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Abstract— This paper considers a risk-constrained motion
planning problem and aims to find the solution combining the
concepts of iterative model predictive control (MPC) and data-
driven distributionally robust (DR) risk-constrained optimiza-
tion. In the iterative MPC, at each iteration, safe states visited
and stored in the previous iterations are imposed as terminal
constraints. Furthermore, samples collected during the iteration
are used in the subsequent iterations to tune the ambiguity set
of the DR constraints employed in the MPC. In this method,
the MPC problem becomes computationally burdensome when
the iteration number goes high. To overcome this challenge, the
emphasis of this paper is to reduce the real-time computational
effort using two approximations. First one involves clustering
of data at the beginning of each iteration and modifying the
ambiguity set for the MPC scheme so that safety guarantees
still holds. The second approximation considers determining
DR-safe regions at the start of iteration and constraining the
state in the MPC scheme to such safe sets. We analyze the
computational tractability of these approximations and present
a simulation example that considers path planning in the
presence of randomly moving obstacle.

I. INTRODUCTION

Real-world autonomous mobile robots usually navigate in
unknown or partially known environments. Thus, safety is
one of the most significant priorities in motion planning
problems. There are different optimal control techniques
for providing safety guarantees in such situations, among
which robust and probabilistic approaches are popular. Al-
ternatively, risk-aware control design has gathered attention
recently due to its ability to tune the conservativeness and
the safety level of the designed controller between robust
and probabilistic approaches. Moreover, the optimization
problems leading to risk-aware decisions are often convex
and tractable for a large class of risk measures. One challenge
persists for all the above-listed methods, that of not knowing
the distribution of the uncertainty fully and only having
access to a small number of samples of it. In such scenarios,
distributionally robust (DR) decisions provide an elegant way
of tuning safety and cost-efficiency. Motivated by this, this
paper considers a risk-constrained optimal control problem
for a motion planning problem and improves on the iterative
DR MPC scheme formulated in [1]. The method presented
in [1] uses distributional robustness to find safe trajectories,
even when the samples of the uncertainty are few in number.
However, the method suffers from heavy computational
burden when considering the realistic scenario of continuous

The authors are with the Engineering and Technology Insti-
tute Groningen, University of Groningen. Email: {a.zolanvari,
a.k.cherukuri}@rug.nl. This work was partly supported with a
scholarship from the Data Science and Systems Complexity (DSSC) Center,
University of Groningen.

distributions. To this end, we provide “low-complexity”
approximations of the DR risk constraint considered in the
MPC routine without compromising on safety. This process
brings the iterative DR MPC method closer to being real-
time implementable.

Literature review: Distributional robustness in risk-
constrained model predictive control is explored extensively
in [2]–[5]. While most of them focus on out-of-sample
performance guarantees, the proposed schemes become com-
putationally burdensome as the number of available samples
grows. To overcome this challenge, two different strategies
have been suggested in the distributionally robust (DR) opti-
mization literature. On the one hand, [6]–[8] reduce the num-
ber of samples by data compression and provide performance
guarantees for optimizers of the DR problems formulated by
the compressed data. The idea of complexity reduction using
data compression is known as scenario reduction and was
introduced in [9]. On the other hand, constraint tightening
approaches, proposed in [10]–[12], tackle the computational
challenge by inner-approximating the distributionally robust
region and limiting the feasible states to the DR-safe region.
None of the above-mentioned studies explore these tech-
niques for iterative approaches. Iterative approaches are well-
suited to many real-world problems as they can overcome
the challenge of insufficient data points through progressive
exploration of the environment and repeated execution of
the task. With this motivation, we explore both scenario
reduction and constraint-tightening types of approximations
of the iterative algorithm from [1]. Our emphasis is on
reducing the computational effort and making our method
real-time implementable.

Setup and Contributions: We start in Section III with the
explanation of the risk-constrained optimal control problem
that is tailored for the motion planning problem. Here the
risk constraint encodes collision avoidance in presence of a
random obstacle. In Section IV, we present the iterative DR
MPC method from [1] as a solution strategy and explain the
general framework when considering Wasserstein ambiguity
sets. We present in Section V the finite-dimensional reformu-
lation of the DR risk constraints when considering Wasser-
stein ambiguity sets. We discuss the computational challenge
of imposing these reformulated constraints, which lead to our
main contributions that entail providing two computationally
efficient approximations of the DR risk constraints. The first
one considers Wasserstein ambiguity sets with a larger radius
and the center as the distribution generated using clustered
data. The second one generates an inner estimate of the set
of points that satisfy DR risk constraints. The inner estimate
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has a simple form of being the union of half-spaces. We
show that both our approximations are safe in the sense that
they satisfy the originally imposed risk constraint up to a
pre-specified probability. We identify conditions under which
the iterative DR MPC with the defined approximations are
recursively feasible and asymptotically convergent. Lastly,
we demonstrate the advantage of our method for a risk-averse
path planning task.

II. PRELIMINARIES

Here we collect notation and mathematical background.
1) Notation: Let R, R≥0, and N≥1 denote the set of

real, nonnegative real, and natural numbers excluding zero,
respectively. Let ∥ · ∥ denote the 2-norm. For N ∈ N≥1,
we denote [N ] := {1, . . . , N} and [N ]0 := {0, 1, . . . , N}.
Given x ∈ R, we let [x]+ = max(x, 0).

