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Abstract

Given a switched system and a safe region that is a
subset of the state space, a state trajectory is safe if
the whole trajectory is within the safe region. The
safety-critical stability problem here is to determine the
safe initial domain that is the set of initial states with
safe trajectories under arbitrary switching. We prove
that the safe initial domain is of full dimension iff the
switched system is stable. Moreover, under the assump-
tion that the switched system is exponentially stable and
the safe region is regular, we present a computational
procedure to numerically characterize the safe initial
domain with the help of the newly introduced concept
of ‘cut-tail-points’. A numerical example is presented
to verify the effectiveness of the proposed scheme.

1. Introduction

A switched linear autonomous system is composed
by a finite set of linear forced-free subsystems and a
switching signal that coordinates the switching among
the subsystems. Though switched linear autonomous
systems are the simplest hybrid dynamical systems, the
analysis and design are shown to be extremely challeng-
ing. For stability analysis, while it had been established
that stability under arbitrary switching is equivalent to
the existence of a common Lyapunov function for all the
subsystems, the construction of such a Lyapunov func-
tion is NP hard [3, 9]. Other approaches, for instance,
the matrix measure approach [13, 18], the worst case
phase portrait method [4, 8], have been developed for
addressing stability of switched systems. The reader is
referred to the monographs [12, 19] and the references
therein.
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For complex dynamical systems, safety is an im-
portant pre-request in many practical scenarios. For ex-
ample, when parking a car we have to drive carefully in
a restricted physical space and with possible speed limit
constraints. During the last two decades, safety-critical
systems have been attracting much attention [11, 21].
The application fields include autonomous driving [17],
aircraft control [23] and robotic control [6]. From the
technical perspective, the barrier certificates approach,
the control barrier functions method, and the invari-
ance set approach have been developed [1, 2, 7]. For
switched and hybrid systems, extensive theoretical in-
vestigation with practical applications has been a hot
topic in recent years. For a class of hybrid systems, sys-
tem safety is equivalent to the safety of each mode and
the safety of the discrete transitions among the modes
[20]. In [16], the forward invariance set approach was
proposed for hybrid inclusions using barrier functions.
For a switched system with unsafe subsystems, it is
still possible to achieve safety via proper design of the
switching signal [15]. In the recent work [22], we inves-
tigated the safety-critical stabilization of switched linear
systems with designed switching signals, and presented
a constructive procedure for estimating the safe initial
domain, which is the set of initial states that admit safe
trajectories under properly designed switching.

For switched systems, the safety-critical stability
problem is challenging due to the fact that we have
few handy tools for addressing the problem. Indeed,
while the stability implies the existence of a common
Lyapunov function, yet we do not have a constructive
procedure for finding a common Lyapunov function,
even for planar systems. This means that the invari-
ance set approach is limited for stability and safety from
a constructive viewpoint. An alternative approach is
the spectral abscissa criterion for stability verification,
which is based on the fact that the exponential stabil-
ity of switched linear system is equivalent to the nega-
tive spectral abscissa of the set of subsystem matrices
[13, 14]. To further address the safety-critical stability
problem, we borrow from [22] the notion of safe initial
domain, which is the set of initial states with safe trajec-
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tories. We argue that the introduction of the safe initial
domain is more practically-oriented than the invariance
set approach because we do not care about invariance
in many practical scenarios like auto-parking. Our ob-
jective in this work is to provide a computational proce-
dure to approximate the safe initial domain under mild
assumptions.

The contribution of the work includes: (a) we es-
tablish that the safe initial domain is of full dimension
iff the switched system is stable; (b) a computational
procedure is developed for approximating the safe ini-
tial domain, and the ‘cut-tail-points’ method proposed
recently in [10] is utilized to reduce the computational
load; and (c) a motive example and an illustrative ex-
ample are presented to show the motivation and effec-
tiveness of the proposed approach.

