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Abstract— The control barrier function (CBF) framework is
a powerful tool for safe controller design and safety analysis.
Given a dynamical system and a CBF, the system is safe if
the CBF-induced constraints are satisfied for every state inside
an invariant set, which is a subset of the safe set. In this
paper we propose a safety verification algorithm for networked
nonlinear multi-agent systems. In our proposed algorithm, we
independently sample scenarios from the invariant set, and
subsequently quantify safety for the multi-agent system by
solving a scenario program in a distributed manner. Both the
scenario sampling and safety verification algorithms are fully
distributed. The efficacy of our algorithm is demonstrated by
an example on multi-robot collision avoidance.

I. INTRODUCTION

Safety for dynamical systems is a property that requires
the system state to remain within a safe set for all time. This
property is of importance in various applications, including
collision avoidance [2], [3], vehicle platooning [4], [5], and
vehicle merging control [6]. For a designed controller, vali-
dating safety for the dynamical system is naturally important.
In a single-agent system, the agent can evaluate the system’s
behaviour to assess the risk of being unsafe under the
employed control input. For a multi-agent safety verification
problem, cooperation among agents is essential as safety
involves multiple agents.

Over the past decade, there has been considerable attention
focused on safety verification. Given a dynamical system
and a safe set, the goal is to verify safety with a well-posed
algorithm. There are several ways to formulate and solve
this problem. A reach-avoid game can be formulated and
solved to determine the set of initial conditions resulting
in trajectories that reach the target set without entering
the unsafe set [7]–[9]. Thus, safety verification is a part
of reachability analysis. The challenge lies in solving the
Hamilton-Jacobi Partial Differential Equation underlying the
problem.

To address this issue, the barrier certificates method was
proposed within a convex programming framework [10],
[11]. This method identifies an invariant set inside the safe
set that system trajectories cannot escape from, thus ensuring
safety. Numerical methods using barrier certificates propose
sum-of-squares (SOS) programs, which are equivalent to
semi-definite programs [12], [13]. However, in real-world
applications, the system model and control input may not be
precisely known or may be unknown. Handling uncertainties
is arduous for these methods.
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Another emerging technique for safety in control systems
is the Control Barrier Function (CBF) approach [14]. By
regulating the inner product of the CBF derivative and the
vector field of the controlled system, safety is rigorously
guaranteed at any time. In other words, if the CBF condition
holds for every state in the invariant set, the system is
safe. Safety can be verified by checking the CBF condition
for states sampled from the invariant set to obtain a more
tractable computation. This methodology lies in the scope of
the scenario approach, [15]–[20].

The main contribution of this paper is that it proposes a
distributed safety verification algorithm, which addresses the
problem of certifying safety for a multi-agent system. Safety
is quantified by means of CBFs, which are used to detect
violations of safety constraints. A scenario-based verification
algorithm is proposed to provide a probabilistic quantifi-
cation of safety. We also propose a sequential sampling
algorithm to sample scenarios efficiently in a distributed
fashion. We extend [19, Theorem 1] to a multi-agent setting
and establish a tighter upper bound on the probability of
being unsafe. The safety verification program is shown to be
amenable to parallelization.

Section II presents necessary preliminaries for the pa-
per. Section III presents the main results, which include
a scenario-based safety verification algorithm, a sequential
scenario sampling algorithm and the probabilistic result.
Section IV demonstrates the safety verification algorithm on
a multi-robot system collision avoidance case study using a
standard distributed safe controller design algorithm. Section
V concludes the paper and provides some directions for
future research.

