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Abstract— This paper presents an advanced safety filter
based on Control Barrier and Control Lyapunov Functions to
smoothly limit the current of an inverter-based Battery Energy
Storage System, avoiding converter tripping, operational loss,
and potential component failure. The task involves finding
Control Barrier and Control Lyapunov Function via Sum-of-
Squares optimization to ensure feasibility of the safety filter at
every state along the trajectory. We showcase the effectiveness
of the implementation through simulations involving a load
step at the Point of Common Coupling, and we compare the
outcomes with those obtained using a standard vector current
controller.

I. INTRODUCTION

A Battery Energy Storage System (BESS) enables part
of the power grid to disconnect from the utility grid and
operate independently in an islanded mode. In this scenario,
the primary objective of the BESS is to maintain grid voltage
and frequency stability through the use of an inert grid-
forming (GFM) control scheme. However, when operating
in grid-connected mode, the BESS’s current needs to be
limited during transient grid events such as faults, load
steps or changes in configuration to protect the system’s
hardware and prevent operational loss. In such situations, a
fast response is necessary to ensure the system’s safety.

In a microgrid configuration, a compelling GFM control
scheme is the Enhanced Direct Power Control (EDPC) [1],
[2]. One version of this approach, described in [3], consists
of an active and reactive power controller that, together
with a feed-forward term derived from a filtered voltage
measurement at the Point of Common Coupling (PCC),
determines the converter voltage reference. In islanding
configuration, the EDPC operates in GFM mode due to
the slow dynamics of this filtered PCC voltage. However,
during transients, faster filtered PCC voltage dynamics are
temporarily permitted, even at the expense of potentially
sacrificing the GFM property, to facilitate a stable return to
EDPC operation.

To limit the converter current in grid-connected mode,
a vector current controller can be activated based on a
grid fault detection [4]. However, this requires manually
tuning (assuming a worst-case fault) the control gains of
the current controller to respect the current limits and often
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causes undesired chattering behaviors resulting from the
activation and deactivation of the current controller. Current
limiting strategies based on limiting the current reference, or
introducing virtual impedance have been proposed [5], [6].
In this approach, unlike the EDPC, a vector current control
is an integral part of the GFM control scheme, rendering any
switching action obsolete. None of these approaches provide
a safety certification for the BESS across all states.

In this paper, we employ a safety filter approach to limit
the current and achieve a smooth transition between opera-
tion under EDPC and current limiting control. Traditionally,
the safety filter is obtained by solving a Quadratic Program
(QP) at every state, based on a Control Barrier Function
(CBF) and an internal system model, to ensure the system
remains within the safe set, as described in [7]. The safety
filter can also incorporate a linear constraint that encodes
the Control Lyapunov Function (CLF) condition, ensuring
not only safety but also convergence to a specific set [8].
To ensure feasibility of the QP for all states along the
trajectory, polynomial CBF and CLF candidates can be
numerically derived by solving a series of Sum-of-Squares
(SOS) optimization problems [9], [10]. Furthermore, linear
input constraints can be included in both the QP and the
SOS constraints during CBF and CLF searches [11], [12].

In our previous work, we proposed an advanced safety
filter [13], that extends the basic version by ensuring a
finite-time convergence to a forward invariant set, referred to
as nominal region, wherein the nominal controller remains
undisturbed by the safety filter. In this work, we apply
this concept to the BESS control scenario, leveraging the
convergence guarantee to return the system to the GFM
operation of the EDPC within a finite amount of time. Main-
taining undisturbed operation during nominal conditions is
crutial, as the safety filter could otherwise interfere with the
GFM behavior of the EDPC. The advanced safety filter is
implemented using a Quadratically Constrained Quadratic
Program (QCQP), providing the capability to encode the
quadratic input constraints.