2. Preliminaries

2.1. System Description

Let R be the set of real numbers. Given a positive
integer l, let l̄ be the set {1, . . . , l}. Co denotes the con-
vex hull of a set in Rn. For two sets G1 and G2, define

G1 −G2 = {g : g ∈ G1,g ̸∈ G2}.

A continuous-time switched linear autonomous
system is described by

ẋ(t) = Aσ(t)x(t), t ≥ t0, (1)

where x(t) ∈ Rn is the system state, σ(t) ∈ m̄ is the
switching signal, and Ai ∈ Rn×n, i ∈ m̄ are known real
constant matrices. Without loss of generality, we as-
sume that t0 = 0. Denote A = {A1, . . . ,Am}.

Let ϕ(t;x0,σ) denote the motion of system (1) at
time t starting from x(0) = x0 via switching signal σ . It
is clear that

ϕ(t;x0,σ) = Φ(t,σ)x0, (2)

where Φ(t,σ) is the state transfer matrix along switch-
ing signal σ . Let S be the set of well-posed switching
signals.

A switching path θ is a time-driven switching sig-
nal defined over [0,s), s ∈ [0,+∞), and its length is de-
fined to be |θ | = s. Let θ1 and θ2 be two switching
paths. The concatenation of θ1 and θ2 is defined to be

(θ1 ∧θ2)(t) =
{

θ1(t) t ∈ [0, |θ1|)
θ2(t −|θ1|) t ∈ [|θ1|, |θ1|+ |θ2|).

The concatenation of multiple paths could be defined in
a same way. Suppose that P1 and P2 are two sets of
switching paths. Define their multiplication by

P1 ⊙P2 = {p1 ∧ p2 : p1 ∈ P1, p2 ∈ P2}.

2.2. A Motive Example

Let us examine the two-form planar switched sys-
tem (1) with

A1 =

[
0 1
−1 −1

]
, A2 =

[
0 1

−10 −4

]
,

where both A1 and A2 are Hurwitz stable. By the phase
portrait analysis (Cf. [4, 5]), we could compute the
worst-trajectory in the phase plane, which shows that
the switched system is exponentially stable under arbi-
trary switching. On the other hand, it could be veri-
fied that the switched system does not admit a common
quadratic Lyapunov function. In fact, we do not have
a systematic approach for constructing a common Lya-
punov function for planar switched systems.

Suppose that the unit ball is the safe region, and we
need to determine the set of initial states with safe tra-
jectories under arbitrary switching. Once again, by the
computation of worse-case trajectory, we could char-
acterize the safe initial domain, as depicted in Figure
1. Note that the construction of a common Lyapunov
function is not needed here, and the estimation of the
safe initial domain is exact. This shows the advantage
of safe initial domain analysis against the set invariance
approach, which is not available for the example.
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Figure 1. The safe initial domain vs safe region
(unit ball)

2.3. Problem Formulation

Let X ⊂ Rn be a compact region. The region is
of full dimension (around the initial state) in the sense
that it contains the origin as an interior point. Denote
Xbd to be the set of boundary points of X , and Xint
to be the set of interior points of X . We call X the
safe region. A system trajectory is said to be safe, if the
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whole trajectory is inside the set region. The safe initial
domain is defined by

X 0 = {x : ϕ(t;x,σ) ∈ X , ∀ σ ∈ S , t ≥ 0}. (3)

It is clear that the safe initial domain X 0 is a subset of
the safe region X , and is compact.

The safety-critical stability problem is to character-
ize the safe initial domain for the switched system.

Remark 1 The problem is stability analysis with safety
constraints. The formulation itself is more general
than the forward invariance framework in the literature.
Compared with the invariance set approach, the prob-
lem here is more physically and practically oriented.

