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Abstract— This paper investigates a zeroth-order algorithm
to solve a distributed weakly convex optimization problem
over a multi-agent network, where each agent in the network
has access to a local weakly convex objective function. We
utilize a pseudo-gradient estimation scheme with orthogonal
random directions to estimate the gradient information, which
is more general than the existing coordinate descent, discretized
gradient descent, and spherical smoothing methods. Moreover,
we design a projected pseudo-gradient algorithm with a dimin-
ishing step size to achieve the optimal solution. Furthermore, we
show the proposed algorithm converges to the optimal solution
with an O(ln k/

√
k) convergence rate from the perspective of

the Moreau envelope. Finally, we provide a numerical example
to illustrate the effectiveness of the proposed algorithm.

I. INTRODUCTION

Many practical challenges from engineering and academic
fields, can be modeled as optimization problems, such as the
optimal resource allocation in smart grid [1], the distributed
policy evaluation in reinforcement learning [2], and the
framework matching in multi-robot systems [3]. With the
increase of the scale and complexity of the optimization
problem, centralized optimization algorithms are difficult to
address these problems because of the limited computation
and communication resources. Distributed optimization is an
effective tool to overcome these challenges [4]. There are
many excellent works for solving distributed optimization
problems, such as primal-dual [5], gradient tracking [6], and
dual averaging [7], just to name a few.

In many circumstances, the optimization problem is
weakly convex, such as robust phase retrieval, low-rank
matrix completion, and sparse dictionary learning [8]. For
unconstrained weakly convex optimization, [9] character-
ized a distributed primal-dual algorithm converges to the
stationary point with an O(1/

√
k) rate with respect to the

norm of the gradient of the objective function. Considering
the weakly convex optimization problem with feasible set
constraints, [10] proposed a momentum-based Frank-Wolfe
algorithm but with an O(1/ln k) convergence rate. [11]
investigated the projected subgradient algorithm for weakly
convex optimization with the aid of the Moreau envelope and
showed an O(ln k/

√
k) convergence rate.
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In some cases, the exact gradient information, which is
necessary for optimization algorithm design, is difficult or
even infeasible to access. As an alternative, one can design
the pseudo-gradient estimation by the difference of the
objective function value. For the unconstrained optimization
problem, [12] designed a random gradient estimation scheme
based on the right-sided difference for the primal-dual al-
gorithm with an O(1/

√
k) convergence rate. [13] extended

random gradient estimation scheme in [12] for constrained
convex optimization problems with an O(1/

√
k) conver-

gence rate. Moreover, [14] modified the random gradient
estimation with two-sided differences for constrained convex
optimization problems. [15] characterized the distributed
zeroth-order algorithms as having a comparative convergence
performance with the centralized counterparts.

Inspired by existing works, we consider a weakly convex
optimization problem to encounter a feasible set constraint
and the absence of gradient information. We present a gen-
eral pseudo-gradient estimation scheme utilizing orthogonal
random directions. Subsequently, we propose a projected
zeroth-order algorithm for the considered problem. The main
contributions of this paper are summarized as follows.

1) Most distributed zeroth-order algorithms for optimiza-
tion problems, e.g., [13]–[16], need the objective func-
tion being convex. To relax this constraint, [12], [17] de-
signed zeroth-order algorithms for nonconvex optimiza-
tion problems with Polyak–Łojasiewicz (P-Ł) condition.
In this work, we propose a distributed zeroth-order
algorithm for a weakly convex optimization problem,
which needs only the objective function being Lipschitz
smooth and is more general than that of [12]–[17].

2) Compared with traditional distributed algorithms for
convex optimization problems in [5]–[7] and weakly
convex optimization problems in [11], [18], [19], we de-
sign a pseudo-gradient algorithm for the weakly convex
optimization problem. Moreover, our estimation scheme
is proposed by orthogonal random directions, which
includes the spherical smoothing of [12], [13], [15],
[16], discrete coordinate descent of [17], and discrete
gradient descent of [20] as special cases of our method.