We extended the resuls from our previous work in [13],
by introducing several improvements to reduce the con-
servativeness and enhance the robustness of the advanced
safety filter, making it more practically applicable to BESS
converter control in complex, dynamic grid environments.
These improvements include creating a margin between the
safe set and the state constraints, and trading off the volume
of the nominal region with a slightly more aggressive
control response near the boundary of the safe set through
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adjustments of the SOS constraints. Furthermore, to ensure
the existence of a CLF that satisfies the safety and finite-
time convergence condition, we integrate the dynamics of
the filtered PCC voltage into the internal system model of
the safety filter. Finally, we demonstrate the effectiveness
of the proposed solution through simulations where a load
step is applied at the Point of Common Coupling (PCC). The
system response is compared with the one obtained using a
standard vector current controller. This study demonstrates
the applicability and efficacy of the safety filter concept in a
non-trivial power electronics example beyond its traditional
application in robotics.

The remainder of the paper is structured as follows: Sec-
tion II describes the problem setup including the BESS, the
EDPC, and the requirement on the current limiting control.
In Section III, we present the concept of the advanced safety
filter, its properties, and the resulting SOS formulation.
Numerical results, presented in Section IV, demonstrate the
superior performance of the safety filter in comparison to a
conventional vector current control [4]. Finally, Section V
concludes the paper.

II. BATTERY ENERGY STORAGE SYSTEM

A. Problem setup

Consider a BESS implemented as a three-phase power
inverter system connected to the PCC through a transformer,
as depicted in Figure 1. Given that the state of charge (SOC)
of the BESS’s battery changes at a much slower rate than
the control, we model it as a constant dc-voltage source vdc.
A grid filter installed between transformer and PCC, along
with an optimized pulse pattern (OPP), suppresses high-
frequency harmonics generated by the inverter modulation.
This supports the use of an averaged inverter model, in
which the output voltage of the BESS converter is expressed
as the product of the dc-link voltage vdc ∈ R and the
modulation index m :=

[
md mq

]⊤ ∈ R2. The converter
voltage vc ∈ R2 is thus given by:

vc := vdcm,

where m is constrained by mmax ∈ R:

m2
d +m2

q ≤ (mmax)
2
. (1)

Since the controller’s bandwidth is significantly slower
than the frequency range of the grid filter, we simplify the
grid filter model by representing it as a single inductance.
Similarly, the transformer, which steps up the voltage to
match the grid voltage at the PCC, is represented by a
single inductance. The current dynamics over the filter and
transformer inductance lc in p.u. are expressed as

lc
ωn

[
i̇d
i̇q

]
= −Zc

[
id
iq

]
︸︷︷︸
=:i

−
[
vPCC,d

vPCC,q

]
︸ ︷︷ ︸
=:vPCC

+

[
vc,d
vc,q

]
︸ ︷︷ ︸
=:vc

, (2)

where ωn := 2π50Hz represents the nominal grid frequency,
and the current i and voltage vPCC are measured as shown
in Figure 1. Zc := Jωlc denotes the matrix representation

Fig. 1. The BESS is implemented as a three-phase power inverter system
connected to the PCC via a transformer and a grid filter. The EDPC in series
with a current limiting control ensures GFM behavior during islanded grid
operation while limiting the current during grid transients.

of the combined filter and transformer inductance with J =[
0 −1
1 0

]
. The precise value of lc is determined during the

commissioning of the BESS.
Operating the BESS in both grid-connected and islanding

modes, requires suitable control strategies that meet grid
stability and load requirements. The BESS control architec-
ture consist of two main components. The slow outer loop,
in form of the EDPC, is responsible for meeting the grid
stability and load requirements, while the fast inner loop, in
form of a current limiting controller, is designed to limit the
current during transients.

B. Enhanced Direct Power Control

The EDPC, as described in [1], [2], [3] and illustrated in
Figure 2, consists of an active and reactive power loop. It
achieves a slow time constant through the utilization of a
low-pass filter in the measurement of active power p and
reactive power q. The active and reactive power references
are determined by a frequency droop Df ∈ R and a voltage
droop Dv ∈ Rc, respectively:

pr := Df (ω − 1) qr := Dv(v̂PCC,LP − 1), (3)

where ω is the angular frequency of the PLL in p.u., and
v̂PCC,LP is the low-pass filtered PCC voltage amplitude. The
active and reactive power control, depicted in Figure 2, are
based on the PI controller

Kp

(
1 +

1

Tis

)
, (4)

characterized by a proportional gain Kp ∈ R and integral
time constant Ti ∈ R. This controller transforms the active
and reactive power error into a (nominally unlimited) current
reference. A current reference limiter