2.4. Technical Preparations

Definition 1 Switched system (1) is said to be

a) stable, if there is a class K function φ such that

∥ϕ(t;x,σ)∥ ≤ φ(∥x∥), ∀ t ≥ 0, x ∈ Rn, σ ∈ S ;

b) exponentially stable, if there are positive real
numbers α and β , such that

∥ϕ(t;x,σ)∥ ≤ βe−αt∥x∥,∀ t ≥ 0,x ∈ Rn,σ ∈ S ;

and

c) marginally stable if it is stable but is not exponen-
tially stable.

For any norm ν in Rn, there is an induced matrix
measure

µν(A) = max
ν(x)=1

lim
s↘0

ν(x+ sAx)−ν(x)
s

, ∀ A ∈ Rn×n.

Furthermore, define

µν(A ) = max
i∈m̄

µν(Ai)

and

µ∗(A ) = inf
ν∈Γ

µν(A ),

where Γ is the set of norms over Rn. When there is a
matrix measure µ0 with µ0(A ) = µ∗(A ), we call it an
extreme measure.

Lemma 1 [19, Corollary 2.29] For switched system
(1), we have the following statements:

1) The system is exponentially stable iff µ∗(A )< 0.

2) The system is marginally stable iff µ∗(A ) = 0 and
it admits an extreme measure.

Suppose A is Hurwitz and x ∈ Rn. Define the con-
vex hull

G A
x = Co{eAtx, − eAtx, ∀ t ≥ 0}.

Definition 2 Time T > 0 is called a cut tail time for x
if for any t ≥ T , eAtx belongs to the relative interior of
G A

x .
Define Tcut(x) be the smallest cut tail time for x.

Lemma 2 [10] For all generic points of a Hurwitz ma-
trix A, the value Tcut(x) is the same and is the maximal
one among all values Tcut(x), x ∈ Rn.

According this lemma, for the convex hull of any
state trajectory of a stable linear system, the trajectory
within [0,Tcut ] is on the boundary and the trajectory
within (Tcut ,+∞) is in the interior.

3. Main Results

3.1. Basic Analysis

Proposition 1 0∈X 0
int iff the switched system is stable.

Proof: Suppose that the switched system is stable. It
follows from Lemma 1 that there is a norm ν with
µν(A ) ≤ 0. This implies that the state trajectory is al-
ways norm contractive w.r.t. the norm, i.e.,

ν(ϕ(t;x,σ))≤ ν(x), ∀ σ ∈ S , t ≥ 0. (4)

Let d = minx∈Xbd ν(x). It is clear that d > 0, and
Bν(d) ⊂ X , where Bν(d) is the ball centered at the
origin with radius d w.r.t. norm ν . As a result, we have

0 ∈ (Bν(d))int ⊂ X 0
int .

Conversely, suppose that 0 ∈ X 0
int . Let ∥ · ∥ be any

norm on Rn. Define

e = min{∥x∥ : x ∈ X 0
bd}.

It is clear that e > 0. Let L = d
e . By the definition of

safe initial domain, we have

∥ϕ(t;x,σ))∥ ≤ L∥x∥, ∀ σ ∈ S , t ≥ 0, (5)

which implies that the switched system is stable. �

3.2. Computational Procedure

From a computational viewpoint, the case of
marginal stability is not verifiable arithmetically. To
address the safety-critical problem in a computational
manner, it is natural to impose the following assump-
tion.
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Assumption 1 The switched system is exponentially
stable.

To induce a norm from the safe region, we further
impose the regularity as follows.

Assumption 2 X is convex, simply connected, and
origin symmetric.

Examples of such regions includes ellipsoids and
polytopes. Under Assumption 2, the safe region induces
a Minkowski function

∥x∥X = inf{α > 0 : x ∈ αX }, x ∈ Rn,

which is in fact a norm on Rn. Under this norm, we
have

x ∈ X ⇔∥x∥X ≤ 1.

That is, the safe region X is the unit ball with respect to
the norm, and the boundary set Xbd is the unit sphere.

