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Abstract— This paper addresses the challenge of combining
fault estimation and fault-tolerant control for constrained
non-linear systems subject to bounded external disturbances.
To handle the nonlinearities, the fuzzy Takagi-Sugeno (T-
S) methodology is utilised. As a consequence, gains of the
estimator and controller are calculated for all the vertices of
the polytopic set. Specifically, the intertwined nature of control
and estimation leads to mutual influence, necessitating a novel
integration approach to avoid deteriorating the overall system
performance. A new strategy is introduced, grounded on a
critical existence condition that is both necessary and sufficient.
The suggested method operates through output feedback and
unfolds in two distinct phases: the off-line phase involves a
straightforward optimization task utilizing the set of Linear
Matrix Inequalities (LMIs), while the on-line phase tackles a
deterministic model predictive control issue.

I. INTRODUCTION

Owing to the intense development of Industrial Internet
of Things (IIoT) [19] towards Industry 4.0, companies are
increasing the number of sensors and actuators that cover
the existing and newly developed infrastructures. The pursuit
of advancements in fault detection and fault-tolerant control
mechanisms forms a cornerstone of contemporary control
system research and application. A particularly innovative
approach is the integration of output feedback-based fault-
tolerant control systems, initially put forth for deterministic
systems characterized by linear and Takagi-Sugeno (T-S)
frameworks [17]. This concept has since been adapted to
accommodate systems defined by linear parameter variations
and those exhibiting Lipschitz continuity [3], [18], extending
even to non-deterministic linear system models [11] as well
as T-S [10] and LPV [4] systems.

However, the interplay between fault estimation (FE) and
fault-tolerant control (FTC) [5], [7] introduces a bidirec-
tional influence that complicates their integration, leading
to potential degradation in system performance. To address
this, previous studies have presented strategies that rely on
a unified optimization problem formulated through linear
matrix inequalities (LMIs) [9], [10]. Despite the theoretical
appeal of these methods, they are often criticized for the
complexity and computational demands associated with the
LMI formulations, particularly when applied to complex
system models.

Recent research involving FTC includes e.g. a switched
state and fault estimation along with FTC for T-S fuzzy
systems [8], in which an observer has been created for the
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dual purpose of estimating the system states and identifying
both sensor and actuator faults, despite the presence of sensor
fault-affected measurement outputs. Utilizing this observer as
a foundation, a switched fuzzy FTC strategy is formulated to
ensure the stability of the closed-loop system while mitigat-
ing the impacts of various faults under consideration, all the
while acknowledging external disturbances. The symbiotic
relationship between the estimation unit and the control
unit facilitates a cohesive design approach for these units,
contrasting with a disjointed design methodology. In [16]
the authors consider a finite-time fault-tolerant trajectory
tracking control for a quadrotor. In such a work a Sliding
Mode Control (SMC) is proposed to separately accommodate
the parametric uncertainties and actuator faults. In [20]
a switched LPV approach in discrete-time domain is utilized
for achieving an active FTC, where both input and output
matrices can be of parameter-dependent form. A proposed
in [15] approach guarantees the precision and optimality of
fault estimation by actively designing optimal inputs at each
time instant under the set-theoretic framework.

In light of these challenges, this paper presents a novel
approach that aims to refine the integration of FE and FTC.
By adopting a quadratic robustness strategy [1], our work
introduces a simpler, yet effective, methodology that reduces
the computational burden while enhancing the system’s abil-
ity to manage faults under input and output constraints. The
proposed method unfolds in two distinct phases: an offline
optimization phase that establishes a low-complexity LMI
framework [14], and an online phase that utilizes deter-
ministic model predictive control [2], [6]. This bifurcated
approach not only addresses the bidirectional interference
between FE and FTC but also ensures the system’s adherence
to predefined performance metrics even in the presence of
faults and external disturbances. The overall scheme of the
utilized appraoch can be presented as the one in Fig. 1.

The paper is organized as follows: Section II formulates
a problem for a proposed system considered in Takagi-
Sugeno (T-S) fuzzy form. In Sec. III an integrated FTC
design algorithm is presented along with stability considera-
tions, while Sec. IV provides a two-phase design methodol-
ogy approach. Subsequently, Sec. V presents an illustrative
example with application to a two-tank system, and finally,
Sec. VI concludes the paper.