II. PRELIMINARIES

A. Notations

R, RN , R+ denote the sets of one-dimensional, N -
dimensional and nonnegative real numbers, respectively. N
is the set of natural numbers. A continuous function α(·) :
(−b, a) → (−∞,+∞) is said to be an extended class-K
function for positive a and b, if it is strictly increasing and
α(0) = 0. G = (V, E) denotes a graph with a nodes set V
and an edge set E . Throughout the paper S is used for a safe
set, U is denotes an input constraint set, and B is used for an
invariant set. Boldface symbols are used as stacked vectors
for vector elements, e.g., x = [x⊤

1 , . . . , x
⊤
N ]⊤. Specifically,

0 is vector whose elements are all zero, and I is an identity
matrix, with their dimensions being clear from the context.
For a set K, |K| denotes its cardinality. For a function
s(x) : Rn → R, we use the calligraphic font to represent the
corresponding zero-super level set, i.e., S := {x|s(x) ≥ 0}.
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B. Control Barrier Functions

Consider a nonlinear control-affine system

ẋ = f(x) + g(x)u, (1)

with x(t) ∈ Rn, u(t) ∈ U ⊂ Rm, f(x) : Rn → Rm, and
g(x) : Rn → Rn×m. Both f and g are further assumed
to be Lipschitz continuous. Defining the solution of (1) to
be x(t, x0), where x0 = x(0) represents the initial condition
and t denotes time, our goal is to verify safety for the closed-
loop system ẋ = f(x) + g(x)u(x). For a trajectory starting
from x0, safety requires x(t, x0) ∈ S,∀t ≥ 0, where S is a
predefined safe set.

Control barrier functions constitute an extension to barrier
certificates [10] for safety verification and controller design.
It has been revealed in these papers that safety is closely
related to the notion of invariance.

Definition 1. A set B ⊂ Rn is said to be invariant with
respect to vector field (1), if for any x0 ∈ B, there exists
u ∈ U such that x(t, x0) ∈ B.

The relationship between safety and invariance is demon-
strated in the following lemma.

Lemma 1. If there exists an invariant B ⊆ S, system (1) is
safe for any x0 ∈ B.

Definition 2. For the control-affine dynamical system (1), a
continuously differentiable function b(·) : Rn → R is said to
be a control barrier function for the set B, if there exists an
extended class-K function α(·) and a set C, where B ⊆ C ⊂
Rn, such that for any x ∈ C,

sup
u∈U

[Lfb(x) + Lgb(x)u+ α(b(x))] ≥ 0. (2)

Here Lfb(x) and Lgb(x) are Lie derivatives, which are
defined by Lfb(x) :=

∂b(x)
∂x f(x) and Lgb(x) :=

∂b(x)
∂x g(x),

respectively.

Lemma 2. [21] Consider a control barrier function b(x)
defined on C. Then for any x ∈ C, any u(x) ∈ Kcbf (x) will
render the set B invariant.

We note that the control barrier function b(x) does not
generally need to be the same function as s(x). The synthesis
problem is beyond the scope of this paper; readers are
referred to [22] for details.

C. Multi-agent Optimisation Problem

A distributed optimisation problem is the problem of
finding a global optimum for an optimisation problem over
a network of agents, where every agent has access to a
local decision variable, and agents are coupled through the
constraints.

Consider a networked system of N agents communicating
over a connected and undirected graph G, with nodes set
V = {1, . . . , N}, and edge set E such that {i, j} ∈ E if
agent j communicates with agent i. In addition to the pair-
wise interaction relationship, agents are also grouped in E
sub-networks. For each sub-network Ge, e = 1, . . . , E, the

set of agents inside it is denoted by Ve ⊆ V . We denote the
set of constraints that agent i participates in as Ci, with Ve =
{i|e ∈ Ci}. Ni is the set of neighboring agents for agent i.
The multi-agent distributed optimisation problem that needs
to be solved in a distributed manner can then be defined as

min
x

N∑
i=1

Ji(xi)

subject to xi ∈ Xi,∀i = 1, . . . , N,∑
k∈Ve

hke(xk) ≤ 0,∀e = 1, . . . , E,

(3)

where for all i = 1, . . . , N , xi ∈ Rdi for some di ∈ N. Also,
Ji(xi) : Rdi → R. For all k ∈ Ve, hke : Rdk → R stand
for the group constraints that agent k needs to satisfy. The
function hke(xk) is not necessarily the same for every k in
the same sub-network. An efficient distributed algorithm to
solve problem (3) is [23, Algorithm RSDD].