Next, we discuss how to characterize the safe ini-
tial domain in a more concise manner. Suppose that we
have verified that the switched system is exponentially
stable with

∥ϕ(t;x,σ)∥X ≤ β0e−αt∥x∥X ,

∀ t ≥ 0, x ∈ Rn, σ ∈ S , (6)

where β0 ≥ 1 and α0 > 0 are known.
We fix ∥ · ∥X to be the vector norm and induced

matrix norm. For notational convenience, we drop the
subscript of the symbol. Denote

H +
1 = {x : ∥x∥= 1,xn ≥ 0},

which is the upper half unit sphere.
Define

r(x) = sup
σ∈S

sup
t≥0

∥ϕ(t;x,σ)∥/∥x∥, x ̸= 0,

which is the state norm overshoot for all state trajecto-
ries initially from x. In addition, let r(0) = 1. It is clear
that r(x) is continuous (except at the origin) and homo-
geneous. By the definition of the safe initial domain, we
have

X 0 = {x : r(x)x ∈ X }.

This implies that, if we could compute the function r,
then we could determine the safe initial domain. Utiliz-
ing the homogeneity, we only need to compute r on the
upper unit sphere, H +

1 .
Denote Ti the cut-tail time of Ai, and T = lnβ0

α0
. Let

ST be the set of well-posed switching paths defined

over [0,T ]. Any switching path p in this set admits
time/index pair sequence

pϖ = {t0, j0),(t1, j1), . . . ,(ts, js)}

with t0 = 0 and ts = T . The i-th dwell time, di(p), is

di(p) = max{tk+1 − tk : jk = i, k = 0,1, . . . ,s−1}.

Define

S ∗
T = {p ∈ ST : di(p)≤ Ti, i ∈ m̄}.

Proposition 2 For any x ∈ H +
1 , we have

r(x) = sup
σ∈S ∗

T

max
t≥0

∥ϕ(t;x,σ)∥.

Proof: We proceed by contradiction. Suppose that there
is an x ∈ H +

1 and a switching path p ̸∈ ST −S ∗
T with

max
t≥0

∥ϕ(t;x, p)∥> sup
σ∈S ∗

T

max
t≥0

∥ϕ(t;x,σ)∥. (7)

This implies the existence of an i ∈ m̄ such that di(p)>
Ti. Clearly we have

ϕ(t;x, p) = eA js−1 hs−1 . . .eAihk eA jk−1 hk−1 . . .eA j1 h0x,

with hl = tl − tl−1, l = 0,1, . . . ,s−1, and h ≥ Ti. Let

y = eA jk−1 hk−1 . . .eA j1 h0 .

According the Lemma 2, eAihy is inside the convex hull

Co{eAity,−eAity : t ∈ [0,Ti]}.

This implies that ϕ(t;x, p) is in the convex hull

Co{Cy,−Cy : t ∈ [0,Ti]},

where C = eA js−1 hs−1 . . .eAih0 . In this way, we have
ϕ(t;x, p) is in the convex hull

Co{ϕ(s;x,σ),ϕ(s;−x,σ) : σ ∈ S ∗
T ,s ≤ t}.

By definition, we obtain

max
t∈[0,T ]

∥ϕ(t;x, p)∥ ≤ sup
s∈[0,T ]

{∥ϕ(t;x,σ)∥ : σ ∈ S ∗
T },

which contradicts (7). �
Next, under Assumption 1, suppose that we have a

norm ν , such that

µ0 = µν(A )< 0.

It follows that

ν(ϕ(t;x,σ))≤ e−µ0tν(x), ∀ t ≥ 0,x ∈ Rn,σ ∈ S ∗
T .
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Define

ρ = max{ν(x) : x ∈ H +
1 }.

For any x ∈ H +
1 , define

ψ(x) = ρ/ν(x).

It can be seen that

r(x)≤ ψ(x), ∀ x ∈ H +
1 . (8)

With the above preparations, we are to develop a
computational procedure to estimate r(x) in a more ac-
curate manner. For this, fix an x ∈ H +

1 , and let

Tx =
ln(ψ(x))

µ0
.