II. PROBLEM FORMULATION

Consider the system outlined below

xk+1 = f (xk,uk) , (1)
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Figure 9: Referenced systemFig. 1. A scheme of the proposed approach.

which is aptly represented using a Takagi-Sugeno (T-S)
framework that incorporates both faults and uncertainties:

xk+1 = A (pk)xk +B (pk)uk +B (pk)fk +Wwk

=

M∑
i=1

hi (pk)
[
Aixk +Biuk +Bifk

]
+Wwk,

(2)
yk = Cxk + V vk, (3)

accompanied by

hi (pk) ≥ 0 ∀i = 1, . . . ,M

M∑
i=1

hi (pk) = 1, (4)

where the variables xk ∈ X ⊆ Rnx and uk ∈ U ⊆ Rnu

represent the restricted state and control input respectively,
under the conditions:

X = {x : xi ≤ xi,k ≤ x̄i, i = 1, . . . , nx}, (5)
U = {u : uj ≤ uj,k ≤ ūj , j = 1, . . . , nu}, (6)

with xi < x̄i and uj < ūj . Furthermore, fk ∈ Fa ⊆ Rr

signifies the actuator defect. The potential evolution of this
defect is limited to an ellipsoid ek = fk+1 − fk ∈ Eϵ.
Additionally, wk ∈ Ew and vk ∈ Ev are ellipsoidally
constrained exogenous disturbances. The matrices B (pk),
C are assumed to have full rank and it is given that nu ≤ ny .
This indicates a limitation on estimating more faults than the
number of measured outputs. Additionally, hi(·) symbolizes
the strength of rule firing as defined by Takagi and Sugeno,
based on the measurable premise variables vector pk =[
p1
k,p

2
k, ...,p

p
k

]T
.

The input to the potentially defective system as described
by equations (2)-(3) must be configured to enable xk to

follow the target state xr,k, which is governed by:

xr,k+1 = A (pk)xr,k +B (pk)ur,k +B (pk) f̂k, (7)
yr,k = Cxr,k, (8)

zr,k = Hxr,k, (9)

where zr,k ∈ Znz with nz ≤ nu. The dimensions of these
variables match those in (2)-(3). Moreover, the system de-
fined by equations (7)-(9) should track the reference rk, aim-
ing for zk to converge towards rk. The reference rk is known
over a limited preview horizon nh, meaning rk, . . . , rk+nh−1

are available. Unlike existing methodologies cited in the
literature, the reference system involving the fault estimate
may affect its capacity to achieve rk. The advantage here
lies in the ability to assess control feasibility at the level of
the reference system rather than the faulty one, allowing for
possible adjustments to rk. Now, we define a state and fault
estimator to approximate x̂k and f̂k as follows:

x̂k+1 = A (pk) x̂k +B (pk)uk +B (pk) f̂k

+K (yk −Cx̂k) ,
(10)

f̂k+1 = f̂k + F (yk −Cx̂k) , (11)

where K and F are the gain matrices of the estimator. The
integrated control strategy is represented by:

uk = −Kc(x̂k − xr,k) + ur,k, (12)

The primary challenge involves accommodating the unknown
effect of fk, considering the limited actuator performance
as outlined. This approach diverges from those found in
existing studies by avoiding conservative assumptions about
compensating for an actuator fault with the same defec-
tive actuator. Instead, a strategic control allocation among
available actuators ensures efficient fault management. To
further our discussion, let’s define performance measures
as state and actuator fault errors (ek = xk − x̂k, ef,k =
fk−f̂k) and tracking and reference errors (et,k = x̂k−xr,k,
er,k = xk − xr,k), with a relationship established through
et,k = er,k − ek. Hence, substituting equations (2)-(3), (7)-
(8), and (12), we derive the dynamics of these errors:

er,k+1 = (A (pk)−B (pk)Kc)er,k

+B (pk)Kcek +B (pk) ef,k +Wwk,
(13)

et,k+1 = (A (pk)−B (pk)Kc)et,k

−K(yk −Cx̂k),
(14)

ek+1 = (A (pk)−KC)ek +B (pk) ef,k +Wwk

−KV vk,
(15)

ef,k+1 = ef,k − FCek − FV vk + εk. (16)

