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Abstract— We consider the consensus problem for 2nd-order
MIMO multi-agent systems with unknown nonlinear terms. We
propose a novel control algorithm based on the Barrier Integral
Control (BRIC) that combines reciprocal barrier functions
with integral terms of the multi-agent disagreement errors and
guarantees asymptotic consensus despite the unknown dynamics.
The control algorithm is distributed, in the sense that each agent
calculates its own control signal based on local information from
its neighbouring agents, and does not use any a priori infor-
mation from the agents’ dynamics. Furthermore and unlike
previous works, it does not rely on boundedness assumptions
or approximation of the dynamic terms and constitutes smooth
feedback of the multi-agent states. Finally, simulation results
verify the theoretical findings.

I. INTRODUCTION

Distributed control of networked multi-agent systems has
emerged as a prominent and widely studied topic in recent
decades, owing to its diverse range of applications, including
robotic systems, smart cities, or biological systems [1]. In
such systems, each agent computes independently its control
signal using only local information to achieve collaborative
tasks with other agents. Such tasks usually consist of con-
sensus, where the agents aim to synchronize their states,
or special kinds of geometric formations, e.g., distance- or
bearing-based formations [2]. At the same time, collaborative
tasks often include maintaining certain transient properties,
such as collision avoidance or connectivity maintenance [3].

When it comes to controlling multi-agent systems, a
significant challenge that has not been adequately addressed
in the related literature is dealing with uncertain dynamics.
A large variety of engineering systems cannot be accurately
modelled, contain plenty of geometric and dynamic parame-
ters that cannot reliably identified, and suffer from unknown
exogenous disturbances. Although many works in the related
literature take into account such uncertainties, they tend to
adopt a series of limiting assumptions. First, many works
using traditional adaptive control [4] unrealistically assume
linear parametrizations of the dynamic terms, limiting the
uncertainty to constant parameters [5]–[7]. Another class of
works approximates the unknown dynamics with single-layer
neural networks, obtaining only local results and requiring
large enough number of nodes [8]–[11]. Other works base
their results on state-boundedness assumptions or growth
conditions [3], [12] or assume a priori information on the
underlying dynamics [13].
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Another issue associated with multi-agent control concerns
the convergence of the underlying multi-agent errors. When
the system dynamics suffer from uncertainties and distur-
bances, most related works establish convergence of these
errors to sets around zero whose size is proportional to the
uncertainties’ bounds and approximation errors and inversely
proportional to the algorithms’ control gains [9], [10], [12].
Therefore, convergence of the errors close to zero requires
prior tuning of the control gains to large enough values.
This issue is overcome by employing prescribed performance
control schemes [14]. In such schemes, the multi-agent errors
evolve inside user-defined funnels, leading to pre-defined
transient and steady-state performance, without requiring
knowledge of the system dynamics or tuning of the control
gains. Still, however, these works cannot provide asymp-
totic stabilization results, unless the considered dynamics
are linear [15]; in the general nonlinear case, asymptotic
stabilization is forced by funnels that become arbitrarily
narrow around zero, which, however, can cause problematic
behaviour for the control inputs [16]. The works [16]–[18]
established asymptotic convergence for single- and multi-
agent control-affine systems with entirely unknown dynamic
terms at the cost, however, of using discontinuous feedback.

This paper considers the consensus problem for multi-
agent systems that evolve subject to 2nd-order control-affine
MIMO dynamics with unknown nonlinear terms. In partic-
ular, we consider that the multi-agent aims to synchronize
its states to a pre-defined setpoint, whose coordinates are
known only by a subset of agents. We introduce smooth
Multi-Agent Barrier Integral Control (MAS - BRIC), which
is a special case of adaptive control that integrates reciprocal
barrier functions with integral adaptation terms and was
introduced for single-agent systems in [19]. The proposed
BRIC algorithm guarantees asymptotic convergence of the
consensus errors to zero, without employing any a priori in-
formation from the agents’ dynamic terms. These guarantees
do not rely on global boundedness assumptions or growth
conditions of such terms. Additionally, the proposed algo-
rithm is distributed, in the sense that each agent calculates
its own control signal based on local information from its
neighbouring agents. Finally, unlike the previous version of
the algorithm in [16], [17], the proposed BRIC scheme uses
smooth feedback.