Algorithm 1 Distributed Optimisation Algorithm for agent
i [23, adopted from Algorithm RSDD]

Initialization Predefined λ0
il,∀l ∈ Ni ∩ Ve, ∀e ∈ Ci.

Output: Optimal solution x∗
i .

1: while not reaching convergence do
2: Receive λk

il from ∀l ∈ Ni ∩ Ve,∀e ∈ Ci.
3: Compute ((xk+1

i ,ρk+1
i ),µk+1

i ) as a primal-dual so-
lution of the following optimisation problem.

min
xi,ρi

Ji(xi)

subject to xi ∈ Xi,ρi ≥ 0,

hie(xi) +
∑

l∈Ni∩Ve

(λk
il − λk

li) ≤ 0,∀e ∈ Ci.

(4)

4: Receive µk+1
le from agent l ∈ Ni ∩ Ve.

5: Update λil by

λk+1
il = λk

il − γk(µk+1
ie − µk+1

le ). (5)

6: end while

D. Scenario Optimisation

Scenario optimisation is a data-driven robust optimisation
methodology where one aims at searching for an optimum
over uncertain sets. For the case where the uncertain sets are
continuous, and possibly non-convex or unknown, this kind
of optimisation problem is usually hard to solve with guar-
anteed robustness. The scenario approach, on the other hand,
proposes to solve the problem over finite empirical records,
named scenarios for a certain confidence of feasibility of
the optimal solution. An uncertain optimisation problem is
formulated as

min
x∈H

c⊤x

subject to x ∈ Xδ, for all δ ∈ ∆,
(6)
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where x ∈ Rn is a decision variable constrained by a
convex set H ⊂ Rn, c ∈ Rn is a constant vector. The
convex uncertain constraint set Xδ is parameterized by an
uncertain parameter δ, which is a random variable defined
on a probability space (∆,F ,P), where ∆ is a sample
space, F is an event space and P is a probability measure.
As discussed above, directly solving problem (6) involves
an infinite number of constraints for a continuous set ∆.
Alternatively, the scenario approach proposes to solve the
problem by enforcing the constraints only on scenarios.

The corresponding prototype convex scenario optimisation
problem is formulated as

min
x∈X

c⊤x

subject to x ∈
⋂

i=1,...,N

Xδi ,
(7)

where δi, i = 1, . . . , N are scenarios sampled indepen-
dently from the uncertain set ∆. The scenario optimisation
problem (7) is a convex optimisation problem which can
be solved efficiently. Clearly, the optimal solution satisfies
x∗
N ∈

⋂
i=1,...,N Xδi , but is not necessarily within Xδ for an

arbitrary new δ ∈ ∆.

III. DISTRIBUTED SAFETY VERIFICATION

This section presents a method to verify safety for a
multi-agent system in a distributed manner. We employ the
violation of the CBF constraints as a metric of the possibility
that the underlying system becomes unsafe. This verification
method is applicable to any type of time-invariant control
inputs and the CBF is considered only as a verification
criterion and not necessarily a control design principle.

Consider an N -agent system with the dynamics of the i-th
agent described by

ẋi = fi(xi) + gi(xi)ui, (8)

where xi(t) ∈ Xi ⊂ Rni denotes its state, ui ∈ Ui ⊂ Rmi

denotes its control input, while Xi and Ui are the state
space and control admissible set, respectively. The dynamics
fi(xi) : Rni → Rni and gi(xi) : Rni → Rni×Rmi are both
locally Lipchistz-continuous. Vector x = [x⊤

1 , . . . , x
⊤
N ]⊤

stacks the states of all systems, u = [u⊤
1 , . . . , u

⊤
N ]⊤ stacks

the control inputs, while f(x), g(x) stack the dynamics for
each agent. In this way, the system dynamics of the whole
multi-agent system can be described by ẋ = f(x) + g(x)u.

To maintain safety within each sub-network e, each agent
i can communicate and collaborate with its neighbors j ∈
Ni to ensure se(xe) ≥ 0, where se(·) ∈ R. The safe
set is Se := {x : se(xe) ≥ 0}. Correspondingly, CBFs
be(xe) are synthesized in advance for safety verification,
with the invariant set defined by Be := {xe : be(xe) ≥ 0}.
The overall invariant (safe) set is defined by the Cartesian
intersection of all the individual safe (invariant) sets, i.e.
B =

⋂E
e=1 Be, S =

⋂E
e=1 Se.