The remainder of this paper is organized as follows:
Section II presents some preliminary settings on notation
and graph theory. In Section III, we formulate a distributed
weakly convex optimization problem with a feasible set
constraint. We design a distributed zeroth-order algorithm
to solve the considered problem and analyze its convergence
in Section IV. Section V provides a numerical example to
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TABLE I
RELATED WORKS ON DISTRIBUTED WEAKLY OPTIMIZATION AND ZEROTH-ORDER OPTIMIZATION

Related works Objective functions Zeroth-order Orthogonal Direction Constrained Convergence
[9] weakly convex × × × O

(
1/k

)
[10], [11] weakly convex × ×

√
O
(
1/ ln k

)
in [10]; O

(
ln k/

√
k
)

in [11]
[12] weakly convex

√
× × O

(
1/

√
k
)

[13]–[15] convex
√

×
√

O
(
1/

√
k
)

This work weakly convex
√ √ √

O
(
ln k/

√
k
)

illustrate the effectiveness of our algorithm and Section VI
ends this paper with some conclusions. The proofs of some
technical lemmas are placed in the Appendix Section.

II. PRELIMINARIES

A. Notations

In this paper, N+, Rn, and Rn×m are the sets of positive
integer, n dimensional real column vector, and n × m
dimensional real matrix. We utilize ⟨∇h(x),y⟩ to denote
the Euclidean inner product of vectors ∇h(x) and y, where
∇h(x) denotes the gradient of the function h(x). Besides,
we denote x = col{x1,x2, · · · ,xN} is the concatenated
column vector of x1,x2, · · · ,xN and use ∥x∥ to denote
the Euclidean norm of x. [·]j means the j-th entry of a
given vector and p(j) ∈ Rm is the j-th column of matrix
P ∈ Rm×l. 1N ∈ RN denotes the N -dimensional column
vector with all elements 1.

B. Graph theory

An undirected time-varying graph of a network is denoted
by G(k) = (V, E(k)), where V = {1, · · · , N} and E(k) ⊆
V × V are sets of nodes and edges at time k, respectively.
We mark j ∈ Ni(k) if {j, i} ∈ E(k), namely, node j is
the neighbor of node i and exchanges information with node
i at time k. W (k) = [wij(k)] ∈ RN×N is the weighted
matrix such that wij(k) = wji(k) > 0 for {j, i} ∈ E(k) and
wij(k) = 0 otherwise. Moreover, Φ(k, l) = W (k)W (k −
1) · · ·W (l) for any k > l, Φ(k, k) = W (k), and Φ(k, l) = I
for k < l. A graph is strongly connected if there exists at
least one directed path between any two distinct nodes. We
take the following assumption on the graph G(k).

Assumption 1: The graph G(k) is undirected and U -
uniformly jointly strongly connected. Namely, one can con-
struct doubly stochastic matrix sequences {W (k)} and there
exists a positive constant U such that G(k)

⋃
G(k−1)

⋃
· · ·⋃

G(k − U + 1) is strongly connected for any k ∈ N+.
By Assumption 1, we have the following technique lemma.
Lemma 1: [21, Proposition 1] If Assumption 1 holds,

then ∥Φ(k, l)− 1
N 11⊤∥ ≤ cλk−l with c > 0 and λ ∈ (0, 1).

III. PROBLEM FORMULATION

Consider the following distributed optimization problem

min
x

f(x) := 1
N

N∑
i=1

fi(xi)

s.t. xi = xj ∈ X , i, j ∈ V,
(1)

where xi ∈ Rm,∀i ∈ V and X ⊂ Rm is a closed convex set
for all agents. We take the following mild assumptions for
the optimization problem in (1).

Assumption 2: Each local objective function fi(xo) is L-
Lipschtiz continuous and λ-Lipschtiz smooth. Namely, there
exist constants L and λ such that ∥fi(xo) − fi(yo)∥ ≤
L∥xo −yo∥ and ∥∇fi(xo)−∇fi(yo)∥ ≤ λ∥xo −yo∥ hold.