The rest of the paper is structured as follows. Section
II describes the tackled problem and Section III provides
the proposed control protocol and the stability analysis.
Simulation results are given in Section IV and Section V
concludes the paper.
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Notation: The sets of real, positive real, and non-negative
real numbers are denoted by R, R>0, and R≥0, respectively;
‖ · ‖ denotes the vector 2-norm; λmin(·) and ⊗ are the
minimum eigenvalue and Kronecker product, respectively.

II. PROBLEM FORMULATION
Consider a MIMO multi-agent team comprised of N

agents evolving according to the 2nd-order dynamics

ẋi,1 = xi,2 (1a)
ẋi,2 = fi(xi,1, xi,2, zi, t) + gi(xi,1, xi,2, zi, t)ui (1b)
żi = fzi(xi,1, xi,2, zi, t) (1c)

for i ∈ N := {1, . . . , N}, where zi ∈ Rnz , xi :=
[x>i,1, x

>
i,2]> ∈ Rn × Rn are the states of agent i ∈ N ,

fi : R2n×Rnz×R≥0 → Rn, fzi : R2n×Rnz×R≥0 → Rnz ,
and gi : R2n × Rnz × R≥0 → Rn×n are unknown vector
fields, and ui ∈ Rn is the control input of agent i ∈ N . Eq.
(1c) constitutes the zero dynamics of agent i; the signals zi
are considered to be agent i’s internal variables and, unlike
xi, are not available for measurement, for all i ∈ N . We
make the following assumptions for fi(·) and gi(·):

Assumption 1: The maps (xi,1, xi,2, zi) 7→
fi(xi,1, xi,2, zi, t) : R2n+nz → Rn and (xi,1, xi,2, zi) 7→
gi(xi,1, xi,2, zi, t) : R2n+nz → Rn×n are locally
Lipschitz for each t ∈ R≥0 and the maps
t 7→ fi(xi,1, xi,2, zi, t) : R≥0 → Rn are uniformly
bounded for each (xi,1, xi,2, zi) ∈ R2n+nz , for all i ∈ N .

Assumption 2: The matrices gi(xi,1, xi,2, zi, t) are posi-
tive definite, for all (xi,1, xi,2, zi, t) ∈ R2n+nz × R≥0.

Assumption 3: There exist sufficiently smooth functions
Uzi : Rnz → R≥0 and class K∞ functions γ

zi
(·), γ̄zi(·),

γzi(·) such that γ
zi

(‖zi‖) ≤ Uzi(zi) ≤ γ̄zi(‖zi‖), and(
∂Uzi
∂zi

)>
fzi(xi,1, xi,2, zi, t) ≤

−γzi(‖zi‖) + πzi(xi,1, xi,2, zi, t),

for i ∈ N , where (xi,1, xi,2) 7→ πzi(xi,1, xi,2, zi, t) : R2n →
R≥0 is continuous and class K∞ for each (zi, t) ∈ Rnz ×
R≥0, and (zi, t) 7→ πzi(xi,1, xi,2, zi, t) : Rnz ×R≥0 → R≥0

is uniformly bounded for each (xi,1, xi,2) ∈ R2n, i ∈ N .
Assumption 1 presents mild regularity conditions for the

existence of solutions of (1). Assumption 2 is a sufficient
controllability condition [3], [14], and Assumption 3 suggests
that zi are input-to-state practically stable implying stable
zero (internal) dynamics.

The control objective is the asymptotic consensus of the
multi-agent to a pre-defined configuration xd ∈ Rn, i.e.,
limt→∞ xi,1(t) = xd, for all i ∈ N . However, we consider
that not all agents have access to xd, but rather a subset of
them, as will be detailed later.

We use an undirected graph G := (N , E) to model the
communication among the agents, with N being the index
set of the agents, and E ⊆ N ×N being the respective edge
set, with (i, i) /∈ E (i.e., simple graph). The adjacency matrix
associated with the graph G is denoted by A := [aij ] ∈
RN×N , with aij ∈ {0, 1}, i, j ∈ {1, . . . , N}. If aij = 1,

then agent i obtains information regarding the state xj of
agent j (i.e., (i, j) ∈ E), whereas if aij = 0 then there
is no state-information flow from agent j to agent i (i.e.,
(i, j) /∈ E). Furthermore, the set of neighbors of agent i is
denoted by Ni := {j ∈ N : (i, j) ∈ E}, and the degree
matrix is defined as D := diag{|N1|, . . . , |NN |}. Since the
graph is undirected, the adjacency is a mutual relation, i.e.,
aij = aji, rendering A symmetric. The Laplacian matrix of
the graph is defined as L := D −A and is also symmetric.
The graph is connected if there exists a path between any
two agents. For a connected graph, it holds that L1̄ = 0,
where 1̄ is the vector of ones of appropriate dimension.