Based on these CBFs, the CBF conditions for safety at
state x are ∑

i∈Ve

−hie(x) ≤ 0,∀e = 1, . . . , E, (9)

where hie(x) =
∂be
∂xi

(fi(xi) + gi(xi)ui(x)) + αie(be). If (9)
holds for every x ∈ B, then we conclude that the system
is safe using Lemma 2. However, this is usually arduous to
validate if B is a set of non-zero measures, which contains
infinite number of states to be verified. To address this
problem, we propose to sample finite states for a tractable
verification. The CBF conditions (9) will be checked over
these realizations in a distributed manner.

A. Scenario Based Safety Verification

Consider an N -agent system (8) and an invariant set B.
Our goal is to verify whether x(t) ∈ B,∀x(0) ∈ B,∀t ≥ 0
for system (1), using a feedback controller u(x). The form
of u(x) is not necessarily known for our approach.

The scenario-based safety verification program is shown
as follows:

min
z≤0,ζ≥0

N∑
i=1

∑
e∈Ci

z2ie +M

N̄∑
r=1

ζ
(r)
ie

 (SC-Verification)

s.t.
∑
i∈Ve

hie(ui(x
(r))) ≤

∑
i∈Ve

(zie + ζ
(r)
ie ),

∀e = 1, . . . , E,∀r = 1, . . . , N̄ , (10)

where scenarios x(r) ∈ B, r = 1, . . . , N̄ are ex-
tracted according to some probability distribution to be
defined in the sequel. Throughout the section X̄ =
{x(1), . . . ,x(N̄)} denotes the set of scenarios, where x(r) =

[(x
(r)
1 )⊤, . . . , (x

(r)
N )⊤]⊤ ∈ R

∑N
i=1 ni , for r = 1, . . . , N̄ .

Relaxation variables ζ are introduced to ensure feasibility,
while M > 0 is a large enough penalty coefficient.

Program (SC-Verification) is a quadratic program, where
all the constraints are linear based on the samples. If for any
x ∈ B and corresponding control input u(x), all the CBF
constraints are satisfied, then ζ∗ = 0. Conversely, ζ∗ ̸= 0
represents a CBF constraint violation, and indicates that the
system is under a risk of being unsafe. A new set Z(B) for
optimal solution z∗ is defined as follows

z∗ ∈ Z(B)⇐⇒∑
i∈Ve

hie(ui(x)) ≤
∑
i∈Ve

z∗ie,∀e = 1, . . . , E,∀x ∈ B. (11)

Then Z(B) is constituted of N individual set Zi(B) as

Z(B) =
N⋂
i=1

Zi(B). (12)

The argument of Z and Zi is dropped in the sequel for
simplicity.
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B. Sampling the Scenarios

The scenarios are sampled independently from the in-
variant set B. For sampling we define a probability density
function π(x) associated with set B that satisfies:∫

B
π(x)dx = 1.

One typical choice of π(x) is to set it according to the
density of a uniform distribution, i.e., π(x) = πuni(x) =

1∫
B dx

. For the existence of πuni(x), we make an assumption
on B.

Assumption 1. B is bounded with non-zero Lebesgue mea-
sure.

Then, x can be sampled for N̄ times independently from
the distribution πuni(x). We note here that different proba-
bility distributions have minor impact on the final violation
results, interested readers are referred to [19, Section 3.1].
Although the uniform distribution here is well-defined, the
uncertain set B is defined implicitly as an intersection of
multiple individual invariant sets Be. Sampling a point from
the proposed uniform distribution can be difficult in practice
since each individual agent lacks a global sense to B. Here,
we provide a sequential algorithm to sample scenarios x(r),
r = 1, . . . , N̄ .

Algorithm 2 Scenarios Sampling Algorithm
Initialization Uncertain set B, failure times F = 0.
Output: Scenario x(r).

1: Sample x
(r)
1 from π1(x1).