Computational Procedure for Calculating r(x)
Initialization: Grid the time space [0,Ti] by 0 <

ti,1 < .. . < ti, ji = Ti, i ∈ m̄. Denote pi
k, k = 1, . . . , ji the

switching path over [0, ti,k] taking the value i constantly.
Let f = ψ(x) and P = {pi

k : i ∈ m̄,k ∈ j̄i}. Let P0 = P
and P1 = /0.

Iteration:

1. For any p ∈ P0, compute

f tmp = max
t∈[0,|p|]

{∥ϕ(t;x0, p)∥}.

If f < f tmp, then let f = f tmp. If f = ψ(x),
output r(x) = ψ(x) and stop. Otherwise, for any
p ∈ P0, compute

s1 = arg min
t∈[0,|p|]

{∥ϕ(t;x0, p)∥}.

If

ψ(ϕ(s1;x0, p))∥ϕ(s1;x0, p)∥> f , (9)

then let P1 = P1 ∪ p.

2. If P1 = /0, then output r(x) = f2 and stop. Oth-
erwise, let P0 = P0

⊙
P1. Remove any p with

|p|> Tx from P0, and continue the iteration.

Remark 2 Note that the procedure terminates in a fi-
nite steps as the stopping condition |p|> Tx is satisfied
in a finite steps. Moreover, condition (9) could prune the
switching paths with relatively small overshoots. The
computational load depends on Tx and the time grids.
When the load is affordable, we could dense the grids
adaptively to produce better estimation of r(x).

3.3. Illustrative Example

Let us examine the two-form third-order switched
linear system with

A1 =

 5.8841 7.9921 5.2029
−7.8556 −10.0016 −5.7216
3.9653 4.6037 2.0073


and

A2 =

 4.0249 5.3079 2.3262
−5.9310 −7.1902 −2.5825
3.2662 3.4672 0.5499

 .

By applying the state transform technique [13], we
could compute that µ∗{A1,A2} ≤ −0.3137, which
shows that the switched system is exponentially stable.

First, suppose that the safe region is the unit ball,
and the norm ∥·∥X is the standard ℓ2 norm. It can com-
puted that ρ = 11.75. Take state grids with 2400 points
equally distributed over the upper unit sphere, and ap-
ply the Computational Procedure for Calculating r(x)
for each state. The approximated safe initial domain is
depicted in Figure 2.

Figure 2. The safe initial domain for unit ball
safe region

Next, suppose that safe region is the polytope X =
{x : max3

j=1 |x j| ≤ 1}, which corresponds to ℓ1 norm.
Take state grids with 4066 points equally distributed
over the upper unit tube sphere. The approximated safe
initial domain is depicted in Figure 3.

4. Concluding Remarks

In this work, the safety-critical stability problem
has been investigated for continuous-time switched lin-
ear autonomous systems under arbitrary switching. We
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Figure 3. The safe initial domain for unit cube
safe region

proved that the safe initial domain is of full dimensional
iff the switched system is stable. A computational pro-
cedure was developed to numerically estimate the do-
main. The effectiveness of the proposed method was
verified by a numerical example.

References

[1] A. D. Ames, X. Xu, J. W. Grizzle and P. Tabuada, “Con-
trol barrier function based quadratic programs for safety
critical systems,” IEEE Trans. Automat. Contr., vol. 62,
no. 8, pp. 3861–3876, 2017.

[2] F. Blanchini, “Set invariance in control,” Automatica,
vol. 35, no. 11, pp. 1747–1767, 1999.

[3] V. D. Blondel and J. N. Tsitsiklis, “Complexity of sta-
bility and controllability of elementary hybrid systems,”
Automatica, vol. 35, no. 3, pp. 479–489, 1999.

[4] U. Boscain, “Stability of planar switched systems: The
linear single input case,” SIAM J. Contr. Optim., vol. 41,
pp. 89–112, 2002.