Assumption 3: Each local objective function fi(xo) is τ -
weakly convex, namely there exists a constant τ such that
hi(xo) = fi(xo) +

τ
2∥xo∥2 is convex.

Remark 1: This paper considers a distributed smooth op-
timization problem. Under Assumption 3, the considered
optimization problem is nonconvex, which raises more chal-
lenges for algorithm design than the convex optimization in
[2], [14], [15], [22], [23].

For the weakly convex objective function, we have the
following lemma.

Lemma 2: [11, Lemma II.1.] If Assumption 3 holds, then

f
( N∑
i=1

ξixi

)
≤

N∑
i=1

ξif(xi)+
τ
2

N−1∑
i=1

N∑
j=i+1

ξiξj∥xi−xj∥2, (2)

where ξi ∈ [0, 1], ∀i ∈ V and
∑N

i=1 ξi = 1.
The intrinsic complexity of characterizing weakly convex

problems predominantly stems from the presence of various
stationary points, making precise measurement challenging.
Therefore, we redefine the objective function of problem (1)
as ϑ(x) = f(x) + IX (x), where IX (x) = 0 if x ∈ X ,
and IX (x) = ∞ otherwise. Based on ϑ(x), we analyze
the proposed algorithm hereinafter by using the following
Moreau envelope

ϑt(x) = min
y∈Rm

ϑ(y) + 1
2t∥y − x∥2, 0<t< 1

τ .

Moreover, we define the proximal mapping proxtf (x) = x̂,
where

x̂ = argmin
y∈Rm

ϑ(y) + 1
2t∥y − x∥2.

Remark 2: It can be noted that fi(·) is τ -weakly convex,
but after defining a surrogate stationary measure by the
Moreau envelope, ϑ(y)+ 1

2t∥y−x∥2 is strictly convex, which
facilitates our analysis of the problem.

We provide the following technical lemma for the Moreau
envelope and weakly convex objective functions.

Lemma 3: [24, Theorem 6.60] If ϑ(x) is a proper closed
and convex function and t>0, then ∥∇ϑt(x)∥ = 1

t ∥x̂− x∥.
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IV. MAIN RESULTS

A. Zeroth-order Algorithm Design

For the optimization problem in (1), we design the fol-
lowing distributed zeroth-order algorithm
vi,k =

N∑
j=1

wij(k)xj,k,[
∇kfi(vi,k)

]
j
= 1

hk

[
fi(vi,k + hkp

(j)
i,k)− fi(vi,k)

]
,

xi,k+1 = ProjX
{
vi,k − αkPi,k∇kfi(vi,k)

}
.

(3)

In (3), vi,k is the weighted average of decision variables
of agent i and its neighbors, Pi,k∇kfi(vi,k) ∈ Rm is the es-
timate of the gradient information ∇fi(vi,k).

[
∇kfi(vi,k)

]
j

is the j-th element of ∇kfi(vi,k) and generated by the
difference between fi(vi,k+hkp

(j)
i,k) and fi(vi,k), where p(j)

i,k

is the j-th column of matrix Pi,k. We make the following
assumption for the matrix Pi,k.

Assumption 4: Each randomized matrix Pi,k ∈ Rm×l,
∀i ∈ V , k ∈ N+ satisfies the following two conditions.

1) P⊤
i,kPi,k

a.s.
= m

l Il;
2) E{Pi,kP

⊤
i,k} = Im.

Remark 3: In our algorithm, we design the gradient es-
timation scheme with the aid of the differences based on
the columns of the orthogonal matrix Pi,k. The matrix Pi,k

can be generated by coordinate descent, random orthogonal
matrices, and spherical smoothing (see [25] for details).

Remark 4: Compared with existing works on weakly con-
vex optimization with exact gradient information in [11],
[19], we proposed a gradient estimation scheme for solving
this class optimization problem, which raises more chal-
lenges in dealing with the gradient estimation error and the
design of difference factor hk.

Moreover, we have the following technical lemmas based
on the proposed algorithm.