2) Conditional Value-at-Risk: We review notions on con-
ditional value-at-risk (CVaR) from [13]. Given a real-valued
random variable Z with probability distribution P and β ∈
(0, 1), the value-at-risk of Z at level β, denoted VaRP

β [Z],
is the left-side (1− β)-quantile of Z. Formally,

VaRP
β [Z] = inf{ζ | P(Z ≤ ζ) ≥ 1− β}.

The conditional value-at-risk (CVaR) of Z at level β, denoted
CVaRP

β [Z], is given as

CVaRP
β [Z] = inf

t∈R

{
t+ β−1EP[Z − t]+

}
, (1)

where EP[ · ] denotes expectation under P. Under continuity
of the CDF of Z, we have CVaRP

β [Z] := EP[Z ≥ VaRP
β [Z]].

The parameter β characterizes the risk-averseness. When β
is close to unity, the decision-maker is risk-neutral, whereas,
β close to the origin implies high risk-averseness.

3) Wasserstein metric: Given a compact set W ⊂ Rnw ,
let P(W) be the set of Borel probability measures supported
on W . Following [14], the 1-Wasserstein metric between
measures µ, ν ∈ P(W) is

dW (µ, ν) := min
γ∈H(µ,ν)

{∫
W×W

∥w1 − w2∥γ(dw1, dw2)

}
,

(2)
where H(µ, ν) is the set of all distributions on W×W with
marginals µ and ν.

III. PROBLEM STATEMENT

Consider the following discrete-time system:

xt+1 = f(xt, ut), (3)

where f : Rnx × Rnu → Rnx represents the dynamics and
xt ∈ Rnx and ut ∈ Rnu are the state and control input at
time t, respectively. The system state and control input are
required to satisfy the following deterministic constraints:

xt ∈ X , ut ∈ U , ∀t ≥ 0, (4)

where X ⊂ Rnx and U ⊂ Rnu are assumed to be compact
convex sets. We assume without loss of generality that 0 ∈ U .
Our objective in the motion planning problem is to drive the
system from an initial state to a target equilibrium point xF ∈

X while ensuring a suitable safety requirement. We encode
this task as the following infinite-horizon risk-constrained
optimal control problem:

min

∞∑
t=0

r(xt, ut) (5a)

s.t. xt+1 = f(xt, ut), ∀t ≥ 0, (5b)
xt ∈ X , ut ∈ U , ∀t ≥ 0, (5c)
x0 = xS , (5d)

CVaRP
β [g(xt, w)] ≤ 0, ∀t ≥ 0. (5e)

Here, xS ∈ X is the initial state and the stage-cost r :
X × U → R≥0 is assumed to be continuous satisfying
r(x, u) = 0 if and only if (x, u) = (xF , 0). Further, the
constraint (5e) represents the safety guarantee, where CVaR
stands for the conditional value-at-risk (see Section II-.2
for details), w is a random variable with distribution P
supported on the polyhedral convex compact setW := {w ∈
Rnw | Hw ≤ h}, the parameter β > 0 is the risk averseness
coefficient, and the continuous function g : X ×W → R is
referred to as the constraint function. Next, we will make g
more precise for the case of avoiding polyhedral obstacles.

Let C ∈ Rnp×nx be a matrix that gives the components
corresponding to the position of a state x ∈ Rnx as Cx.
Consequently, the feasible region in the position coordinates
is denoted by CX . We assume the presence of one uncertain
obstacle in CX . At the unperturbed position, the space occu-
pied by the obstacle is defined by O := {p ∈ Rnp | Ap ≤ b},
where A ∈ RM×np , b ∈ RM , and O is assumed to be
compact. As the position of the obstacle is uncertain we
assume that given a realization w ∈ W ⊂ Rnp of the random
variable, the occupancy of the obstacle is given as

Ow := O + w = {p+ w | Ap ≤ b}.

We assume that Ow ⊂ CX for all realizations w ∈ W . We
say that the state x is safe in terms of collision with Ow if
the following constraint is met

g(x,w) := dmin − dist(Cx,Ow) ≤ 0, (6)

where dist(Cx,Ow) stands for the Euclidean distance of the
point Cx from the set Ow. Specifically,

dist(Cx,Ow) = min
y∈Ow

∥Cx− y∥.

Note that using the structure of the Ow, the distance can be
equivalently written as

dist(Cx,Ow) := max
m∈[M ]

[Am(Cx− w)− bm]+ ,

where Am and bm are the m-th row of A and m-th
component of b, respectively. For the sake of simplicity and
without loss of generality, we assume that ∥Am∥ = 1 for all
m. Throughout the paper, we assume g of the above form.
In lieu of the above definition, we call x to be P-risk safe if

CVaRP
β [g(x,w)] = CVaRP

β [dmin − dist(Cx,Ow)] ≤ 0.

