk −W ?||]
and the expectation is approximated by averaging over 100
simulation results. The stepsize for Dual coupled diffusion al-
gorithms is chosen as β = 0.05 and the stepsize for SADAL
is the same as ERDGA. We set β = 0.001, η = 0.08, γ = 0.5
for RDDGT. The evolution of the errors is shown in Fig. 1
(a), where the error of RDDGT converges to a neighborhood
of the optimum, while the Dual coupled diffusion algorithm
has increasing errors instead. The errors of SADAL and
ERDGA both continuously decrease. However, with same
stepsize, our proposed algorithm has a faster convergence
rate than SADAL. The evolution of the constraint violation
|
∑n
i=1 aiwi − dtotal| of the global coupled constraint is

shown in Fig. 1 (b). It can be seen that the RDDGT has a
low upper bound, while the Dual coupled diffusion algorithm
can hardly satisfy the global coupled constraint. As for
SADAL and ERDGA, they can gradually drive the constraint
violation toward zero. Thus, the proposed ERDGA algorithm
is shown to have better robustness to noise interference.
Moreover, Fig. 2 (a) and Fig. 2 (b) show the evolution of
dual variables xi, auxiliary variables li, respectively. All dual
variables gradually converge to the same value and so do the
auxiliary variables, which is consistent with Theorem 1.

0 1000 2000 3000 4000 5000 6000
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Dual Coupled Diffusion
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0 1000 2000 3000 4000 5000 6000
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Fig. 1. (a) Convergence error, and (b) constraint violation versus iteration
time for different algorithms.
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Fig. 2. (a) Dual variables, and (b) auxiliary variables versus iteration time.
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VI. CONCLUSION

In this paper, an exact noise-robust distributed gradient-
tracking algorithm has been proposed to solve constraint-
coupled resource allocation problems with noisy information
exchange. By adopting the noise-tracing scheme and dimin-
ishing noise suppression parameters, the proposed algorithm
has been shown to have better robustness to noise interfer-
ence than existing distributed algorithms. Moreover, its exact
convergence property to the optimum has been established
for strongly convex cost functions. Finally, the theoretical
results have been examined by numerical experiments.
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APPENDIX I
PROOF OF LEMMA 2

The proposed algorithm can be written as

Xk+1 = WηkXk − (Lk − Lk−1) + ηknXk
, (11)

Lk+1 = WγkLk + βk∇F (Xk+1) + γknLk
, (12)

where we use ∇Fi(xi,k) = −Aiwi,k + di. Under Assump-
tion 1, f∗i (x) is convex, differentiable and it satisfies 1

µ -
Lipschitz smoothness [23]. Thus, we have that F (X) is
convex and L′-Lipschitz smooth, where L′ := ‖A‖2

µ .
It follows from the optimal condition of w-update that

(∇fi(w?
i ) + Aix

?
i )
T (wi,k − w?

i ) ≥ 0, (∇fi(wi,k) +
Aixi,k)T (w?

i − wi,k) ≥ 0, where w?
i , x?i , are optimal

primal, dual variables and thus relations X? = 1̂1̂T

n X?

and 1̂T∇F (X?) = 0 hold. Combining these two optimal
conditions and summing it from i = 1 to n, we have

(X? −Xk)T (AWk −AW ?) ≥ µ‖Wk −W ?‖2, (13)

where the inequality follows from Assumption 1.
It follows from ∇Fi(xi,k) = −Aiwi,k + di and the

optimal condition 1̂T∇F (X?) = 0 that (X?−X̄k)T (AWk−
AW ?) = (x̄k − x?)T 1̂T∇F (Xk) holds. Thus, we have

(X? − X̄k)T (AWk −AW ?)

=
n

βk−1
(x̄k − x?)T (x̄k − x̄k+1)

+
1

βk−1
(x̄k − x?)T

(
1̂T ηknXk

− 1̂T γk−1nLk−1

)
, (14)

where we use the update rule (11) and relation

1̂T (Lk − Lk−1) = 1̂T (βk−1∇F (Xk) + γk−1nLk−1
). (15)
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Taking expectation on both sides of (14) and using 2(a−
b)T (a− c) = ‖a− b‖2 + ‖a− c‖2 − ‖b− c‖2 yields

E[(X? − X̄k)T (AWk −AW ?)] =
1

2βk−1

(
E[‖X̄k −X?‖2]

+E[‖X̄k − X̄k+1‖2]
)
− 1

2βk−1
E[‖X̄k+1 −X?‖2]. (16)

Using Cauchy-Schwarz inequality, we have (X̄k −
Xk)T (AWk−AW ?) ≤ ‖A‖

2

2µ ‖Xk−X̄k‖2 + µ
2 ‖Wk−W ?‖2.