Lemma 4: [11, Lemma II.4.] If step size αk satisfies∑∞
k=0 αk = ∞, limk→∞ αk = 0, and limk→∞

αk+1

αk
= 1,

then
∑T−1

k=0 ςkαT−k−1 = O(αT−1

1−ς ) with ς ∈ (0, 1).
Lemma 5: If Assumptions 2 and 4 hold, then

1) E
{
∥∇kfi(vi,k)− P⊤

i,k∇fi(vi,k)∥
}
≤ λmhk

2
√
l

;

2) E
{
∥∇kfi(vi,k)∥2

}
≤ 2(

λ2h2
km

2

4l + L2).
Remark 5: Lemma 5 indicates that a larger value of l

yields a more accurate gradient estimation. Therefore, our
scheme has a better estimation performance than the existing
methods in [12], [15]–[17], [26], [27], which is the special
case of our scheme with l = 1.

Define ei,k = ProjX {vi,k−αkPi,k∇kfi(vi,k)}−vi,k and
∆k = xk − Jxk with J = 1

N 1N1⊤
N . We have the following

primary conclusion.
Lemma 6: Let xi,k be generated by the algorithm in (3).

if Assumptions 1-4 hold and limk→∞ hk = 0, then
1) E

{
∥ek∥2

}
≤ NB2

kα
2
k;

2) E
{
∥∆k∥

}
= O(

√
NBk

1−λ αk),

where ek = col{e1,k, · · · , eN,k} and B2
k =

2λ2h2
km

3

4l2 +
2mL2

l .

B. Converegnce Analysis

The following theorem provides the consensus perfor-
mance of the proposed algorithm from the perspective of
the expectation of penalty function ϑ(·).

Theorem 1: Under Assumptions 1-4, let xi,k be generated
by the algorithm in (3). If

∑∞
k=0 α

2
k<∞, then

lim
k→∞

∣∣E{ϑ(xi,k)} − E{ϑ(x̄k)}
∣∣ = 0,

where x̄k = 1
N

∑N
i=1 xi,k is the average of local variables.

Proof. Define v̂i,k = argminxo∈X
{
f(xo) + 1

2t∥xo −
vi,k∥2

}
and according to the dynamics of xi,k in (3),

∥xi,k+1 − v̂i,k∥2

≤ ∥vi,k − αkPi,k∇kfi(vi,k)− v̂i,k∥2

= ∥vi,k − v̂i,k∥2 + α2
k∥Pi,k∇kfi(vi,k)∥2

+2αk⟨∇fi(vi,k), v̂i,k − vi,k⟩
+2αk⟨Pi,kP

⊤
i,k∇fi(vi,k)−∇fi(vi,k), v̂i,k − vi,k⟩

+2αk⟨Pi,k∇kfi(vi,k)−Pi,kP
⊤
i,k∇fi(vi,k), v̂i,k−vi,k⟩,

(4)

where the inequality follows from the nonexpanding of the
projected operator, the equality holds by the fact ∥a+b∥2 =
∥a∥2 + ∥b∥2 + 2⟨a,b⟩. Taking expectation on (4),

E
{
∥xi,k+1 − v̂i,k∥2

}
≤ E

{
∥vi,k − v̂i,k∥2

}
+ 2αkE

{
(fi(v̂i,k)− fi(vi,k)

+ τ
2∥vi,k+1 − v̂i,k∥2)

}
+ λm

√
m(αkhk)
l

×E
{
∥vi,k − v̂i,k∥

}
+B2

kα
2
k

≤ E
{
∥vi,k − v̂i,k∥2

}
+ 2αkE

{
(fi(v̂i,k)− fi(vi,k)

+ τ
2∥vi,k+1 − v̂i,k∥2)

}
+

h2
k

2 E
{
∥vi,k − v̂i,k∥2

}
+B2

kα
2
k +

λ2m3α2
k

2l2 ,

(5)

where the first inequality holds by Assumption 4, Lemma
5 and the weak convexity of fi(·), the second inequality
follows from Young’s inequality. Note that

fi(v̂i,k)− fi(vi,k)