As mentioned before, we consider that only a subset of
agents have access to the goal configuration xd. We model
such access using the matrix B := {b1, . . . , bN} ∈ RN×N ;
if bi = 1, then agent i has access to xd, whereas it does not
if bi = 0, for i ∈ N . That is, xd acts as a fixed “leader”
agent, driving the multi-agent team [17]. We further denote
H := (L+ B)⊗ In.

By defining the disagreement vectors

δi(t) := xi,1(t)− xd, i ∈ N , (2)

the control objective becomes limt→∞ δi(t) = 0, for all i ∈
N . Since, however, δi is not accessible for the agents for
which bi = 0, we formulate the error variables

ei :=[ei,1, . . . , ei,n]>

:=
∑
j∈Ni

aij(xi,1 − xj,1) + bi(xi,1 − xd), (3)

for i ∈ N , which will define the subsequent control design.
In order to solve the asymptotic consensus problem, we

further need the following assumptions:
Assumption 4: The graph G is connected and there exists

at least one i ∈ N such that bi = 1.
Assumption 5: It holds that fi(xd, xi,2, zi, t) = 0, for all

xi,2 ∈ Rn, zi ∈ Rnz , t ∈ R≥0, i ∈ N .
Assumption 4 implies that H = (L + B) ⊗ In is an

irreducibly diagonally dominant M-matrix [20]. An M-matrix
is a square matrix having its off-diagonal entries non-positive
and all principal minors nonnegative; thus H is positive
definite. Assumption 5 guarantees the existence of an open-
loop equilibrium point at the goal configuration xd. Such
an equilibrium is necessary since the drift term fi(·) is
state-dependent and time-varying and cannot be accurately
cancelled or compensated. At the same time, each agent’s
control input ui is smooth and it is therefore expected to
vanish at xd.

By stacking all ei and using (3) and (2), one obtains

e := [e>1 , . . . , e
>
N ]> = Hδ (4)

where δ := [δ>1 , . . . , δ
>
N ]> ∈ RNn. Therefore, since H =

(L + B) ⊗ In and L + B is positive definite owing to
Assumption 4, we conclude that

‖δ‖ ≤ ‖e‖
λmin(L+ B)

. (5)

Therefore, the objective limt→∞ δi(t) = 0 can be implicitly
achieved by guaranteeing limt→∞ ei(t) = 0, for al i ∈ N .
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III. MAIN RESULTS
We introduce a smooth version of Multi-Agent Barrier In-

tegral Control (MAS-BRIC), which is an adaptation of BRIC
developed for single-agent systems in [19]. BRIC consists of
two main components: a reciprocal barrier term with respect
to a set boundary, which establishes the boundedness of the
multi-agent states and errors ei(t), and an integral term that
guarantees asymptotic convergence of these errors to zero.
BRIC was originally developed in our previous works [16],
[17] for single and multi-agent systems, respectively, using
discontinuous feedback. The scheme developed in this paper
consists of smooth feedback.

We now describe the proposed BRIC algorithm. Let pos-
itive constants Ri,k > 0 such that |ei,k(0)| < Ri,k for all
i ∈ N , k ∈ {1, . . . , n}, and consider the transformation
χi(ei) := [χi,1(ei,1), . . . , χi,n(ei,n)]>, with

χi,k(ei,k) := ln

(
1+

ei,k
Ri,k

1−
ei,k
Ri,k

)
(6)

as well as its gradient Ji(ei) := diag{[Ji,k(ei,k)]i∈N }, with

Ji,k(ei,k) :=
2R2

i,k

R2
i,k − e2

i,k

(7)

for all i ∈ N , k ∈ {1, . . . , n}. Note that χi,k is an
increasing function of ei,k and it satisfies χi,k(0) = 0
and limei,k→±Ri,k

χi,k(evi,k) = ±∞, for all i ∈ N , k ∈
{1, . . . , n}. Further note that Ji,k(ei,k) ≥ 2 for all |ei,k| <
Ri,k, i ∈ N , k ∈ {1, . . . , n}.