2: for i = 2, . . . , N do
3: Construct a distribution πi({x(r)

1 , . . . , x
(r)
i−1};xi) fol-

lowing (13) (14).
4: if πi = 0 then
5: F ← F + 1.
6: go to i = i− F (i = 1 is step 1).
7: end if
8: Sample xr

i from πi({x(r)
1 , . . . , x

(r)
i−1};xi).

9: end for

The algorithm constructs the densities from which sam-
ples are extracted sequentially for each agent. We first
show the construction of πi({x(r)

1 , . . . , x
(r)
i−1};xi). Here

{x(r)
1 , . . . , x

(r)
i−1} are sampled according to the i-th density,

πi. To determine this, we first define the uncertain sets from
which samples are extracted for agent i with part of the states
of agents in the same sub-network Ge fixed.

B̃ie =
{
Xi, if ∃l ∈ Ve, such that l > i,

{xi ∈ Rni |bie(xi, {x(r)
l }) ≥ 0)}, otherwise.

(13)

We then have that B̃i =
⋂

e∈Ci

B̃ie. The parameters in (13) can

all be collected by local communication, since only states of
agents in the same sub-network are required. Note here B̃i
is possibly empty with some parameters {x(r)

1 , . . . , x
(r)
i−1}.

The distribution πi({x(r)
1 , . . . , x

(r)
i−1};xi) used in the step 3

of Algorithm 2 is a uniform distribution over B̃i, i.e.,

πi({x(r)
1 , . . . , x

(r)
i−1};xi) =

{
1∫

B̃i
dxi

, if B̃i ̸= ∅,
0, otherwise.

(14)

In step 1, the first scenario x
(r)
1 associated with Agent 1

is sampled from distribution π1(x1) = 1∫
X1

dx
, since now

there are no other agents involved to restrict the uncertain
set for agent 1. Then, the sampling-construction procedures
repeat sequentially from agent 2 to agent N . One case needs
additional attention, where πi = 0. This implies that B̃i = ∅.
There exists {x(r)

1 , . . . , x
(r)
i−1} such that B̃i ̸= ∅. Therefore, if

πi = 0 (Step 4), then go back to the sampling-construction
of agent i−F , F ̸= 1 is to avoid a deadlock on step i. The
deadlock happens when for given scenarios x

(r)
1 , . . . , x

(r)
i−2,

the uncertain set B̃i−1 and distribution πi−1 is such that for
any x

(r)
i−1 ∈ B̃i−1, B̃i = ∅. It is guaranteed that F ≤ i − 1

for i ≥ 2, since B̃1 = X1 ̸= ∅.

Proposition 1. Suppose Assumption 1 hold. The scenarios
x(r), r = 1, . . . , N̄ , are feasible, i.e. x(r) ∈ B, and
independent.

Proof. The feasibility result holds directly from the defini-
tion of every uncertain set B̃i in (13) from which x

(r)
i is

sampled. As a result, we have bie(x
(r)
i , {x(r)

k }) ≥ 0 for any
i = 1, . . . , N , e ∈ Ci, and k ∈ Ve. Therefore, x(r) ∈ B. x(r)

for r = 1, . . . , N̄ are independent since for r = 1, . . . , N̄ ,
x
(r)
1 are independently sampled from distribution π1.

We note here that the elements in x(r) are correlated, but
this will not influence the independence results in Proposition
1 since we seek independence across r.

C. Distributed Safety Verification

After sampling scenarios x(r), r = 1, . . . , N̄ using Algo-
rithm 2, we are at the stage of solving the safety verification
program (SC-Verification).

Suppose the local cost function Ji(zi, ζi), and constraint
function ĥie(zi, ζi) are

Ji(zi, ζi) =
∑
e∈Ci

z2ie +M

N̄∑
r=1

ζ
(r)
ie

 ,

ĥ
(r)
ie (zi, ζi) = hie(ui(x

(r)))− zie − ζ
(r)
ie , r = 1, . . . , N̄ .