It is noted that et,k can be directly calculated, containing
both B (pk)Kc and KC terms known for computational
difficulties, whereas er,k, though not directly computable,
only includes the BKc term. The goal of the next section
is to suggest an integrated and simultaneous design of the
control input based on equations (13), (15), and (16).
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III. INTEGRATED FTC DESIGN

As outlined in the study by [12], crafting an estimator and
controller to operate in tandem poses a significant challenge.
The work by [12] introduces a proximate solution to address
this issue. This section introduces an approach that is less
restrictive. Before diving into the specifics, let’s recast (13)
along with (15)–(16) into the framework of (18)

er,k+1 = (A (pk)−B (pk)Kc)er,k

+ [B (pk)Kc, , [B (pk) ,W ]]w̃k,
(17)

where w̃k = [ēTk ,w
T
k ]

T and ēk = [eTk , e
T
f,k]

T are con-
fined within an ellipsoidal bound Ew̃,Qc, with Qc =
1
2diag(P e,Qw). It’s important to recognize that the estima-
tion error is considered to be within the bounds of Eē,P e,
and the method for determining P e ≻ 0 will be discussed
subsequently. The transformation of (15)–(16) into the format
of

zk+1 = A (pk) zk + [GB (pk)]wk (18)

proceeds as follows:

ēk+1 = (Ā (pk)− K̄C̄ )ēk + [−K̄V , [W̄ , Ī]]ṽk, (19)

where

Ā (pk) =

[
A (pk) B (pk)

0 I

]
, K̄ =

[
K
F

]
,

C̄ = [C,0], W̄ =

[
W
0

]
and Ī = [0, I]T , ṽk = [vT

k ,w
T
k , ε

T
k ]

T , which is bounded
within Eē,Qe

, Qe = 1
3diag(Qv,Qw,Qε). A widely recog-

nized method described in previous studies [9], [10] involves
consolidating er,k and ēk into a singular vector, followed
by a demonstration of the system’s overall convergence.
This paper aims to offer a different approach. The principal
contribution of this section is encapsulated in the subsequent
theorem:

Theorem 1: The systems (17) and (19) are strictly
quadratically bounded for all allowable w̃k ∈ Ew̃,Qc

ṽk ∈
Ew̃,Qe

iff there exists αc ∈ (0, 1), αe ∈ (0, 1), P c ≻ 0,
P e ≻ 0, U c, U e, N c and N e:

−(1 − αe)P e 0 0 XT
e

0 −αeQ
1,1
e −αeQ

1,2
e Y T

e

0 −αeQ
2,1
e −αeQ

2,2
e ZT

e

Xe (pk) Y e (pk) Ze (pk) P e − UT
e − Ue

 ≺ 0, (20)

Xe (pk) = UeĀ (pk) − NeC̄ ,Y e = −NeV ,

Ne = UeK̄ ,Ze = [W̄ , Ī],


−(1 − αc)P c 0 0 XT

c

0 −αcQ
1,1
c −αcQ

1,2
c Y T

c

0 −αcQ
2,1
c −αcQ

2,2
c ZT

c

Xc (pk) Y c (pk) Zc (pk) P c − UT
c − Uc

 ≺ 0 (21)

Xc (pk) = A (pk)Uc − B (pk)Nc,Y c (pk) = B (pk)Nc,

Nc = KcUc,Zc (pk) = [B (pk) ,W ].

Proof: We recall the following Lemmas for context:
Lemma 1: The following statements are equivalent:
(i) The system (18) is strictly quadratically bounded with

the Lyapunov function Vk for all all allowable wk ∈
Ew.

(ii) There exist P c ≻ 0, U c, rank(U c) = nz , αc ∈ (0, 1)
such that

−(1 − αc)P c 0 UT
c A (pk)

T

0 −αcQw

[
UT

c GT

B (pk)
T

]
A (pk)c Uc

[
GUc B (pk)

]
P c − UT

c − Uc

 ≺ 0

(22)

(iii) There exist P e ≻ 0, U e, rank(U e) = nz , αe ∈ (0, 1)
such that

−(1 − αe)P e 0 A (pk)
T
e UT

e

0 −αeQw

[
GT

e UT
e

B (pk)
T

]
UeA (pk)

[
UeG B (pk)

]
P e − UT

e − Ue

 ≺ 0

(23)
Lemma 2: [1] The following statements are equivalent:
(i) The system (18) is strictly quadratically bounded with

with the Lyapunov function Vk for all all allowable
wk ∈ Ew.