We next design the reference signals

vi := −ki,1R−1
i Ji(ei)χi(ei) (8)

where Ri = diag{[Ri,k]k∈{1,...,n}}, and ki,1 are constant
positive gains, and define the associated errors

evi := [evi,1 , . . . , evi,n ]> := xi,2 − vi, (9)

for all i ∈ N . Let then positive constants Rvi,k >
0 such that |evi,k(0)| < Rvi,k for all i ∈ N , k ∈
{1, . . . , n}, and consider the transformation χvi(evi) :=
[χvi,1(evi,1), . . . , χvi,n(evi,n)]>, with

χvi,k(evi,k) := ln

 1+
evi,k
Rvi,k

1−
evi,k
Rvi,k

 (10)

and its gradient Jvi(evi) := diag{[Jvi,k(evi,k)]i∈N }, with

Jvi,k(evi,k) :=
2R2

vi,k

R2
vi,k
− e2

vi,k

(11)

for i ∈ N , k ∈ {1, . . . , n}. Similar to (6), (7), χvi,k is an
increasing function of evi,k and it satisfies χvi,k(0) = 0 and
limevi,k→±Rvi,k

χvi,k(evi,k) = ±∞, while Jvi,k(evi,k) ≥ 2

for all |evi,k | < Rvi,k , i ∈ N , k ∈ {1, . . . , n}.
We finally design the MAS-BRIC law as

ui = −
(
ki,2 + ki,3

∫ t

0

hi(evi(τ))dτ
)
R−1
vi Jvi(evi)χvi(evi)

(12)

where hi(evi) := ‖Jvi(evi)χvi(evi)‖2, Rvi :=
diag{[Rvi,k ]k∈{1,...,n}}, and ki,2, ki,3 are positive constant
gains, for all i ∈ N .

Remark 1: The proposed control scheme does not use any
information from the system’s dynamics fi(·) and gi(·) and
does not employ any approximation schemes, such as neural
networks. Intuitively, the proposed MAS-BRIC framework
employs the reciprocal barrier-like terms in (6) and (10) to
guarantee the boundedness of the errors ei,k and evi,k in the
domains defined by Ri,k and Rvi,k , respectively, i ∈ N ,
k ∈ {1, . . . , n}, similar to funnel-based control [14], [17].
Consequently, the unknown dynamic terms fi(·) and gi(·) are
also bounded due to their continuity properties. The integral
term in (12) guarantees then their implicit compensation,
leading to asymptotic convergence of ei(t) and evi(t) to
zero, for all i ∈ N . Further note that, unlike our previous
works [16], [17], the control protocol (6)-(12) consists of
smooth functions of the multi-agent states. Additionally,
as will be shown in the sequel, the asymptotic consensus
guarantees of the proposed BRIC protocol hold from all
initial conditions satisfying |ei,k(0)| < Ri,k and |evi,k(0)| <
Rvi,k , i ∈ N , k ∈ {1, . . . , n}, resulting in a semi-global
protocol. Nevertheless, the constants Ri,k and Rvi,k can
be always chosen to satisfy the aforementioned conditions,
given the initial conditions, resulting in a practically global
control scheme. Finally, note that each agent uses only local
information from its neighbours to compute (8) and (12),
illustrating the distributed nature of the algorithm.

The theoretical guarantees of the proposed MAS BRIC
protocol are given in the next theorem.

Theorem 1: Consider a multi-agent system with unknown
dynamics (1). Under Assumptions 1-5, the distributed control
algorithm (6)-(12) guarantees robust asymptotic multi-agent
consensus, i.e., limt→∞(xi,1(t)− xj,1(t)) = 0 for all i, j ∈
N with i 6= j, and limt→∞ xi,1(t) = xd, for all i ∈ N as
well as the boundedness of all closed-loop signals, for t ≥ 0.