We approach solving the infinite-horizon problem (5)
using approximations of the iterative MPC scheme proposed
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in [1]. The method given in [1] combines ideas from iterative
learning MPC [15] and distributionally robust (DR) risk-
constrained optimization problems [16]. However, in doing
so, the optimization problem at the core of the MPC prob-
lem becomes computationally cumbersome, especially when
the iteration count goes high, the underlying distribution
is continuous, and the ambiguity set is defined using the
Wasserstein metric. Specifically, in this case, the optimization
problem has mixed-integer decision variables, where the
number of constraints and the number of decision variables
grow linearly with the number of samples. The objective of
this paper is to ease this computational burden by rendering
the size of the optimization problem solved in the MPC
independent of the number of samples while maintaining
safety guarantees.

IV. DR-BASED SAFETY-CONSTRAINED ITERATIVE MPC
Here we present our general iterative framework that is

borrowed from [1]. We present this scheme in a form where
the safety constraints embedded in the MPC problem are
abstract. In the following section, we specify three ways
of generating these safety constraints, all of which form
different subsets of the set of points that satisfy the risk
constraint (5e) in a distributionally robust manner. We then
discuss their computational and statistical properties.

A. Building blocks of the iterative scheme
An iteration involves generating a trajectory of the sys-

tem (3). In particular, the trajectory of the j-th iteration is
denoted as

xj := [xj
0, x

j
1, . . . , x

j
t , . . . , x

j
Tj
],

uj := [uj
0, u

j
1, . . . , u

j
t , . . . , u

j
Tj−1],

(7)

where xj
t and uj

t are the system state and the control input at
time t, respectively. We assume that xj

0 = xS for all j ≥ 1
and that each trajectory j consists of a finite number of time
steps Tj ∈ N≥1. We also refer to this quantity as the length
of the trajectory.

Recall that the distribution P of the random variable w
is supported on a polyhedral convex compact set W :=
{w ∈ Rnw | Hw ≤ h}. At the start of iteration j, we
assume that we have Nj−1 ∈ N≥1 number of samples of
the uncertainty available to us. We denote this dataset as
Ŵj−1 := {ŵ1, . . . , ŵNj−1}. We assume that the system
gathers Mj ∈ N≥1 number of samples of the uncertainty dur-
ing the j-th iteration. Thus, Nj = Nj−1+Mj . If one sample
is gathered at each time step of the iteration, then Mj = Tj .
The data could either be drawn from the distribution P in an
i.i.d. manner or could be obtained from other distributions
that are close to P in some appropriate metric. In both
cases, our approach of enforcing risk constraint (5e) for all
distributions in an appropriately defined set helps ensure the
system’s safety, even when the number of available samples
is low. To this end, we impose an assumption on the data-
gathering process. First, we define the empirical distribution
corresponding to the dataset Ŵj−1 as

P̂Nj−1 := 1
Nj−1

∑Nj−1

i=1 δŵi
,

where δŵi
is the dirac-delta distribution placed at the point

ŵi. Given this distribution and a radius θj−1 > 0, we
construct the Wasserstein ambiguity set as

B(P̂Nj−1
, θj−1) :={Q∈P(W) |dW (Q, P̂Nj−1

)≤θj−1}, (8)

where dW is the Wasserstein metric (see Section II-.3 for
the definition) and P(W) are all distributions supported on
W . We then assume:

Assumption IV.1. (Confidence guarantee of P contained in
the ambiguity set): For any iteration j, we are given a radius
θj−1 > 0 such that for any dataset Ŵj−1 gathered by the
end of the (j − 1)-th iteration, we have

Prob[P ∈ B(P̂Nj−1
, θj−1)] ≥ ζ, (9)

where ζ ∈ (0, 1) is a pre-specified confidence level. •

Note that if samples are drawn i.i.d., then Prob = PNj−1

in the above definition, where PNj−1 represents the Nj−1-
fold product of the underlying distribution P. Then, one can
derive the relationship between ζ, θj−1, and Nj−1 such
that (9) holds, see e.g., [14, Theorem 3.4]. Bearing the
above definition in mind, a point x′ ∈ X satisfies the risk
constraint (5e) with probability ζ if we ensure that

x′∈X j−1
DR :={x ∈ X | sup

Q∈B(P̂Nj−1
,θj−1)

CVaRQ
β [g(x,w)]≤0}.

(10)

The aim of our algorithm is to seek such trajectories, those
that satisfy the risk constraint with probability ζ. One way is
to impose (10) in our MPC routine. However, the resulting
optimization comes with a significant computational burden.
Thus, in Section V we define approximations of the set given
in (10) with the purpose of balancing computational ease and
optimality while ensuring safety throughout.