(i) The ellipsoid is a positively invariant set for all allow-
able wk ∈ Ew.

(i) There exists α ∈ (0, 1) such that the following inequal-
ity is satisfied for all allowable wk ∈ Ew:

Vk+1 − (1− α)Vk − αwT
kQwwk < 0, (24)

Let us commence by acknowledging that, according to
Lemma 1 (items (i) and (iii)), the fulfillment of (20) is
tantamount to (19) being strictly quadratically bounded.
Consequently, invoking Lemma 2, the set Eē,P e

, denoted as
ēTkP eēk ≤ 1, is established as an invariant set for (19). This
also constructs Qc = 1

2diag(P e,Qw), delineating the per-
missible set for w̃k in (17). Following this, Lemma 1 (items
(i) and (ii)) postulates that adherence to (21) corresponds to
the strict quadratic boundedness of (17). In conclusion, the
integrity of U e and U c is corroborated by Lemma 1.

Theorem 2: If the systems (17) and (19) are strictly
quadratically bounded for all all allowable wk ∈ Ew then
there exists αe ∈ (0, 1) and αc ∈ (0, 1) such that:

lim
k→∞

(1− αe)
k∥ēk∥ = 0 for w̃k = 0, (25)

∥ēk∥P e

l2
< ∥w̃k∥Qe

l2
for w̃k ̸= 0. (26)

lim
k→∞

(1− αc)
k∥er,k∥ = 0 for ṽk = 0, (27)

∥er,k∥P c

l2
< ∥ṽk∥Qc

l2
for ṽk ̸= 0. (28)

Proof: The proof follows directly from Theorem 1 and
and a following Lemma:

Lemma 3: If the system (18) is strictly quadratically
bounded with Vk for all all allowable wk ∈ Ew then there
exists α ∈ (0, 1) such that

lim
k→∞

(1− α)k∥zk∥ = 0 for wk = 0, (29)

∥zk∥Pl2 < ∥wk∥Qw

l2
for wk ̸= 0. (30)

IV. A TWO-PHASE DESIGN METHODOLOGY APPROACH

A. Phase 1: Off-line Determination of Integrated FTC

We initiate by acknowledging that, given fixed αc ∈ (0, 1)
and αe ∈ (0, 1), the inequalities (20)–(21) straightforwardly
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transform into LMIs. This is a direct consequence of Theo-
rem 2 ((25) and (27)), indicating that larger values facilitate
faster convergence of the corresponding errors. Conversely,
matrices P e and P c delineate the ellipsoidal invariant set
for these errors, envisioned as regions of uncertainty, which
ideally should be minimized. This notion is encapsulated in
(26) and (28). Therefore, it is feasible to minimize certain
geometrical metrics, such as the volume, which equates
to maximizing the determinant of the pertinent matrix,
whether P e or P c. This optimization criterion is denoted as
J(αc, αe,P e,P c). An offline iterative process, comprising
the subsequent steps, can be readily executed:

1) Choose αc ∈ (0, 1) and αe ∈ (0, 1).
2) Optimize J(αc, αe,P e,P c) subject to (20)–(21).

This off-line methodology yields the gain matrices for the
estimator (10)–(11) and the controller (12) from (20)–(21)
as:

K̄ = U−1
e N e, Kc = N cU

−1
c . (31)

B. Phase II: On-line Determination of Reference Values and
FTC

It becomes apparent from (12) and (6) that:

Ur,k = {ur,k : ui +KT
i,cet,k ≤ ur,i,k ≤ ūi +KT

i,cet,k,

i = 1, . . . , nu}, (32)

where Kj,c signifies the jth row of KT
c . The aim is thus to

ascertain ur,k in compliance with (32) to ensure uk meets
(6). Given the direct accessibility of et,k and its forthcoming
one-step projection et,k+1 as specified by (14), but the infea-
sibility of determining et,k+j for j > 1 without knowledge
of yk+j and x̂k+j , it necessitates resorting to worst-case
values. Clearly, et,k = er,k − ek with both eTr,kP cer,k ≤ 1

and ēTkP eēk ≤ 1, leading to ei,r,k ∈
[
−
√
P−1

c,i,i,
√
P−1

c,i,i

]
and ei,r,k ∈

[
−
√
P−1

e,i,i,
√
P−1

e,i,i

]
for i = 1, . . . , nx. This

enables the definition at discrete time k of an outer-bounding
set for Ur, k + j, Ur, k + j ⊆ Ūr, k + j, as:

Ūr,k+j = {ur,k+j : ui +KT
i,cd1,k+j ≤ ur,i,k ≤

ūi +KT
i,cd2,k+j , i = 1, . . . , nu}, (33)

and subsequently, the modifications for d1,i,k+j and d2,i,k+j

as appropriate.
Following this, since xk = er,k+xr,k, the inequalities (5)

result in the definition of Xr, k + j and its outer-bounding
set, Xr, k + j ⊆ X̄r, k + j, outlined as:

X̄r,k+j = {xr,k+j : xi +
√

P−1
c,i,i ≤ xi,r,k+j ≤

≤ x̄i −
√
P−1

c,i,i, i = 1, . . . , nx}. (34)

Equipped with the admissible sets for reference input
ur,k+j and state xr,k+j as defined in (32) and (34), an
algorithm can be devised to pinpoint ur,k that ensures
the system’s output, as described by (9), effectively tracks
the designated reference rk. Herein, the MPC framework

is applied [2], [13], following established protocols in the
literature. The optimization problem which boils down to

J(xr,k, r,ur, Np) =

k+Np−1∑
t=k

L(xr,t, rt,ur,t)

+ Vf (x(k +Np)), (35)

with respect to ur,t,t+Np−1, under the following constraints:

• the reference system dynamics (7)

xr,t+1 = A (pk)xr,t +B (pk)ur,t +B (pk) f̂ t.
(36)

• the input and state constraints (33) and (34), j ∈
0, 1, . . . , Np − 1.

• the terminal state constraint xr,t+Np
∈ Xf ,

is to be solved within the constraints set by system dynamics,
input and state limitations, and the finite horizon objective,
incorporating the stage cost, terminal penalty, and terminal
set definitions.

This on-line operational methodology consists of cycli-
cally executing the steps for state and actuator fault es-
timation, solving the constrained optimization problem to
ascertain the reference state and input, and applying the FTC
law to manage the system dynamics effectively, ensuring ad-
herence to the prescribed control objectives and constraints.

V. ILLUSTRATIVE EXAMPLE

Consider a two-tank system (depicted in Fig 2) to illustrate
the effectiveness of the proposed methodology. This system

Fig. 2. A two tank system

is composed of two independent tanks arranged vertically,
with one tank positioned above the other. Additionally, it
features two pumps: the first pump fills the upper tank with
water, while the second pump fills the lower tank. The
water is drained from these tanks by gravity. The system’s
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mathematical model can be described in the state-space
representation as follows:

Ac =

[
−K

2F
√
h1

0
K

2F
√
h1

−K
2F

√
h2

]
, Bc =

[
1
F 0
0 1

F

]
. (37)

Having regards the nonlinear behavior of the system as well
as its rank, all the matrices shaping the T-S model are given
as follows:

A1 =

[
0.8397 0.0000
−0.0318 0.8397

]
, A2 =

[
0.8397 0.0000
−0.0318 1.0264

]
,

A3 =

[
0.8397 0.0000
0.1549 0.8397

]
, A4 =

[
0.8397 0.0000
0.1549 1.0264

]
,

A5 =

[
1.0264 0.0000
−0.0318 0.8397

]
, A6 =

[
1.0264 0.0000
−0.0318 1.0264

]
,

A7 =

[
1.0264 0.0000
0.1549 0.8397

]
, A8 =

[
1.0264 0.0000
0.1549 1.0264

]
,

B =

[
0.2534 0.0000
0.0229 0.2534

]
.

It is also important to note that all outputs were measured
during the experiments, resulting in Cc = Im×m. The
discretization with a sampling time of Ts = 1[s] was set.