Proof: We first introduce the stacked-vector notation
that is necessary for the subsequent analysis:

x̄1 := [x>1,1, . . . , xN,1]>, x̄2 := [x>1,2, . . . , xN,2]>

x := [x>1 , . . . , xN ]>, z := [z>1 , . . . , z
>
N ]>

v := [v>1 , . . . , v
>
N ]>, e := [e>1 , . . . , e

>
N ]>

ev := [e>v1 , . . . , e
>
vN ]>, u := [u>1 , . . . , u

>
N ]>

f := [f>1 , . . . , f
>
N ]>, fz := [f>z1 , . . . , f

>
zN ]>

χ := [χ>1 , . . . , χ
>
N ]>, χv := [χ>v1 , . . . , χ

>
vN ]>

g := diag{g1, . . . , gN}, R := diag{R1, . . . , RN}
Rv := diag{Rv1 , . . . , Rv1}, J := diag{J1, . . . , JN}
Jv := diag{Jv1 , . . . , JvN }, K1 := diag{[ki,1]i∈N } ⊗ In

Next, we show that ‖e‖ and ‖ev‖ are bounded by ‖Jχ‖
and ‖Jvχv‖, respectively, which will be useful in the fol-
lowing. Towards that end, consider the function w : R→ R
with w(y) = y − exp(y)−1

exp(y)+1 . It is easy to prove that w(y) is
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increasing, for all y ∈ R. Indeed, its derivative is

w(y)′ = 1− 2 exp(y)

(exp(y) + 1)2
=

exp(y)2 + 1

(exp(y) + 1)2
,

which is positive for all y. Therefore, it holds that |w(y)| ≥
|w(0)| = 0, for all y ∈ R. In view of (6), (10), we obtain

ei,k = Ri,k
exp(χi,k)− 1

exp(χi,k) + 1

evi,k = Rvi,k
exp(χvi,k)− 1

exp(χvi,k) + 1
,

for all i ∈ N , k ∈ {1, . . . , n}. Therefore, it holds that
|ei,k| ≤ Ri,k|χi,k|, |evi,k | ≤ Rvi,k |χvi,k | and by noting
that Ji,k(ei,k) ≥ 2, Jvi,k(evi,k) ≥ 2 for all |ei,k| < Ri,k,
|evi,k | < Rvi,k , we conclude that |ei,k| ≤ Ri,k|Ji,kχi,k|,
|evi,k | ≤ Rvi,k |Jvi,kχvi,k | for all i ∈ N , k ∈ {1, . . . , n}.
Hence, it holds that

‖e‖ ≤ R̄‖Jχ‖ (13a)
‖ev‖ ≤ R̄v‖Jvχv‖ (13b)

for all e and ev satisfying |ei,k| < Ri,k, |evi,k | < Rvi,k ,
i ∈ N , k ∈ {1, . . . , n}, and we use R̄ := maxi,k{Ri,k},
R̄v := maxi,k{Rvi,k}.

The multi-agent dynamics (1) can be compactly written as

˙̄x1 = x̄2 (14a)
˙̄x2 = f(x̄1, x̄2, z, t) + g(x̄1, x̄2, z, t)u(x, t) (14b)
ż = fz(x̄1, x̄2, z, t) (14c)

By further denoting ζ := [x̄>1 , x̄
>
2 , z

>]> ∈ R2Nn+Nnz , we
can write (14) as ζ̇ = fζ(ζ, t). Additionally, consider the
nonempty and open set

Ω := {ζ ∈ R2Nn+Nnz :|ei,k| < Ri,k, |evi,k | < Rvi,k ,

∀i ∈ N , k ∈ {1, . . . , n}} (15)

and note that ζ(0) ∈ Ω. The closed-loop dynamic function
fζ(ζ, t) is locally Lipschitz in ζ in the set {ζ ∈ R2Nn+nz :
(ζ, t) ∈ Ω} for every fixed t ≥ 0, and continuous in t in the
set {t ≥ 0 : (ζ, t) ∈ Ω} for every fixed ζ ∈ R2Nn+Nnz .
Therefore, according to [21, Theorem 2.1.1], there exists
a positive time instant tmax and a solution ζ(t) to (14)
satisfying ζ(t) ∈ Ω, for all t ∈ [0, tmax), which further
implies that |ei,k(t)| < Ri,k, |evi,k(t)| < Rvi,k for all
t ∈ [0, tmax). From (5), we further conclude that ‖x̄1(t)‖ <
λmin(H)−1

√
NnR̄+

√
N‖xd‖, for all t ∈ [0, tmax).