We now describe other key elements of the iterative
learning MPC. Given the trajectory (xj , uj) generated in
iteration j, the cost-to-go at time t is denoted as:

Jj
(t:∞) :=

∑∞
k=t r(x

j
k, u

j
k). (11)

Thus, the cost of the j-th iteration is Jj
(0:∞). Since we assume

that the j-th trajectory has a finite length Tj , for every time
step t ≥ Tj , we assume that the system remains at xF

and the control input is zero. Thus, the infinite sum in (11)
is well-defined as r(xF , 0) = 0. In our iterative method,
information about the system and the environment grows
as iterations progress. The latter is owing to the fact that
more data regarding the uncertainty becomes available in
each iteration. On the other hand, the former is acquired
by means of exploring the state space incrementally. To this
end, our method maintains a set of safe states (along with
the minimum cost that it takes to go to the target from them)
that were explored in the previous iterations and uses them
in an iteration as terminal constraints in the MPC scheme (as
proposed in [15]). Specifically, the sampled safe set obtained
at the end of iteration j and to be used in iteration j + 1,
denoted Sj ⊆ [ j ]×X × R≥0, is defined recursively as

Sj = Sj
(
Sj−1 ∪ {(j, xj

t , J
j
(t:∞))}

Tj

t=1

)
, (12)
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where the set {(j, xj
t , J

j
(t:∞))}

Tj

t=1 collects the set of states
visited in iteration j, along with the associated cost-to-go.
The counter j is maintained in this set to identify the iteration
to which a state with a particular cost-to-go is associated
with. The set Sj−1 is the set used in iteration j. The map
Sj only keeps the states that are safe with respect to the new
dataset Ŵj . The exact map Sj is explained in our algorithm.

For ease of exposition, we define maps Πtraj(·), Πstate(·),
and Πcost(·), such that, given a safe set S , Πtraj(S),
Πstate(S), and Πcost(S) return the set of all trajectory
indices, states, and cost-to-go values that appear in S, re-
spectively. The following assumption is required to initialize
our iterative procedure with a nonempty sampled safe set.

Assumption IV.2. (Initialization with robust trajectory): The
first iteration starts with the sampled safe set S0 containing
a finite-length robustly safe trajectory x0 that starts from xS

and reaches xF . This means that the trajectory x0 in S0
robustly satisfies all constraints of problem (5), that is, x ∈
X , g(x,w) ≤ 0 for all w ∈ W , and all x ∈ Πstate(S0). •

Note that for every state stored in the sampled safe set
Sj , we store the cost-to-go from it. However, it is possible
that a state appears in multiple trajectories and given that
Sj contains several trajectories, it is beneficial to maintain
a minimum cost-to-go from every state in it. That being the
case, we define the map

Qj(x) :=

 min
J∈F j(x)

J, x ∈ Πstate(Sj),

+∞, x /∈ Πstate(Sj),
(13)

where

F j(x) = {J i
(t:∞) | Πstate(

{
(i, xi

t, J
i
(t:∞))

}
) = {x},

(i, xi
t, J

i
(t:∞)) ∈ S

j}. (14)

Here, the set F j(x) contains all cost-to-go values associated
with the state x ∈ Πstate(Sj) and consequently, the function
Qj determines the minimum among these.

Given the above-described elements, we now present the
optimization problem that lies at the core of our method. For
generality, we write the problem for generic current state x,
sampled safe set S, and safety constraint x ∈ X ⊂ X . Let
K ∈ N≥1 be the length of the horizon and consider

J(S,X )(x) :=



min
∑K−1

k=0 r(xk, uk) +Q(xK)

s. t. xk+1 = f(xk, uk),∀k ∈ [K − 1]0,

xk ∈ X , uk ∈ U ,∀k ∈ [K − 1]0,

x0 = x,

xK ∈ Πstate(S),
(15)

where Q : X → R gives the minimum cost-to-go for
all states in S and is calculated in a similar manner as
in (13). The decision variables in the above problem are
(x0, x1, . . . , xK) and (u0, u1, . . . , uK−1). The set S defines
the terminal constraint xK ∈ Πstate(S). Finally, the con-
straint xk ∈ X encodes the safety guarantee. For iteration j
and time step t, the MPC scheme solves the finite-horizon

problem (15) with x = xj
t , S = Sj−1, and Q = Qj−1, while

X takes one of the following values: X j−1
Wass, X

j−1
cl−Wass, or

X j−1
inn−Wass. The set X j−1

Wass is defined by the reformulation
of the Wasserstein DR risk-constraint, the set X j−1

inn−Wass is
an inner approximation of X j−1

Wass, and finally, X j−1
cl−Wass is

defined in a similar way as X j−1
Wass but with clustered data.

We explain these further in Section V.

B. Algorithm describing the iterative scheme

Here we put together the building blocks of our method
that were outlined above. The resulting scheme is given
in Algorithm 1 and is similar to the algorithm from our
previous work [1]. Each iteration j ≥ 1 of Algorithm 1
starts with a sampled safe set Sj−1 and a safe set X j−1

safe ,
where the latter is determined using the dataset Ŵj−1 and
the radius θj−1. We represent this association via the map
X (Line 3). As explained above, the set X j−1

safe takes value
as X j−1

Wass, X
j−1
cl−Wass, or X j−1

inn−Wass. The precise definition of
these sets are given in Section V. Given Sj−1 and X j−1

safe ,
the first step of the iteration (Line 2) involves generating
a trajectory (xj , uj) using Safe_MPC routine (described in
Algorithm 2). The dataset is updated to Ŵj and the set X j

safe

is computed for the next iteration using Ŵj and the radius
θj in Line 3. The trajectory xj along with its associated cost-
to-go is appended to the sampled safe set in Line 4. The set
UIj collects in Line 5 all previous trajectories for which one
of the states is not safe with respect to the newly determined
set X j

safe. In Line 6, the set of trajectories in Ij−1∪{j} that
are not in UIj are collected in the set Ij . Consequently,
the states visited in trajectories in Ij are stored in Sj in
Line 7 and their minimum cost-to-go is computed in Line 8.
Collectively, Lines 5 to 7 represent the map S defined in (12).