∥ir∥2 = i2r,d + i2r,q ≤ (ilimr )2 (5)

for some current reference limit ilimr that ensures a stable
steady-state current below the maximum allowed converter
current imax defined in (9). A cross-coupling term Zc
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Fig. 2. The Enhanced Direct Power Control (EDPC) directly generates a
converter voltage reference vc,n from a power control loop.

computes the voltage drop over the transformer and grid
filter impedance. Finally, a filtered PCC voltage vPCC,f is
added to the voltage drop, producing the BESS’s voltage

vc,n := Zcir + vPCC,f . (6)

The dynamical system characterizing the filtered PCC volt-
age is given as [

v̇PCC,f,d

v̇PCC,f,q

]
︸ ︷︷ ︸
=:v̇PCC,f

=

[
αd

αq

]
︸ ︷︷ ︸
=:α

, (7)

where α ∈ R2 is the input of this system. To achieve GFM
behavior, the filtered PCC voltage must exhibit characteris-
tics of a low-pass filter with time constant τ ≈ 100ms. This
is achieved through the following nominal input:

αn :=
vPCC − vPCC,f

τ
. (8)

To maintain the GFM property, deviation from the nominal
input are only allowed during transients.

C. The problem of current limiting control

The current limiting control at the output of the EDPC, as
shown in Figure 1, ensures that the current stays within the
maximum allowed boundaries, characterized by imax ∈ R:

i2d + i2q ≤ (imax)2. (9)

This is achieved by adjusting the nominal voltage reference
vc,n (6) to generate a safe voltage reference vc. Furthermore,
the dynamics governing the filtered PCC voltage vPCC,f in
(7) and (8) can be temporarily adjusted during a current
transient, facilitating a stable return to EDPC operation.

The design of the current limiting control and later of
the advanced safety filter is based on a grid model, which
in practice can be of arbitrarily complexity and subject to
change over time. Moreover, the original models used for the
EDPC have an unrequired degree of complexity. Therefore,
we introduce the following simplifying assumptions:

• First, we adopt a simplified reduced-order grid model
based on the current dynamics (2), where vPCC is
assumed to be constant in dq reference frame.

• Second, we propose a simplified reduced-order EDPC
model based on (6), where the current reference ir is
assumed to be constant.

Fig. 3. The advanced safety filter ensures safe operation of the BESS
with respect to the maximum allowed current limits (9).

Under those assumptions, we can formulate the problem
statement as follows:

Problem 1: Given the dynamical system described in (2)
and (7), with a constant voltage source vPCC, a set of
allowable states (9), an input constraint set (12), and a
nominal controller described in (6) and (8), with a constant
current reference ir, the task is to design an advanced safety
filter, as described in [13], that ensures stable and safe
behavior of the BESS during grid events.

A standard method to solve Problem 1 is to employ a
vector current control [4]. This involves a PI controller
integrated with an anti-windup mechanism. However, this
leads to chattering effects, abrupt behavior, and possibly
system shutdown in case of protection function activation.

III. ADVANCED SAFETY FILTER

To overcome the limitations of the state of the art vector
current controller, we propose an alternative solution that
allows to promptly respond to grid events while guaran-
teeing a smooth transitioning between EDPC and current
limiting operation. This entails designing an advanced safety
filter, as shown in Figure 3, to enforce the state and input
constraints while ensuring finite-time convergence to the
EDPC operation through the use of a CLF condition.

Consider the control system composed of the simplified
grid model derived from (2), the filtered PCC voltage dy-
namics derived from (7), as well as the stationary dynamics
of the current reference ir and PCC voltage vPCC as follows:

ẋ =


−(ωn/lc) (Zci+ vPCC)

0
0
0


︸ ︷︷ ︸

=:f(x)

+


(ωn/lc)I2 0

0 I2
0 0
0 0


︸ ︷︷ ︸

=:G(x)

[
vc
α

]
︸︷︷︸
=:u

,

(10)

where x⊤ :=
[
i⊤ v⊤PCC,f i⊤r v⊤PCC

]
∈ R8 is the state

of the system. The current reference ir and PCC voltage
vPCC, although considered constant, are included in the
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Fig. 4. The polynomial CBF and CLF, along with the corresponding
safe set Xs ⊊ Xa and nominal region Xn, are computed using SOS
optimization. The vector field ẋ = f(x) + G(x)uSOS(x), projected to
(id, iq) coordinates setting (ir,d, ir,q) = (0, 1), is depicted in blue.