Combining this relation with (13), (16) yields

mk+1,1 ≤mk,1 + L′βk−1mk,3 + E[‖Lk − Lk−1‖2]

+ η2
kσ

2
X − µβk−1E[‖Wk −W ?‖2], (17)

where we use E[‖X̄k−X̄k+1‖2] ≤ E[‖Lk−Lk−1‖2]+η2
kσ

2
X .

From relation (12), we have

Lk − Lk−1 =γk−1(W − I)(Lk−1 − L̄k−1)

+ βk−1∇F (Xk) + γk−1nLk−1
. (18)

It follows from the L′-smoothness of F (X) and
1̂T∇F (X?) = 0 that F (X̄k) ≥ F (X?) + 1

2L′ ‖∇F (X̄k) −
∇F (X?)‖2. Thus, we have ‖∇F (Xk)‖2 ≤ 3L′

2‖Xk −
X̄k‖2 +6L′

(
F (X̄k)− F (X?)

)
+3‖∇F (X?)‖2. Combining

this relation with (18) yields

E[‖Lk − Lk−1‖2]

≤2‖W − I‖2γ2
k−1mk,4 + 2β2

k−1E[‖∇F (Xk)‖2] + γ2
k−1σ

2
L

≤12L′β2
k−1mk,2 + 6L′

2
β2
k−1mk,3 + 2‖W − I‖2γ2

k−1mk,4

+ 6β2
k−1‖∇F (X?)‖2 + γ2

k−1σ
2
L. (19)

Substituting (19) into (17) completes the proof. �

APPENDIX II
PROOF OF LEMMA 3

Using the L′-smoothness of F (X), we have F (X̄k+1) ≤
F (X̄k)+∇F (X̄k)T 1̂(x̄k+1−x̄k)+ nL′

2 ‖x̄k+1−x̄k‖2, where
L′ = ‖A‖2

µ . It follows from relation (11) that x̄k+1 −
x̄k = 1̂T

n ((Wηk − I)Xk − (Lk − Lk−1) + ηknXk
) =

1̂T

n (−(Lk − Lk−1) + ηknXk
). Combining these two rela-

tions and taking expectation on both sides yields

mk+1,2 ≤mk,2 +
L′

2
E[‖Lk − Lk−1‖2] +

L′

2
η2
kσ

2
X

+ E[− 1

n
(1̂T∇F (X̄k))T 1̂(Lk − Lk−1)] (20)

Substituting (15) into the last term in (20) yields

E[− 1

n
(1̂T∇F (X̄k))T 1̂(Lk − Lk−1)]

≤L
′2

2
βk−1mk,3 −

1

2n
βk−1E[‖1̂T∇F (X̄k)‖2]. (21)

where we use the Cauchy-Schwarz inequality.
Substituting (19), (21) into (20), we have

mk+1,2 ≤
L′

2
η2
kσ

2
X +

L′

2
γ2
k−1σ

2
L + (1 + 6L′

2
β2
k−1)mk,2

+ (
L′

2

2
βk−1 + 3L′

3
β2
k−1)mk,3 + L′‖W − I‖2γ2

k−1mk,4

+ 3L′β2
k−1‖∇F (X?)‖2 − βk−1

2n
E[‖1̂T∇F (X̄k)‖2]. (22)