Algorithm 1: Iterative MPC with DR-based safety
constraints

Input : S0 – Initial sampled safe set
Ŵ0– Initial set of samples
I0 – Index of trajectory in S0

Initialize : j ← 1, X 0
safe, UI0 ← ∅

1 while j > 0 do
2 Set (xj , uj)← Safe_MPC(Sj−1,X j−1

safe );
T j ← length(xj); Ŵj ← Ŵj−1 ∪ {ŵi}

Mj

i=1

3 Set X j
safe ← X(Ŵj , θj)

4 Set Sj−1 ← Sj−1 ∪ {(j, xj
t , J

j
(t:∞))}

Tj

t=1

5 Set UIj ← {i ∈ (Ij−1 ∪ {j}) |(i, x, J) ∈
Sj−1 and x ̸∈ X j

safe}
6 Set Ij ← (Ij−1 ∪ {j}) \ UIj
7 Set Sj ← {(i, x, J) ∈ Sj−1 | i ∈ Ij}
8 Compute Qj(x) for all x ∈ Πstate(Sj) using (13)
9 Set j ← j + 1

Algorithm 1 calls the Safe_MPC routine in each iteration.
This procedure is given in Algorithm 2 where at each time
step t, the finite-horizon problem (15) is solved with x = xt.
The optimal solution is denoted as
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x∗
vec,t = [x∗

t|t, . . . , x
∗
t+K|t],

u∗
vec,t = [u∗

t|t, . . . , u
∗
t+K−1|t],

(16)

where xt+k|t is the prediction made at time t regarding the
state at time t + k. The control at time t is set as the first
element u∗

t|t (Line 5) and it is appended to the trajectory u.
The state is updated and added to x in Line 6. The procedure
moves to the next time step with the updated state as xt+1.

Algorithm 2: Safe MPC function

1 Function Safe_MPC(S,X):
Initialize : t← 0; x0 ← xS ; x← [x0], u← [ ]

2 Set Q as minimum cost-to-go in S (use (13))
3 while xt ̸= xF do
4 Solve (15) with x = xt and obtain optimal

solutions x∗
vec,t and u∗

vec,t

5 Set ut ← u∗
t|t; u← [u, ut]

6 Set xt+1←f(xt, ut); x← [x, xt+1]; t← t+ 1
7 return (x, u)
8 end

Remark IV.1. (Comparison with [1]): We note that the
general structure of our algorithm is similar to that in [1].
However, there are two key differences that highlight the con-
tribution of this paper. First, the algorithm in [1] is written in
a general form for any type of ambiguity set generated using
data. There is no emphasis on computational tractability and
the simulations only focus on discrete distributions. On the
other hand, we here specify the Wasserstein ambiguity set
and focus more on the computational issues. Second, our
algorithm and the approximations presented in Section V
are tailored for the motion planning problem; they exploit
the structure of the obstacle avoidance constraint to derive
fast MPC routines that can be implemented in real-time. •

V. APPROXIMATIONS OF DR-BASED SAFETY
CONSTRAINT

In this section, we explain the three safety sets that are
used as constraints in the MPC routine of Algorithm 1.
All these sets lead to trajectories that satisfy the risk con-
straint (5e) with probability ζ. Before proceeding further we
first provide a finite-dimensional representation of an upper
bound of the worst-case CVaR over a Wasserstein ambiguity
set. This will depict the computational issues of solving the
finite horizon problem (15) with two DR-based safety sets
X j−1

Wass and X j−1
cl−Wass. Consequently, it will also motivate the

design of the third safety set X j−1
inn−Wass.

Lemma V.1. (Reformulation of the worst-case risk): Con-
sider an atomic distribution

Pcen :=

L∑
ℓ=1

pℓδwcen
ℓ

,

where wcen
ℓ ∈ W for all ℓ ∈ [L] and pℓ ∈ (0, 1) for all

ℓ ∈ [L] with
∑L

ℓ=1 pℓ = 1. Consider the ambiguity set

B(Pcen, θcen) := {Q ∈ P(W) | dW (Q,Pcen) ≤ θcen},

where dW is the Wasserstein metric (2) and P(W) are all
distributions supported onW . Then, for the function g given
in (6), we have

sup
Q∈B(Pcen,θcen)

CVaRQ
β [g(x,w)] (17)

≤



inf λθcen − βη +
∑L

ℓ=1 sℓ

s. t. p−1
ℓ sℓ − η ≥ dmin −

(
[ACx− b]⊤ν

−[(A⊤ν−H⊤γℓ)
⊤wcen

ℓ +γ⊤
ℓ h]

)
,∀ℓ ∈ [L],

∥A⊤ν−H⊤γℓ∥≤λ, ∥A⊤ν∥≤1, ∀ℓ ∈ [L],

ν, γℓ ∈ RM
≥0, λ, sℓ ∈ R≥0, η ∈ R, ∀ℓ ∈ [L].