system dynamics to render the safety filter parametric in
these variables. The set of allowed states is defined by the
maximum allowed current:

Xa =
{
x | subject to (9)

}
. (11)

The input constraint set resulting from (1) is given as:

U =
{
u | v2c,d + v2c,q ≤ (mmax)

2
}
, (12)

where dc-link voltage is assumed to be vdc = 1p.u. All
parameter values can be found in Table I.

A. Control Barrier and Lyapunov-like Function

The construction of the advanced safety filter relies on
the development of a CBF and CLF, which are reviewed in
this subsection. We consider an abstract polynomial control
system, affine in the control action u ∈ Rm, and given as

ẋ = f(x) +G(x)u, (13)

where x ∈ Rn, f(x) ∈ R[x]n is a polynomial vector, and
G(x) ∈ R[x]n×m is a polynomial matrix. System (13) with
a polynomial state feedback control policy us(x) ∈ R[x]m

results in the closed-loop system

ẋ = f(x) +G(x)us(x). (14)

A subset Xs ⊆ Rn is called forward invariant (cf. [14,
Theorem 4.4]) with respect to system (14) if for every
x(0) ∈ X , x(t) ∈ X for all t ≥ 0. A system (14) is called
safe (cf. [15]) w.r.t. an allowable set Xa ⊆ Rn and the safe
set Xs ⊆ Rn, if Xs is forward invariant and Xs ⊊ Xa.

Safety of a control system (13) can be asserted with the
existence of a differentiable function B : Rn → R such that
for all states x ∈ ∂Xs there exists u ∈ U :

∇B(x)⊤
(
f(x) +G(x)u

)
≤ 0. (15)

Such a function B(x) is called a Control Barrier Function
(CBF), and its zero-sublevel set Xs := {x | B(x) ≤ 0}, to
be contained in Xa (11), defines the safe set.

The advanced safety filter us(x) ensures a finite-time
convergence to the nominal region using a differentiable
function V : Rn → R with a strictly positive dissipation
rate d(x) > 0 such that for all x ∈ Xt := {x | V (x) ≤ x ≤
B(x)} there exists u ∈ U (cf. [13]):

∇V (x)⊤
(
f(x) +G(x)u

)
+ d(x) ≤ 0. (16)

Such a function V (x) is referred to as a Control Lyapunov-
Like Function (CLF), and its zero-sublevel set Xn := {x |
V (x) ≤ 0} ⊊ Xs defines the nominal region. To ensure
compatibility with the nominal controller, we furthermore
require that (16) holds on the boundary of Xn with u =
un(x), see [13] for details. That is for all x ∈ ∂Xn:

∇V (x)⊤
(
f(x) +G(x)un(x)

)
+ d(x) ≤ 0. (17)

With these conditions established, we can formulate the
QCQP defining the advanced safety filter.

B. Quadratically Constrained Quadratic Program

When provided with a CBF B(x) and a CLF V (x) that
satisfy conditions (15)–(17), the advanced safety filter can
be implemented using the QCQP

us(x) := min
u∈U

∥un(x)− u∥2

s.t. C(x)u+ b(x) ≤ r(x),
(18)

encoding the input constraint set U in (12) as a quadratic
constraint of the QCQP. The nominal controller

un(x) =

[
Zcir + vPCC,f

(1/τ)(vPCC − vPCC,f )

]
(19)

incorporates the behavior of the simplified EDPC (6) and
the nominal rate of the filtered PCC voltage (8). The state-
dependent matrix C(x) ∈ R2×4 and vector b(x) ∈ R2

encode the CBF and CLF conditions (15) and (16), ensuring
safety w.r.t. Xs and finite-time convergence to Xn (see [13,
Lemma 1] for details):

C(x) :=

[
∇B(x)⊤G(x)
∇V (x)⊤G(x)

]
(20a)

b(x) :=

[
∇B(x)⊤f(x)

∇V (x)⊤f(x) + d(x)

]
. (20b)

By assuming a non-poistive values for states within ∂Xs

and Xt, the state-dependent slack variables r(x) :=[
r0(x) r1(x)

]⊤
ensure the satisfaction of CBF and CLF

conditions respectively. Furthermore, by choosing them
smoothly, we can achieve a Lipschitz-continuous QCQP-
based controller, see [13, Theorem 2] for details.