To evaluate the effectiveness of the proposed method in
terms of fault estimation and fault-tolerant control, a very
fault scenario was examined. The specifics of that fault
scenario are outlined in Table I. The table clearly shows that

TABLE I
FAULT SCENARIOS PERFORMED DURING THE EXPERIMENT

pump-1 pump-2

F-Sc -0.4 -0.6

faults of varying magnitudes were considered. A value of 0
signifies a scenario without faults, whereas −1 represents a
complete failure of the actuator. The faults were introduced
at a set time of 40[s] for the first actuator and 60[s] for
the second, measured from the start of the experiment. The
objective of the control during these tests was to reach and
maintain specified water levels in each tank, with the target
levels set at 0.4[m] for the upper tank and 0.5[m] for the
lower tank, respectively.

To illustrate the control efficacy, Fig. 3 displays the sys-
tem’s response utilizing the proposed methodology. For com-
parison, responses involving Fault-Tolerant Control (FTC)
based on fault estimation and Model Predictive Control
(MPC) are also depicted. The black line represents the actual
system response using fault-tolerant control. The green line
shows the estimated state of the system provided by the
estimator. Denoted by the blue line, this is the reference
signal that the system is attempting to track. The red
line indicates the system response under model predictive
control. The FTC response and its estimate both closely
follow the FTC reference, suggesting that the fault-tolerant
control method and its estimator are effectively tracking the
reference signal. The FTC appears to be slightly closer to

0 50 100 150 200

Discrete time

0

0.2

0.4

x
1 FTC

FTC estimate

FTC reference

MPC

0 50 100 150 200

Discrete time

0

0.2

0.4

x
2

FTC

FTC estimate

FTC reference

MPC

Fig. 3. States of the system for FTC and MPC

the reference than the FTC estimate, which is expected as
the estimate is an approximation of the actual state. The
MPC control (red line) seems to deviate more significantly
from the reference than the FTC method, particularly in the
second plot for x2. This suggests that in these scenarios, the
FTC method may outperform MPC in terms of following
the reference signal closely. There are noticeable drops in
both system responses around the time intervals of 50 and
150 discrete time units, which could indicate faults being
introduced to the system. The FTC and its estimator recover
and return to following the reference signal shortly after
these faults, demonstrating resilience and effective fault-
tolerant behavior. The FTC estimate closely tracks the actual
FTC response, which indicates that the estimator within the
FTC is performing well. It seems to provide an accurate
estimation of the system’s state even in the presence of
faults. Both x1 and x2 show similar patterns in response
to the controls, suggesting that the system’s behavior is
consistent across its different states or outputs. Such a FTC
control quality stands for a result of good fault estimation
quality. Fig. 4 presents real actuator fault (given by red line)

0 50 100 150 200

Discrete time

-0.4

-0.2

0

0.2

f 1

Fault

Estimate

0 50 100 150 200

Discrete time

-0.4

-0.2

0

f 2

Fault

Estimate

Fig. 4. Actuator fault and their estimates
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occurred in the system along with their estimates (given by
black line). The estimates closely match the actual faults for
both actuators, indicating a high precision of the estimation
algorithm in diagnosing faults. The fault estimates appear
to react quickly to changes. In both cases, we can see the
estimates’ spikes occurring shortly after the faults present
themselves, suggesting that the estimation system can detect
the occurrence of a fault rapidly. According to fault scenario,
in both cases the faults are shown as sudden changes in
value occurring in 40-th and 60-th seconds from start. The
faults remain at a constant level, indicating that these are step
faults, where the fault introduced into the system maintains a
consistent level post-occurrence. In the case of the first pump,
it is shown slight fluctuations in fault estimation before
the fault occurs, which could represent measurement noise
or minor disturbances. After the fault occurs, however, the
estimate remains stable and closely tracks the fault without
visible overshoots. The other important aspect during the

0 50 100 150 200

Discrete time

0

0.2

0.4

0.6

u
1

FTC MPC Upper bound Lower bound

0 50 100 150 200

Discrete time

0

0.2

0.4

0.6

u
2 FTC

MPC

Upper bound

Lower bound

Fig. 5. Control signals of the compared algorithms

experiment was the analysis of the control signal performed
with the proposed approach along with MPC ones to which
FTC was compared. In the Fig. 5 the mentioned control
signals are presented for the control scenarios. It is evident
that the proposed approach is capable of modifying the
control law based on the occurrence of faults in order to
compensate for the effects of the faults, in contrast to MPC,
which was not able to steer the system in such a way as to
reach and maintain tracking of the reference signal.