≤ L∥v̂i,k−sk∥+fi(x̄k)−fi(vi,k)+fi(sk)−fi(x̄k)

≤ L( 1
1−tτ + 1)∥vi,k − x̄k∥+ fi(sk)− fi(x̄k)

≤ L(2−tτ)
1−tτ

N∑
j=1

wij(k)∥xj,k − x̄k∥+ fi(sk)− fi(x̄k),

(6)

where sk = argminxo∈X
{
f(xo) +

1
2t∥xo − x̄k∥2

}
, the first

inequality follows from the Lipschitz continuity of fi(·),
the second one holds because of the continuity of proximal
operator (See [11, Lemma II.8.]), and the last one is deduced
by the convexity of the norm function. Moreover,

τ
2∥vi,k − v̂i,k∥2

≤ τ∥x̄k − sk∥2 + τ∥vi,k − x̄k + sk − v̂i,k∥2

≤ τ∥x̄k − sk∥2 + 2τ(1 + 1
(1−tτ)2 )∥vi,k − x̄k∥2

≤ τ∥x̄k − sk∥2 + 2τ(1 + 1
(1−tτ)2 )

N∑
j=1

wij(k)

×∥xj,k − x̄k∥2.

(7)
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According to (7), we further rewrite (5) as follows

E
{
∥xi,k+1 − v̂i,k∥2

}
≤ E

{
∥vi,k − v̂i,k∥2

}
+ 2αk

(
E
{
fi(v̂i,k)− fi(vi,k)

}
+ τ

2E
{
∥vi,k+1 − v̂i,k∥2

})
+ h2

kE
{
∥x̄k − sk∥2

}
+2h2

k

(
1 + 1

(1−tτ)2

)
E
{ N∑

j=1

wij(k)∥xj,k − x̄k∥2
}

+G2
kα

2
k,

(8)

where G2
k =

2λ2(1+h2
k)m

3+8m
4l . Combining (6) and (7) yields

N∑
i=1

[
fi(v̂i,k)− fi(vi,k) +

τ
2∥v̂i,k − vi,k∥2

]
≤ L(2−tτ)

1−tτ

N∑
i=1

∥xi,k − x̄k∥+N
[
f(sk)− f(x̄k)

+τ∥sk − x̄k∥2
]
+2τ

[
1+ 1

(1−tτ)2

] N∑
i=1

∥xi,k − x̄k∥2.

(9)

For the term f(sk)− f(x̄k) + τ∥sk − x̄k∥2, we obtain

f(sk)− f(x̄k) + τ∥sk − x̄k∥2

= f(sk)− f(x̄k) +
(

1
2t −

1
2t + τ)∥x̄k − sk∥2

≤
(
τ − 1

2t )∥x̄k − sk∥2,
(10)

where the inequality follows from the definition of sk.
Moreover, combining (8)-(10) and h2

k ≤ αk yields

E
{ N∑

i=1

∥xi,k+1 − v̂i,k∥2
}

≤ E
{ N∑

i=1

∥vi,k − v̂i,k∥2
}
+ 2αk

[
N(− 1

2t + τ + 1)

×E∥x̄k − sk∥2 + L(2−tτ)
1−tτ E

{ N∑
i=1

∥xi,k − x̄k∥
}

+2(τ + 1)(1 + 1
(1−tτ)2 )E

{ N∑
i=1

∥xi,k − x̄k∥2
}]

+NG2
kα

2
k.