C. Sum-of-Squares Optimization

A polynomial CLF and CBF can be found numerically
using SOS optimization. The CBF and CLF conditions
(15)–(17), along with the input constraints and containment
conditions Xn ⊊ Xs ⊊ Xa, are represented as SOS
constraints. This is achieved by replacing the input vector
u with a polynomial controller uSOS(x) in (15) and (16).
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The SOS constraints encoding (15)–(17) are derived using
Putinar’s Positivstellensatz [13, Eq. (27)]:

∇B⊤ (f +GuSOS) + γBB + γ1fop ∈ −Σ[x] (21a)

∇V ⊤ (f +GuSOS) + d+ γV V − γrB

+γ2fop ∈ −Σ[x]
(21b)

∇V ⊤ (f +Gun) + d+ γnV + γ3fop ∈ −Σ[x], (21c)

for some γB , γn ∈ R[x], and γV , γr, γ1, γ2, γ3 ∈ Σ[x],
where Σ[x] refers to the set of SOS polynomials. An opera-
tional region Xop, defined by the scalar function fop ∈ R[x],
is established to encode the considered operational ranges of
the constant states ir and vPCC, where conditions (15)–(17)
are expected to hold, and to ensure compactness of Xa∩Xop

required for Putinar’s Positivstellensatz.
We propose two measures to improve control robustness

with respect to time discretization effect and the use of the
simplified grid and EDPC model (cf. Section II-C):

• Introduce a margin between Xa and Xs.
• Adjust the nominal controller un(x) used for the SOS

constraints in (21c) to further expand the volume of the
nominal region Xn.

The resulting robust advanced safety filter maintains safety
guarantees even under more complex grid models and
exhibits significantly smoother behavior as it transitions into
the nominal region and eventually steady-state operations.

Remark 1: The second measure mitigates instability
arising from the interaction with the outer PI control loop
(4) by keeping the safety filter inactive within a larger set
of states. However, utilizing an adjusted nominal controller
may introduce chattering when deploying the safety filter
due to violations of the compatibility condition in (17).

IV. NUMERICAL RESULTS

A. Finding CBF and CLF via SOS optimization
The safe set Xs and nominal region Xn, as shown in

Figure 4, are computed by using polynomials B(x) and
V (x) of degree two. Considering the linearity of the system
dynamics (10) and the quadratic nature of the constraints, it
is possibly expected that low-degree polynomial candidates
are sufficient to find solutions to the SOS problem involving
(21), though it’s not perfectly obvious since (21) are still
coupled quadratic equations. The CBF is selected such that
B(0) = −1 to ensure numerical stability. The dissipation
function in (16) is designed to achieve the desired conver-
gence to the nominal region. The operational region

Xop = {x |(ir,d/ilimr )2 + (ir,q/i
lim
r )2 ≤ 1

(vPCC,d/0.1)
2 + (vPCC,q/0.1)

2 ≤ 1}

is defined to include the operational ranges of the constant
states ir and vPCC. To introduce a margin between Xa and
Xs (cf. Section III-C) and to maintain compactness of the
safe set w.r.t. vPCC,f , we enforce the subset condition:

Xs ⊆ {x |(id/ilim)2 + (iq/i
lim)2 ≤ 1

(vPCC,f,d/20)
2 + (vPCC,f,q/20)

2 ≤ 1} ⊊ Xa,
(22)

Fig. 5. Simulations are conducted by switching a load to the PCC,
necessitating the limitation of the BESS’s current.

TABLE I
SIMULATION PARAMETERS

Parameter Symbol Value Unit
Transformer impedance lc, rc 0.16, 0.01 p.u.

Line impedance lg , rg 0.016, 0.001 p.u.
Load impedance ll, rl 0.016, 0.001 p.u.

Grid voltage source v̂g , fg 1.1, 1.02 p.u.
Maximum allowed current imax 1.30 p.u.