(15)
Then Algorithm 1 can be applied to solve the distributed
scenario optimisation problem (SC-Verification). In the se-
quel, we use z∗ and ζ∗ to represent the optimal solution to
(SC-Verification), with scenarios x(r), r = 1, . . . , N̄ .

We then have the following theorem as the main result on
probabilistic safety.

Theorem 1. Suppose Assumption 1 hold. Choose βi ∈
(0, 1), i = 1, . . . , N , and set β =

∑N
i=1 βi. For i =

1, . . . , N , and 0 ≤ s∗i ≤ N̄ − 1, consider the polynomial
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equation in ti(
N̄
s∗i

)
t
N̄−s∗i
i − βi

2N̄

N̄−1∑
j=s∗i

(
j
s∗i

)
t
j−s∗i
i

− βi

6N̄

4N̄∑
j=N̄+1

(
j
s∗i

)
t
j−s∗i
i = 0,

(16)

while for s∗i = N̄ consider the polynomial equation

1− β

6N

4N̄∑
j=N̄+1

(
j
s∗i

)
tj−N̄
i = 0. (17)

For any i = 1, . . . , N , this equation has exactly two
solutions in [0,+∞) denoted by ti(s

∗
i ) and t̄i(s

∗
i ), where

ti(s
∗
i ) ≤ t̄(s∗i ). Let ϵ̄i(s

∗
i ) := 1 − ti(s

∗
i ), ϵ̄(s∗) =

min{
∑N

i=1 ϵ̄i(s
∗
i ), 1}. We then have that

PN̄ {P {x ∈ B : 0 /∈ Z} ≤ ϵ̄(s∗)} ≥ 1− β, (18)

where s∗i is the number of non-zero ζ
(r)∗
ie , e ∈ Ci.

Proof. See [1, Theorem 5].

The safety verification algorithm is shown in Algorithm
3. For initialization, agents need to sample N̄ independent
scenarios using Algorithm 2, and select a confidence level.
After collecting all the scenarios, agents solve the scenario
program (SC-Verification) locally using Algorithm 1. For
each agent, solving the verification program is to count the
number of violated CBF constraints over the scenarios. The
number of constraint violations is denoted by s∗i . The local
probabilistic result for the upper bound ϵi(s

∗
i ) is calculated

by every agent using Theorem 3. In the final step, agents
receive the upper bound ϵ̄j(s

∗
j ) and confidence parameter βj

from every j ∈ Ni, in order to obtain the safety verification
result for the entire system.

Algorithm 3 Distributed Safety Verification Algorithm

Initialization Sample N̄ scenarios x(r) using Algorithm
2, every agent selects a confidence βi

Output: The probabilistic result (18)
1: for every agent i do
2: Solve the scenario program (SC-Verification) locally

using Algorithm 1.
3: Calculate s∗i , which is the number of non-zero ζ∗ie, for

e ∈ Ci.
4: Calculate ϵ̄i(s

∗
i ) using Theorem 1.

5: Receive ϵ̄j(s
∗
j ) and βj from j ∈ Ni, compute ϵ̄(s∗) =∑N

i=1(ϵ̄i(s
∗
i )), β =

∑N
i=1 βi.

6: end for

IV. SIMULATION RESULTS

We evaluated the performance of our distributed safety
verification algorithm on a standard distributed safe con-
troller design algorithm [24], which is based on solving
parallel CBF-QP problems. The main idea of this algorithm

is to split the CBF constraints for every agent to acquire a
local computation. However, this direct split may result in
feasibility issues, especially for heterogeneous systems and
large-scale networked systems. We consider the same multi-
robot position swapping problem as in [24].