[5] Y. Chitour, P. Mason and M. Sigalotti, “On the marginal
instability of linear switched systems,” Syst. Contr. Lett.,
vol. 61, no. 6, pp. 747–757, 2012. .

[6] X. Ding, H. Wang, Y. Ren, et al., “Safety-critical optimal
control for robotic manipulators in a cluttered environ-
ment,” arXiv preprint arXiv: 2211.04944, 2022.

[7] R. Goebel, R. G. Sanfelice and A. R. Teel, “Invari-
ance principles for switching systems via hybrid systems
techniques,” Syst. Contr. Lett., vol. 57, no. 12, pp. 980–
986, 2008.

[8] D. Holcman and M. Margaliot, “Stability analysis of
switched homogeneous systems in the plane,” SIAM J.
Contr. Optim., vol. 41, no. 5, pp. 1609–1625, 2003.

[9] R. M. Jungers and P. Mason, “On feedback stabilization
of linear switched systems via switching signal control,”
SIAM J. Contr. Optimiz., vol. 55, no. 2, pp. 1179–1198,

2017.
[10] R. Kamalov and V. Yu. Protasov, “The length of switch-

ing intervals of a stable linear system,” arXiv preprint
arXiv: 2209.12219, 2022.

[11] J. C. Knight, “Safety critical systems: Challenges and
directions,” in: Proc. 24th Int. Conf. Software Engin.,
2002, pp. 547–550.

[12] H. Lin and P. J. Antsaklis, Hybrid Dynamical Systems:
Fundamentals and Methods, Berlin: Springer, 2022.

[13] M. Lin and Z. Sun, “Performance analysis of switched
linear systems under arbitrary switching via generalized
coordinate transformations”, Sci. China Inf. Sci., vol. 62,
no. 1, pp. 012203, 2019.

[14] M. Lin, J. Han and Y. Xu, “Performance estimation of
switched linear systems via n×(n+ 2) generalized co-
ordinate transformations,” Asian J. Contr., 2024, DOI:
10.1002/asjc.3322.

[15] L. Long and Y. Hong, “Safety stabilization of switched
systems with unstable subsystems,” Contr. Theory &
Techn., vol. 20, no. 4, pp. 95–102, 2022.

[16] M. Maghenem and R. G. Sanfelice, “Sufficient con-
ditions for forward invariance and contractivity in hy-
brid inclusions using barrier functions,” Automatica, vol.
124, pp. 109328, 2021.

[17] J. Seo, J. Lee, E. Baek, et al., “Safety-critical control
with nonaffine control inputs via a relaxed control bar-
rier function for an autonomous vehicle,” IEEE Robot.
Automat. Lett., vol. 7, no. 2, pp. 1944–1951, 2022.

[18] Z. Sun, “Matrix measure approach for stability of
switched linear systems,” in: IFAC NOLCOS, 2007, pp
557–560.

[19] Z. Sun and S. S. Ge, Stability Theory of Switched Dy-
namical Systems, London: Springer, 2011.

[20] S. Prajna, A. Jadbabaie and G. J. Pappas, “A framework
for worstcase and stochastic safety verification using
barrier certificates,” IEEE Trans. Automat. Contr., vol.
52, no. 8, pp. 1415–1428, 2007.

[21] W. Xiao, C. Belta and C. G. Cassandras, “Event-
triggered control for safety-critical systems with un-
known dynamics,” IEEE Trans. Automat. Contr., vol. 68,
no, 7, pp. 4143–4158, 2023.

[22] M. Wang and Z. Sun, “Safety-critical stabilizing design
of switched linear autonomous systems,” Unmanned
Syst., 2024, DOI: 10.1142/S2301385024410139.

[23] J. E. Wilborn and J. V. Foster, “Defining commercial air-
craft loss-of-control: A quantitative approach,” in: AIAA
Atmosph. Flight Mechan. Conf., 2004, pp. 16–19.

8595