Current limits ilimr , ilim 1.18, 1.24 p.u.
Modulation limit mmax 1.2 p.u.

Frequency and Voltage droop Df , Dv -0.02, 0.05 p.u.
Proportional gain Kp 0.45 p.u.

Integral time constant Ti 40 ms
Low-pass filter time constant τ 1 ms

where ilim < imax represents the current limit, encoding
the margin. Furthermore, the nominal controller used in the
SOS optimization (21) is adjusted to be more aggressive:

un(x) =

[
0.2(ir − i) + Zcir + vPCC,f

10 · (1/τ)(vPCC − vPCC,f )

]
.

A more aggressive nominal controller, while potentially
sacrificing condition (17), provides flexibility to increase the
nominal set Xn. The full code used for optimization and
simulations is available online1.

B. Load step simulation

In this section, we investigate the behavior of the EDPC in
combination with a current limiting control – either via the
vector current control or the safety filter – during a load step
applied at the PCC at t = 0.6s, as illustrated in Figure 5. The
parameter values of the electrical grid, the input constraints
(1), the EDPC controller described in (3) and (4), and the
current limits specified in (5), (9) and (22) are summarized
in Table I. The QCQP-based controller us(x) in (18),
theoretically continuous in time, is implemented discretely
with a sampling time of Ts = 200µs. The slack variables
in (20) are selected as follows:

r0(x) := −γB(x)B(x) r1(x) := −γV (x)V (x),

where γB and γV are taken from the SOS problem (21). The
performance of the safety filter implementation is evaluated
against the standard vector current control [4]. In this
method, the vector current control is activated whenever the
current amplitude ∥i∥ =

√
i2d + i2q exceeds the current limit

1https://github.com/MichaelSchneeberger/advanced-safety-filter-bess/
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Fig. 6. The vector current control [4] is activated when the current
amplitude ∥i∥ ≥ ilim, with a deactivation hysteresis of 0.03 p.u. This
results in abrupt interventions and a chattering behavior until the current
oscillations are sufficiently reduced to remain below the current limit.
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Fig. 7. The designed safety filter not only smoothly limits the current
amplitude ∥i∥ but also mitigates the current dip occurring immediately after
the load step at t = 0.6s, facilitating a rabid return to EDPC operation.

ilim, with a deactivation hysteresis of 0.03 p.u. The grid’s
voltage amplitude and frequency is set to v̂g = 1.1 p.u. and
fg = 1.02 p.u., respectively, resulting in a maximum current
reference of ∥ir∥ = imax

r due to the droop of the EDPC (3).
The simulations in Figures 6 and 7 show the current norm,

as well as the intervention on the nominal control given
by ∆u(x) := us(x) − un(x) during a load step using a
vector current control and a safety filter respectively. The
load step causes current oscillations that the slow EDPC
cannot sufficiently mitigate, potentially leading to system
shutdown due to overcurrent. To prevent this, the current
limiting control – either through the vector current control
or the safety filter – is activated. Unlike the vector current
control, which tends to exhibit abrupt interventions and a
chattering behavior even with the use of a hysteresis, the
safety filter demonstrates a significantly smoother operation
while keeping the current within the allowed limits. This
smooth operation is achieved by means of two key condi-

tions. Firstly, the finite-time convergence condition imposed
by CLF dynamically adjusts the nominal control action
to reduce the current dip immediately after the load step.
Secondly, the safety condition imposed by CBF dynamically
adjusts the nominal control action as the current approaches
the allowed current amplitude imax (9). The intervention of
the safety filter, as expressed by ∆u, exhibits a significant
smaller magnitude and a smoother nature when compared
to the vector current control.

V. CONCLUSIONS

In this paper, we demonstrated our advanced safety filter
and extended the application of safety filters to a non-
trivial power electronics example beyond their traditional
domain in robotics. The finite-time convergence guarantee
of the advanced safety filter played a key role in finding the
balance between ensuring the system’s safety and maintain-
ing the behavior of the nominal controller. Specifically, we
successfully implemented an advanced safety filter capable
of effectively limiting the current during a load step while
preserving its GFM behavior, embodied by the EDPC,
during stationary grid conditions.
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