We consider a group of four robots with double integrator
dynamics[ .

pi.
vi

]
=

[
0 I2×2

0 0

]
︸ ︷︷ ︸

Ai

[
pi

vi

]
+

[
0

I2×2

]
︸ ︷︷ ︸

Bi

ai, (19)

where pi ∈ R2, vi ∈ R2 represent positions and velocities,
and ai ∈ R2 is the control input, representing accelerations.
The working space is restricted to be ||pi||∞ ≤ xmax,
||vi||∞ ≤ vmax

i , ||ai||∞ ≤ amax
i . Each robot is regarded

as a disk centered at pi with radius Di ∈ R+. The safety
certificate sij(pij ,vij) for collision avoidance between robot
i and j is defined by

sij(pij) = ||∆pij ||22 −Dij , (20)

where ∆pij = pi − pj , Dij = Di + Dj . Note here
that the system is heterogeneous as different robots have
different mobility. The control barrier function for invariance
certificates is then defined pair-wisely, as

bij(pij ,vij) =
√
2(amax

i + amax
j )(||∆pij ||22 −Dij)

+
∆p⊤

ij

||∆pij ||22
∆vij , (21)

where ∆vij = vi − vj . The function bij(pij ,vij) is guar-
anteed to be a CBF since when bij(pij ,vij) > 0, collision
can be avoided with a maximum braking acceleration amax

i +
amax
j applied to robots i and j. For i = 1, 2, amax

i = 1, while
for i = 3, 4, amax

i = 10, Dij = 0.3. At every given state
p,v, for agent i and j, the CBF-QP for controller design is
formulated by

min
ai,aj

||ai||2 + ||aj ||2

s.t. ḃij(pij ,vij) + αij(bij(pij ,vij)) ≥ 0,

||ai||∞ ≤ amax
i , ||aj ||∞ ≤ amax

j .

(22)

The centralized QP problem (22) is split into two problems

min
ai,ρ
||ai||2 +Mρ2

s.t.
∂bij

∂(pij ,vij)
Ai

[
pi

vi

]
+Biai +

αij(bij(pij ,vij))

2
≥ ρ,

||ai||∞ ≤ amax
i , ρ ≤ 0.

(23)

min
aj ,ρ
||aj ||2 +Mρ2

s.t.
∂bij

∂(pij ,vij)
Aj

[
pj

vj

]
+Bjaj +

αij(bij(pij ,vij))

2
≥ ρ,

||aj ||∞ ≤ amax
j , ρ ≤ 0,

(24)
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where ρ are non-positive relaxation variables, M is a large
enough penalty coefficient. Hopefully ρ is zero, such that
(22) holds with the controllers ai and aj solved by (23) and
(24). However, in our case amax

i ̸= amax
j , which may raise

a feasibility issue.
To verify the safety for this approach, we independently

sample 200 states [p,v] from the invariant set, which is⋂
i,j{pij ,vij : bij(pij ,vij) ≥ 0}. We also restrict the

working space to be xmax = 4, vmax = 3 to avoid the trivial
result that the robots are initialized to be far away. We sample
200 scenarios for safety verification, with every agent holds
a confidence parameter βi = 0.025, for i = 1, . . . , 4. s∗1 = 7,
s∗2 = 8, s∗3 = 7 and s∗4 = 6. Based on these information, we
obtain ϵ̄(s∗) = 0.3811 and 1−β = 0.9. Therefore, the safety
verification result is

PN̄{P{x ∈ B : 0 /∈ Z} ≤ 0.3811} ≥ 0.9. (25)

We then sample 100 groups of 200 scenarios to validate
the obtained result. The empirical cumulative distribution
function for the probability of safety violation is plotted
in Figure 1 by Monte-Carlo experiments. For each group,
we can calculate the number of violations for the violation
probability. Collecting these statistics for all the groups,
we can then calculate the empirical cumulative distribution
function for the violation probability. It can be observed that
the probability of P{x ∈ B : 0 /∈ Z} ≤ 0.3811 is close to 1,
which validates our obtained result.
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Fig. 1. Empirical cumulative distribution function for safety violation.

V. CONCLUSION

In this paper, we address the problem of safety verification
for a multi-agent networked system using control barrier
functions. We propose a scenario-based verification program
that can be solved by each agent. Scenarios are independently
sampled from the invariant set to evaluate safety. Our dis-
tributed safety verification program computes an upper bound
on the probability of being unsafe. We conduct simulations
to verify the safety of a classical distributed CBF-based
controller design algorithm. In future work, we will focus
on obtaining a tighter bound for the probability of being
unsafe, as well as studying how the choice of the class-K
function influences the result.
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