The proof follows from a similar result in [5] and hence
is omitted. Note that the above result is written for a general
ambiguity set defined with the center Pcen and radius θcen.
Such a choice is motivated by the fact that in defining the
safety set X j−1

cl−Wass, we will use the distribution derived from
clustered data instead of the empirical one.

A. Safety set X j−1
Wass

For obtaining the safety set X j−1
Wass, we replace Pcen and

θcen in Lemma V.1 with the empirical distribution P̂Nj−1
and

θj−1, respectively. Then, we define X j−1
Wass as the set of x for

which the upper bound on the worst-case risk given in (17)
is nonnegative. That is, in this case

X(Ŵj−1, θj−1) = X j−1
Wass (18)

:=
{
x ∈ X |∃ν, γℓ ∈ RM

≥0, λ, sℓ ∈ R≥0, η ∈ R,

such that

λθj−1 − βη +
∑Nj−1

ℓ=1 sℓ ≤ 0,

p−1
ℓ sℓ − η ≥ dmin −

(
[ACx− b]⊤ν

− [(A⊤ν−H⊤γℓ)
⊤ŵℓ+γ⊤

ℓ h]
)
,∀ℓ ∈ [Nj−1],

∥A⊤ν−H⊤γℓ∥≤λ, ∥A⊤ν∥≤1,∀ℓ ∈ [Nj−1]
}
.

The above definition and the inequality (17) imply that if
x ∈ X j−1

Wass, then supQ∈B(P̂Nj−1
,θj−1)

CVaRQ
β [g(x,w)] ≤ 0.

Hence, when X j−1
safe = X j−1

Wass in Line 3 of Algorithm 1, then
the generated trajectory in the j-th iteration is P-risk safe
with probability ζ.

Notice that in one of the constraints on the right-hand
side of (18), the decision variables x and ν appear in a
bilinear term. Hence, enforcing the state to be in X j−1

Wass

renders the optimization problem nonconvex with the number
of constraints and the decision variables scaling with the
size of the dataset. This poses a computational challenge
when solving the finite-horizon problem (15) with X set as
X j−1

Wass given in (18), especially since the terminal constraint
in (15) is equivalent to a mixed-integer one. To alleviate this
roadblock, we propose the following two alternatives.
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B. Safety set X j−1
cl−Wass

As explained above, using each sample in defining the
ambiguity set increases the computational burden in the
reformulated problem. Hence, we use clustering following
the ideas outlined in [6] and [7]. In particular, we assume that
the designer selects the number of clusters N clu ∈ N≥1 based
on the trade-off between accuracy and computational cost.
Given N clu and samples {ŵ1, . . . , ŵNj−1}, we determine the
centers of clusters {wclu,j−1

ℓ }Nclu

ℓ=1 ⊂ W and an association
map id : {1, . . . , Nj−1} → {1, . . . , N clu} such that each
sample ŵi is associated with some cluster given by id(i).
Then, we form the clustered empirical distribution as

Pclu,j−1 :=
∑Nclu

ℓ=1 pℓδwclu,j−1
ℓ

,

where for each ℓ ∈ {1, . . . , N clu}, we have

pℓ =
|{i ∈ {1, . . . , Nj−1} | id(i) = ℓ}|

Nj−1
.

That is, the fraction of points associated with the cluster
ℓ. Further, we select the radius of the ambiguity set as
θclu,j−1 = θj−1 + d̄, where d̄ = maxi∈{1,...,Nj−1} ∥ŵi −
wclu,j−1

id(i) ∥. We then use Pclu,j−1 and θclu,j−1 in place of
Pcen and θcen, respectively, in Lemma V.1 and define the
safety set

X(Ŵj−1, θj−1) = X j−1
cl−Wass (19)

:=
{
x ∈ X |∃ν, γℓ ∈ RM

≥0, λ, sℓ ∈ R≥0, η ∈ R,

such that

λθclu,j−1 − βη +
∑Nclu

ℓ=1 sℓ ≤ 0,

p−1
ℓ sℓ − η ≥ dmin −

(
[ACx− b]⊤ν

− [(A⊤ν−H⊤γℓ)
⊤wclu,j−1

ℓ +γ⊤
ℓ h]

)
,∀ℓ ∈ [N clu],

∥A⊤ν−H⊤γℓ∥≤λ, ∥A⊤ν∥≤1,∀ℓ ∈ [N clu]
}
.

Note that the advantage of the above safety set lies in the
fact that the set is defined with fewer constraints and this
number only depends on the number of clusters N clu instead
of Nj−1. While we have reduced the number of points in the
support of the center of the ambiguity set, we have increased
the radius. In the process we have retained the guarantee:

Lemma V.2. (Confidence guarantee of P contained in clus-
tered data ambiguity set): Consider any iteration j and
suppose Assumption IV.1 holds. Then, we have

Prob[P ∈ B(Pclu,j−1, θclu,j−1)] ≥ ζ.

The proof follows directly from that of [6, Lemma VIII.2].
Owing to the above result, by ensuring X j−1

safe = X j−1
cl−Wass

for iteration j, we obtain a trajectory that satisfies the risk
constraint (5e) with probability ζ. Finally, we comment that
there are several ways of obtaining the clustered distribution
Pclu from the dataset Ŵj−1. In our numerical example, we
use K-means clustering. Another interesting approach is to
use the I-Cover algorithm from [6]. However, in this case, the
number of clusters grows as the number of samples increases.