Let now the function V1 = 1
2χ
>K1χ, which is well

defined for t ∈ [0, tmax). By differentiating V1 along the
solutions of (14), and using (4), x̄2 = ev + v, and v =
−K1R

−1Jχ from (8), V̇ becomes

V̇1 = −χ>K1JR
−1HK1R

−1Jχ+ χ>K1JR
−1Hev

≤ −λ̃‖Jχ‖2 + ‖Jχ‖F1 (16)

where λ̃ := λmin(R−1K1HK1R
−1), and F1 is a constant

independent of tmax satisfying F1 ≥ ‖K1JR
−1Hev‖ for all

t ∈ [0, tmax). Note that λ̃ is positive due to Assumption 4.

Therefore, we conclude that V̇1 < 0 when ‖Jχ‖ > F1

λ̃
. Since

Ji,k(ei,k) ≥ 2 for all t ∈ [0, tmax), we infer [22, Theorem
4.18] to conclude the boundedness of χ(e(t)) as ‖χ(e(t))‖ ≤
χ̄ for all t ∈ [0, tmax), where χ̄ is a positive constant.
Therefore, by inverting (6), we conclude that |ei,k(t)| =

Ri,k

∣∣∣ exp(χi,k)−1
exp(χi,k)+1

∣∣∣ ≤ Ri,kχ̃ := Ri,k

∣∣∣ exp(χ̄)−1
exp(χ̄)+1

∣∣∣ < Ri,k for
all t ∈ [0, tmax), i ∈ N , k ∈ {1, . . . , n}. Similarly, we
conclude from (7) that 2 ≤ Ji,k(ei,k(t)) ≤ J̄i,k := 2

1−χ̃2

for t ∈ [0, tmax), i ∈ N , k ∈ {1, . . . , n}. From (8), we
further conclude the boundedness of the reference signals
v(t) as ‖v(t)‖ ≤ v̄ as well as of ‖x̄2‖ = ‖v(t) + ev(t)‖ ≤
v̄ +
√
NnR̄v for all t ∈ [0, tmax).

Next, we show that v̇ can be bounded by terms containing
‖Jχ‖ and ‖Jvχv‖. From (8), we obtain that

v̇ =−K1R
−1J̇χ−K1R

−1Jχ̇

≤‖K1R
−1‖‖J̇‖‖χ‖ −K1R

−1J2R−1Hx̄2

≤‖K1R
−1‖‖J̇‖‖χ‖+K1R

−1J2R−1HK1R
−1Jχ

−K1R
−1J2R−1Hev

By differentiating Ji,k and using the aforementioned bounds
for ei,k and Ji,k, we can obtain bounds for J̇i,k, for i ∈ N ,
k ∈ {1, . . . , n}. By further using the fact that Ji,k ≥ 2 and
Jvi,k ≥ 2 for all t ∈ [0, tmax), i ∈ N , k ∈ {1, . . . , n} as
well as (13), we can bound v̇ as

v̇ ≤ β‖Jχ‖+ βv‖Jvχv‖ (17)

for all t ∈ [0, tmax) and positive constants β, βv .
Next, we show the boundedness of χv and the asymptotic

convergence of χ(e(t)) and χv(ev(t)) to zero. Let

d̂i := ki,3

∫ t

0

‖Jvi(evi(τ))χvi(evi(τ))‖2dτ

and the difference vectors d̃i := d̂i−D for all i ∈ N , where
D is a constant to be defined later.

Consider now the candidate Lyapunov function

V = V1 +
1

2g
‖χv‖2 +

∑
i∈N

1

2ki,3
d̃2
i , (18)

where g := mini∈N {λmin{R−1
vi gi(xi, zi, t)R

−1
vi }}. Note that

g is positive due to Assumption 2. By differentiating V and
using (16), we obtain

V̇ ≤− λ̃‖Jχ‖2 + χ>K1JR
−1Hev +

∑
i∈N

1

ki,3
d̃i

˙̂
di

+
1

g
χ>v JvR

−1
v (f(x, z, t) + g(x, z, t)u− v̇)

Let now µ = ‖K1R
−1H‖. By completing the squares and

using (13), we obtain for the second term:

χ>K1JR
−1Hev ≤ µ‖Jχ‖‖ev‖ ≤

µα

2
‖Jχ‖2 +

µR̄

2α
‖Jvχv‖2

for a positive constant α.
Next, Assumption 3 and the boundedness of x(t) imply

that z(t) is also bounded for all for [0, tmax). Hence, the
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continuity of f(·) (see Assumption 1) implies the bound-
edness of f(x̄1(t), x̄2(t), z(t), t) for [0, tmax) by a bound
independent of tmax. Additionally, in view of Assumption
5, it holds that f(x̄d, x̄2, z, t) = 0, where we use x̄d :=
[x>d , . . . , x

>
d ]> ∈ RNn. By further using (13), (4), and the

positive definiteness of H , one obtains that

χ>v JvR
−1
v f(x̄1, x̄2, z, t) ≤ Lf‖R−1

v ‖‖x̄1 − x̄d‖‖Jvχv‖
≤ Lf‖R−1

v ‖‖H−1‖‖e‖‖Jvχv‖
≤ µvR̄v‖Jχ‖‖Jvχv‖

where µv := Lf‖R−1
v ‖‖H−1‖, and Lf is the Lipschitz

constant of f(·) in Ω. By completing the squares, we obtain

µvR̄v‖Jχ‖‖Jvχv‖ ≤
µvαvR̄v

2
‖Jχ‖2 +

µvR̄v
2αv

‖Jvχv‖2

for a positive constant αv . Finally, in view of (17), we obtain

1
gχ
>
v JvR

−1
v v̇ ≤ β

g ‖R
−1
v ‖Jχ‖‖Jvχv‖+ βv

g ‖R
−1
v ‖‖Jvχv‖2

and by completing the squares:

1
gχ
>
v JvR

−1
v v̇ ≤βγ‖R

−1
v ‖

2g
‖Jχ‖2

+ ‖R−1
v ‖

(
βv
g

+
β

2γg

)
‖Jvχv‖2

for a positive constant γ. Consequently, V̇ becomes

V̇ ≤− Λv‖Jχ‖2 +D‖Jvχv‖2 +
∑
i∈N

1

ki,3
d̃i

˙̂
di

−
∑
i∈N

1

g
(ki,2 + d̂i)χ

>
viJviR

−1
vi giR

−1
vi Jviχvi

for [0, tmax), where

Λv :=λ̃− µα

2
− µvαvR̄v

2
− βγ‖R−1

v ‖
2g

D :=
1

g

[
µR̄g

2α
+
µvR̄v
2αv

+ ‖R−1
v ‖

(
βv
g

+
β

2γ

)]
We choose the constants α, αv , and γ small enough so that
Λv > 0. Note that these constants are independent form
from the gains ki,1, ki,2, and ki,3 of the control scheme and
are introduced for analysis purposes. Next, we observe that
d̂i(t) is non-negative, for all i ∈ N and [0, tmax), and since
g = mini∈N {λmin{R−1

vi gi(xi, zi, t)R
−1
vi }}, we obtain

V̇ ≤− Λv‖Jχ‖2 +D‖Jvχv‖2 −
∑
i∈N

(ki,2 + d̂i)‖Jviχvi‖2

+
∑
i∈N

d̃i‖Jviχvi‖2

for all [0, tmax). By further observing that D‖Jvχv‖2 =
D
∑
i∈N ‖Jviχvi‖2 and using the fact that d̃i = d̂i − D,

for all i ∈ N , we finally obtain

V̇ ≤− Λv‖Jχ‖2 −
∑
i∈N

ki,2‖Jviχvi‖2 ≤ 0

TABLE I
INITIAL CONDITIONS AND PARAMETERS.

Agent 1 2 3 4 5
xi,1(0) (-10.4,-7.4) (-3.8,-4.8) (-7.6,0.8) (-13.2,0) (-10.3,-0.5)
mi 0.5 0.5 0.1 0.9 0.5
Ad,i 0.1 0.4 0.6 0.6 0.4
ωi 0.5 0.1 0.9 0.9 0.8
φi 0.6 0.7 0.9 0.8 0.1
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Fig. 1. The evolution of ei(t) (left) and evi (right) of the simulations.

implying that V (t) ≤ V (0), for all t ∈ [0, tmax). Therefore,
we conclude that ‖χv(ev(t))‖ ≤ χ̄v :=