From relation (11), we have Xk+1 − X̄k+1 = (Wηk −
1̂1̂T

n )(Xk − X̄k) − (I − 1̂1̂T

n )(βk−1∇F (Xk) − γk−1(W −
I)(Lk−1 − L̄k−1) + ηknXk

+ γk−1nLk−1
), where we use

1̂TWηk = 1̂T , Wηk 1̂ = 1̂ and (18). Combining this relation
with (19) and ‖I − 1̂1̂T

n ‖ = 1 yields

mk+1,3 ≤(1− ηkλW)mk,3 +
2

ηkλW
γ2
k−1‖W − I‖2mk,4

+
2

ηkλW
β2
k−1E[‖∇F (Xk)‖2] + η2

kσX + γ2
k−1σ

2
L

≤12L′

λW

β2
k−1

ηk
mk,2 + (1− ηkλW +

6L′
2

λW

β2
k−1

ηk
)mk,3

+
2‖W − I‖2

λW

γ2
k−1

ηk
mk,4 +

6

λW

β2
k−1

ηk
‖∇F (X?)‖2

+η2
kσ

2
X + γ2

k−1σ
2
L, (23)

where the first inequality uses ‖a + b‖2 ≤ (1 + ε)‖a‖2 +

(1 + ε−1)‖b‖2 and ‖Wηk − 1̂1̂T

n ‖ = 1− ηkλW < 1.
Similarly, from relation (12), we have Lk − L̄k =

(Wγk−1
− 1̂1̂T

n )(Lk−1− L̄k−1)+βk−1(I− 1̂1̂T

n )∇F (Xk)+

(I− 1̂1̂T

n )γk−1nLk−1
, where we use 1̂TWγk = 1̂T ,Wγk 1̂ =

1̂. Combining this relation with (19) yields

mk+1,4 ≤ (1− γk−1λW)mk,4

+
1

γk−1λW
β2
k−1E[‖∇F (Xk)‖2] + γ2

k−1σ
2
L

≤ 6L′

λW

β2
k−1

γk−1
mk,2 +

3L′
2

λW

β2
k−1

γk−1
mk,3 + γ2

k−1σ
2
L

+ (1− γk−1λW)mk,4 +
3

λW

β2
k−1

γk−1
‖∇F (X?)‖2. (24)

where we use ‖Wγk − 1̂1̂T

n ‖ = 1− γkλW < 1.
Combining relations (22), (23), (24) with Lemma 1 yields

relation (7), where all matrices has nonnegative elements as

Bk =


1 0 b1,3k 0

0 1 b2,3k 0

0 0 b3,3k b3,4k
0 0 0 b4,4k

 , Ck =


0 c1,2k c1,3k c1,4k
0 c2,2k c2,3k c2,4k
0 c3,2k c3,3k 0

0 c4,2k c4,3k 0

 ,
Dk =

[
d1
k d2

k d3
k d4

k

]T
, Hk =

[
µβk−1 0 0 0

0 βk−1

2n 0 0

]T
,

where b1,3k = ‖A‖2
µ βk−1, b2,3k = ‖A‖4

2µ2 βk−1, b3,3k =

1 − ηkλW , b3,4k = 2‖W−I‖2
λW

γ2
k−1

ηk
, and b4,4k = 1 −

γk−1λW ; c1,2k = 12‖A‖2
µ β2

k−1, c1,3k = 6‖A‖4
µ2 β2

k−1,

c1,4k = 2‖W − I‖2γ2
k−1, c2,2k = 6‖A‖4

µ2 β2
k−1, c2,3k =

3‖A‖6
µ3 β2

k−1, c2,4k = ‖A‖2‖W−I‖2
µ γ2

k−1, c3,2k = 12‖A‖2
µλW

β2
k−1

ηk
,

c3,3k = 6‖A‖4
µ2λW

β2
k−1

ηk
, c4,2k = 6‖A‖2

µλW

β2
k−1

γk−1
, and c4,3k =

3‖A‖4
µ2λW

β2
k−1

γk−1
; d1

k = 6β2
k−1‖∇F (X?)‖2 + η2

kσ
2
X + γ2

k−1σ
2
L,

d2
k = ‖A‖2

2µ

(
6β2

k−1‖∇F (X?)‖2 + η2
kσ

2
X + γ2

k−1σ
2
L

)
, d3

k =

6
λW

β2
k−1

ηk
‖∇F (X?)‖2 + η2

kσ
2
X + γ2

k−1σ
2
L, and d4

k =

3
λW

β2
k−1

γk−1
‖∇F (X?)‖2 + γ2

k−1σ
2
L. The proof is completed. �
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