C. Safety set X j−1
inn−Wass

Here we take a different approach as compared to the
earlier methods. Instead of imposing distributionally robust
constraints in the finite-horizon problem of the MPC, we
create an inner estimate of the set X j−1

DR (see (10)) at the
beginning of the j-th iteration. We then force our trajectory
to lie in this inner-estimated set during the MPC implemen-
tation. To achieve this, we present the following result that
serves as a tool for constructing the inner estimation of X j−1

DR .

Proposition V.1. (Inner-estimatingX j−1
DR ): Consider the j-th

iteration and the ambiguity set B(P̂Nj−1 , θj−1) given in (8).
Define for each m ∈ [M ] the set

X inn,j−1
m := {x ∈ X | sup

Q∈B(P̂Nj−1
,θj−1)

CVaRQ
β [bm +A⊤

mw

+ dmin −A⊤
mCx] ≤ 0},

where we recall that Am and bm are the m-th row of A
and m-th component of b, respectively. Let X inn,j−1 :=
∪Mm=1X inn,j−1

m . If x ∈ X inn,j−1, then

sup
Q∈B(P̂Nj−1

,θj−1)

CVaRQ
β [g(x,w)] ≤ 0,

where g is given in (6).

Proof. Note that for any y ∈ Ow we have Ay ≤ b + Aw.
We will establish the result by showing that for any x ∈ X
and w ∈ W , if

bm +A⊤
mw + dmin −A⊤

mCx ≤ 0, (20)

for some m ∈ {1, . . . ,M}, then g(x,w) ≤ 0. To this end,
note that

bm +A⊤
mw + dmin −A⊤

mCx

= bm +A⊤
mw + max

∥f∥≤dmin

f⊤Am −A⊤
mCx

(a)

≥ max
y∈Ow

A⊤
my + max

∥f∥≤dmin

f⊤Am −A⊤
mCx

= max
y∈Ow+dminB

A⊤
my −A⊤

mCx,

where B is the unit ball centered at the origin, the first equal-
ity is due to ∥Am∥ = 1, and (a) follows from the fact that
A⊤

my ≤ bm+A⊤
mw for any y ∈ O. From the above inequality,

if (20) is satisfied, then maxy∈Ow+dminB A⊤
my−A⊤

mCx ≤ 0.
This implies Cx ̸∈ int(Ow+dminB), where int(·) represents
the interior. That is, maxy∈Ow+dminB ∥Cx− y∥ ≥ 0 and so,
dist(Cx,Ow) ≥ dmin. This completes the proof.

Roughly speaking, in the above result we have constructed
a safe region X inn,j−1 as the union of sets X inn,j−1

m that are
themselves intersection of half-spaces and the set X . The
outward normal defining the half-space is chosen to be the
same that defines the occupancy of the obstacle. For example,
in two dimensions, if the obstacle is a square with normal
directions aligning with the axes, then the region X inn,j−1

will turn out to be the whole space CX except for the set
of points that belong to a rectangular region. This fact will
become more clear in our simulation section.
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In light of Proposition V.1, given the dataset Ŵj−1 and
radius θj−1, we set

X(Ŵj−1, θj−1) = X j−1
inn−Wass = X

inn,j−1 (21)

in Algorithm 1. Then, the trajectory generated in the j-th
iteration is P-risk safe with probability ζ. We next comment
on the procedure of determining the constraints defining the
set X j−1

inn−Wass. We first compute

binn,j−1
m = sup

Q∈B(P̂Nj−1
,θj−1)

CVaRQ
β [A

⊤
mw]

for all m ∈ {1, . . . ,M}. Consequently, we set

X j−1
inn−Wass = ∪

M
m=1{x ∈ X |
bm + binn,j−1

m + dmin −A⊤
mCx ≤ 0}.

While the above set has a simple form, we still require com-
puting the scalar values {binn,j−1

m }. To this end, we provide
the following finite-dimensional optimization problem:

binn,j−1
m =
inf λθj−1−βη +

∑L
ℓ=1 sℓ

s. t. p−1
ℓ sℓ−η≥(A⊤

m−H⊤
mξℓ)

⊤ŵℓ + ξℓhm,∀ℓ∈ [Nj−1],

∥A⊤
m −H⊤

mξℓ∥ ≤ λ, ∀ℓ ∈ [Nj−1],

λ, sℓ, ξℓ ∈ R≥0, η ∈ R, ∀ℓ ∈ [Nj−1].

We next conclude this section with the guarantees that our
methods enjoy. The first result states the safety and recursive
feasibility and then we present the asymptotic convergence.
The proofs are omitted as they are similar to those given
in [1] for analogous statements.

Proposition V.2. (Safety and recursive feasibility of Algo-
rithm 1): Let Assumption IV.1 and IV.2 hold. Then, for each
of the safety sets represented by maps (18), (19), and (21),
at each iteration j ≥ 1 and time step t ≥ 0, the finite-
horizon problem (15) with x = xj

t , S = Sj−1, and X =
X(Ŵj−1, θj−1) solved in Algorithm 1 is feasible. Further,
each point in the generated trajectory (xj , uj) satisfies the
risk-constraint (5e) with probability ζ.