The figures presented clearly demonstrate that the pro-
posed strategy effectively addresses faults, including those
resulting in up to a 60% reduction in efficiency.

VI. CONCLUSIONS

The primary aim of this paper is to introduce an in-
novative integrated fault-tolerant control methodology for
constrained non-linear systems that are subject to bounded
external disturbances. This method is implemented using the
quadratic boundedness approach, enabling the formulation of
necessary and sufficient conditions for the integration of fault
estimation and fault-tolerant control. The strategy devised is

based on output feedback, designed to follow the desired
reference trajectory while accounting for faults, disturbances,
and constraints on both state and input. The achieved results
clearly indicate the superiority of the proposed approach over
the MPC one being compared.
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Puig Cayuela. Reliability-aware zonotopic tube-based model
predictive control of a drinking water network. International journal
of applied mathematics and computer science, 32(2):197–211, 2022.

[7] Norbert Kukurowski, Marcin Mrugalski, Marcin Pazera, and Marcin
Witczak. Fault-tolerant tracking control for a non-linear twin-rotor
system under ellipsoidal bounding. International Journal of Applied
Mathematics and Computer Science, 32(2):171–183, 2022.

[8] Ayyoub Ait Ladel, Abdellah Benzaouia, Rachid Outbib, and Mustapha
Ouladsine. Integrated state/fault estimation and fault-tolerant control
design for switched t–s fuzzy systems with sensor and actuator faults.
IEEE Transactions on Fuzzy Systems, 30(8):3211–3223, 2021.

[9] J. Lan and R. Patton. An iterative strategy for robust integration of
fault estimation and fault-tolerant control. Automatica, 145:110556,
2022.

[10] J. Lan and R.J. Patton. Integrated design of fault-tolerant control for
nonlinear systems based on fault estimation and t–s fuzzy modeling.
IEEE Transactions on Fuzzy Systems, 25(5):1141–1154, 2016.

[11] J. Lan and R.J. Patton. A new strategy for integration of fault
estimation within fault-tolerant control. Automatica, 69:48–59, 2016.

[12] J. Lan and R.J. Patton. Robust integration of model-based fault
estimation and fault-tolerant control. Springer, 2021.

[13] Lalo Magni, Davide Martino Raimondo, and Riccardo Scattolini.
Regional input-to-state stability for nonlinear model predictive control.
IEEE Transactions on automatic control, 51(9):1548–1553, 2006.

[14] Marcin Mrugalski. Advanced Neural Network-based Computational
Schemes for Robust Fault Diagnosis. Springer-Verlag, Berlin-
Heidelberg, 2014.

[15] Junbo Tan, Huailiang Zheng, Deshan Meng, Xueqian Wang, and Bin
Liang. Active input design for simultaneous fault estimation and fault-
tolerant control of lpv systems. Automatica, 151:110903, 2023.

[16] Pan Tang, Fubiao Zhang, Jianchuan Ye, and Defu Lin. An integral
tsmc-based adaptive fault-tolerant control for quadrotor with external
disturbances and parametric uncertainties. Aerospace Science and
Technology, 109:106415, 2021.

[17] M. Witczak, L. Dziekan, V. Puig, and J. Korbicz. Design of a fault-
tolerant control scheme for takagi-sugeno fuzzy systems. In 2008
16th Mediterranean Conference on Control and Automation, pages
280–285. IEEE, 2008.

[18] M. Witczak, V. Puig, and S. de Oca. A fault-tolerant control strategy
for non-linear discrete-time systems: application to the twin-rotor
system. International Journal of Control, 86(10):1788–1799, 2013.

[19] M. Witczak, L. Seybold, E. Bulach, and N. Maucher. Modern IoT
Onboarding Platforms for Advanced Applications. A Practitioner’s
Guide to KIS.ME. Springer-Verlag, Berlin-Heidelberg, 2023.

[20] Yanzheng Zhu and Wei Xing Zheng. An integrated design approach
for fault-tolerant control of switched lpv systems with actuator faults.
IEEE Transactions on Systems, Man, and Cybernetics: Systems,
53(2):908–921, 2022.

2073