√
2gV (0), and |d̃i|

≤ d̄i :=
√

2ki,3V (0) for all i ∈ N and t ∈ [0, tmax), which
proves the boundedness of u(x(t), t). Further, inverting (10)
leads to evi,k(t) ≤ ēv := Rvi,k

exp(χ̄v)−1
exp(χ̄:v)+1 < Rvi,k t ∈

[0, tmax), i ∈ N , k ∈ {1, . . . , n}. Hence, it holds that ζ(t) ∈
Ω̄, where Ω̄ is a compact subset of Ω, defined in (15), leading
to tmax =∞ ([21, Theorem 2.1.4]). Therefore, V has a finite
limit limt→∞ V (t). By differentiating V̇ and using (6), (10),
and the boundedness of χ(e(t)), χv(ev(t)), and d̃i(t), i ∈ N ,
we conclude that V̈ (t) is bounded for all t ≥ 0, which
implies the uniform continuity of V̇ . Therefore, Barbalat’s
lemma [22, Lemma 8.2] dictates that limt→∞ V̇ (t) = 0, i.e.,
limt→∞ χi,k(ei,k(t)) = limt→∞ χvi,k(evi,k(t)) = 0. Since
χi,k(ei,k) and χvi,k(evi,k) are increasing functions of ei,k
and evi,k , respectively, and χi,k(0) = 0 and χvi,k(0) = 0,
we conclude that limt→∞ ei,k(t) = limt→∞ evi,k(t) = 0, for
all i ∈ N , k ∈ {1, . . . , n}, concluding the proof.

Remark 2: Note that the correctness of Theorem 1 does
not rely on any boundedness assumptions or growth con-
ditions for the unknown dynamic terms fi and gi, i ∈ N .
These are proven bounded due to the barrier terms of (8)-
(12) and hence appropriately compensated by the integral
term of (12). Note further that no gain tuning is needed to
obtain asymptotic convergence of the consensus errors. Nev-
ertheless, such tuning might prove useful in real scenarios to
limit the control inputs within the feasible range that can be
produced from the respective actuators.

IV. SIMULATION RESULTS

We perform simulation studies to illustrate the proposed
MAS-BRIC scheme. We consider the agent dynamics (1)
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Fig. 2. The evolution of d̂i(t) (left) and ui(t9 (right) of the simulations.

with n = 2. We choose the dynamic terms as fi(·) =
sin(‖xi,1 − xd‖t)Fi(·)xi,2, where Fi = [Fi,j,`]j,`∈{1,2} with

Fi,1,1 =−mixi,2,2 −Ad,i sin(ωit)

Fi,1,2 =mi(xi,2,1 + xi,2,2)

Fi,2,1 =xi,2,2Ad,i cos(ωit+ φi)

Fi,2,2 =0

and gi(·) = midiag{0.5, 1.4}, for all i ∈ N . We first
consider N = 5 agents with xd = [−3, 2.24]>, graph edge
set E = {(1, 2), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5)}, and
b1 = b4 = 0, b2 = b3 = b5 = 1. The initial conditions
xi,1(0) and parameters of fi(·) can be found in Table I, while
we set xi,2(0) = [0, 0]>, for all i ∈ N . For the execution of
the BRIC scheme (8)-(12), we choose Ri,k = ‖ei(0)‖ + 2
and Rvi,k = ‖evi(0)‖+ 2, for all k ∈ {1, 2}, i ∈ N , and the
control gains as ki,1 = ki,2 = 3, ki,3 = 0.1, for all i ∈ N .

The results are depicted in Figs. 1 and 2 for t = 200
seconds. In particular, Fig. 1 depicts the errors ei(t) and
evi(t), respectively, which are shown to converge to zero, for
all i ∈ {1, . . . , 5}; Fig. 2 shows the evolution of the integral
terms d̂i = ki,3

∫ t
0
‖Jviχvi‖2dτ and control inputs ui(t) for

i ∈ {1, . . . , 5}. It can be concluded that the results verify the
theoretical analysis regarding asymptotic convergence of the
consensus errors to zero.

V. CONCLUSION AND FUTURE WORK
This paper presents smooth multi-agent Barrier Integral

Control (BRIC), a distributed control algorithm that guar-
antees asymptotic consensus for a class of 2nd-order multi-
agent systems with unknown, nonlinear dynamics. The al-
gorithm relies on the novel integration of reciprocal barrier
functions and adaptive control in order to drive the con-
sensus errors to zero, without using any information from
the agents’ dynamic terms. Future efforts will be devoted
towards extending the proposed scheme to more general
systems, directed graphs, and controllability relaxations.
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