Proposition V.3. (Asymptotic convergence of Algorithm 1):
Let Assumption IV.2 hold. Then, for each of the safety sets
represented by maps (18), (19), and (21) and each iteration
j ≥ 1 of Algorithm 1, the trajectory (xj , uj) generated by
Safe_MPC satisfies xj

t → xF as t→∞.

VI. SIMULATION

In this section, we consider a motion planning problem in
the presence of a randomly moving obstacle to compare the
performance and efficiency of the presented approaches. In
this problem, a circular mobile robot is navigating in a 2-D
environment. We assume that at each time step, the position
of the obstacle is observable and as the iterations progress,
more information is revealed.

(a) Safety set XWass

(b) Safety set Xcl−Wass

(c) Safety set X inn

Fig. 1: Plots depicting the application of Algorithm 1 with the presented
approximations for a path planning task in presence of an uncertain obstacle
(see Section VI for details). The dashed black line represents the initial
robust trajectory and the green area in Figure 1c shows X inn in the last
iteration. The obstacle’s occupancy is depicted by the shaded red heat map.

1) Setup: The deterministic linear dynamics of the mobile
robot is represented as:

xt+1 =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

xt +


0 0
0 0
1 0
0 1

ut,

where the state vector xt consists of the position and velocity
and the input vector ut represents the acceleration. At each
iteration, the agent starts at xs = [0, 0, 0, 0] and aims to
reach the target at xF = [5, 3, 0, 0], while a square obstacle
is moving randomly with the position of its center being
ot = [2, 1.2] + wt. The distribution of wt ∈ R2 is the
product distribution, where for each axis, the component
distribution is a truncated zero-mean normal distribution with
support [−0.45, 0.45] and variance σ=0.15. Before starting
the first iteration, the observations set is initialized with 15
i.i.d samples. The stage cost r(x, u) is in quadratic form
and given as r(xt, ut) = (xF − xt)

⊤Q(xF − xt) + u⊤
t Rut,

where Q = diag(1, 1, 0.01, 0.01) and R = diag(0.01, 0.01).
Other parameters are specified in Table I. The optimization
problem (15) is solved using GEKKO [17] on a PC with
an Intel Core i7-10610U 2.30-GHz processor and 16-GB
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(a) Elapsed time in each iteration (sec) (b) Steps average elapsed time (sec) (c) Cost of each iteration

Fig. 2: The comparison of three presented approximation approaches in Algorithm 1 in terms of the computational time and cost efficiency. Plots illustrate
the elapsed time in each iteration, elapsed time per step in each iteration, and the cost of each iteration over the progress of the algorithm.

Risk coefficient (β) 0.05 Distance threshold (dmin) 0.1
Obstacle length 1 Agent radius 0.2
Horizon length (K) 11 Ambiguity set radius (θ) 1e−3

Number of iterations 20 Number of clusters (Nclu) 5

TABLE I: Simulation parameters

RAM. For X j−1
Wass and X j−1

cl−Wass, the problem is solved using
an IPOPT-based solver and for X inn,j−1 an APOPT-based
solver is used. Each algorithm is executed for 20 iterations.

Results: Trajectories generated using three approximation
approaches of the problem (15) are depicted in Figure 1.
Resulted trajectories show that considering XWass as the
safety set, provide the algorithm with more freedom to
explore the environment. After expanding the safe set in the
first iterations, the agent tries to find an efficient trajectory
from the lower side of the obstacle. On the other hand,
considering safety sets Xcl−Wass and X inn does not let the
agent deviate much from the initial safe set. In Figure 1c, the
green area that represents X inn includes some areas in which
the probability of the obstacle’s presence is low. This shows
the difference between the presented distributionally robust
risk-averse set X inn and a normal robustly safe set. It is
notable that the conservatism of the algorithms can be tuned
via dmin and β which is not the focus of this experiment.

In Figure 2, we compare the efficiency of the presented ap-
proaches in terms of both performance and computational ef-
fort. The first two plots show that using safety sets Xcl−Wass

and X inn in problem (15) reduces the computational time
notably and their difference with the XWass increase over
iterations. In addition, the average elapsed time per step
in each iteration indicates that the clustering approach and
the inner approximation of the feasible set are comparable
in terms of real-time decision-making, however, the inner
approximation approach is slightly faster. Furthermore, bilin-
earity of constraints in XWass and Xcl−Wass limits the solver
to be able to guarantee optimality. As a result, involving X inn

leads to better trajectories in terms of cost efficiency.

VII. CONCLUSIONS

We have considered a risk-constrained optimal control
problem for motion planning and explored using iterative DR
MPC method as a solution strategy. Considering Wasserstein
ambiguity sets in the DR MPC routine, we have formulated
two approximations of the optimization problem driving
the MPC. We have shown the approximations to be com-
putationally efficient and resulting in safe trajectories. We

have illustrated the strength of our methods via a numer-
ical example. Future work includes further bringing down
the computational costs by considering reachable sets and
exploring distributed implementation for multi-robot setup.
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