(11)

From the definition of ϑt(xi,k+1), we get

ϑt(xi,k+1) ≤ f(z) + 1
2t∥xi,k+1 − z∥2, ∀z ∈ X . (12)

Substituting z = v̂i,k into (12) and taking its expectation,

E{ϑt(xi,k+1)}≤E
{
f(v̂i,k)

}
+ 1

2tE{∥xi,k+1−v̂i,k∥2}. (13)

Taking the summation of (13) from i = 1 to N yields

E
{ N∑

i=1

ϑt(xi,k+1)
}

≤ E
{ N∑

i=1

f(v̂i,k)
}
+ 1

2tE
{ N∑

i=1

∥xi,k+1 − v̂i,k∥2
}

≤ E
{ N∑
i=1

ϑt(vi,k)
}
+αk

t

[
N(τ+1− 1

2t )E
{
∥x̄k−sk∥2

}
+L(2−tτ)

1−tτ E
{ N∑

i=1

∥xi,k − x̄k∥
}
+

NG2
kα

2
k

2t

+2(τ + 1)(1 + 1
(1−tτ)2 )E

{ N∑
i=1

∥xi,k − x̄k∥2
}]

.

(14)

By vi,k =
∑N

j=1 wij(k)xj,k, we achieve

ϑt(vi,k)

= f
( N∑

j=1

wij(k)v̂i,k

)
+ 1

2t

∥∥∥ N∑
j=1

wij(k)(v̂j,k − xj,k)
∥∥∥2

≤ f
( N∑

j=1

wij(k)x̂i,k

)
+ 1

2t

∥∥∥ N∑
j=1

wij(k)(x̂j,k − xj,k)
∥∥∥2

≤
N∑
j=1

wij(k)f(x̂j,k) +
τ
2

N−1∑
j=1

N∑
l=j+1

wij(k)wil(k)

×∥x̂j,k − x̂l,k∥2 +
N∑
j=1

wij(k)
1
2t∥x̂j,k − xj,k∥2

≤
N∑
j=1

wij(k)ϑt(xj,k) +
τ

2(1−tτ)2

N−1∑
j=1

N∑
l=j+1

wij(k)

×wil(k)∥xj,k − xl,k∥2,

(15)

where the first inequality holds due to the definition of v̂i,k

and
∑N

j=1 wij(k)x̂j,k ∈ X , the second one follows from the
convexity of f(·) and Lemma 2, and the last one is deduced
by the smoothness of proximal mapping (see [11, Lemma
II.8.]). By (14) and defining ϑ̄t,k+1 = 1

N

∑N
i=1 ϑt(xi,k+1),

E{ϑ̄t,k+1} ≤ E
{
ϑ̄t,k

}
+Hk +

G2
kα

2
k

2t , (16)

where

Hk = τ
2N(1−tτ)2E

{ N∑
i=1

N−1∑
j=1

N∑
l=j+1

wij(k)wil(k)∥xj,k

−xl,k∥2
}
+ αk

t

[
L(2−tτ)
N(1−tτ)E

{ N∑
i=1

∥xi,k − x̄k∥
}

+ 2(τ+1)
N (1 + 1

(1−tτ)2 )E
{ N∑

i=1

∥xi,k − x̄k∥2
}]

.

Note that,

E
{ N∑

i=1

N−1∑
j=1

N∑
l=j+1

wij(k)wil(k)∥xj,k−xl,k∥2
}
=O(

NB2
kα

2
k

(1−λ)2 ),

αkE
{ N∑

i=1

∥xi,k − x̄k∥
}
= O(

NBkα
2
k

1−λ ),

αkE
{ N∑

i=1

∥xi,k − x̄k∥2
}
= O(

NB2
kα

3
k

(1−λ)2 ).

(17)

By (17), Hk = O(
B2

kα
2
k

(1−λ)2 ). Noting that ϑt(x) is lower
bounded on X and B2

k ≤ B2
0 , we have

E{ϑ̄t,k+1} − inf E
{
ϑt(x)

}
≤ E

{
ϑ̄t,k

}
− inf E

{
ϑt(x)

}
+O(α2

k).
(18)

Since
∑∞

k=0 α
2
k < ∞, using Lemma 2 1 in [28, Chapter

2.2], {ϑ̄t,k} converges to some value ϑ̄t.
Recalling the continuity of ϑt(x) and limk→∞ E

{
∥xi,k −

x̄k∥
}
= 0, it follows that

lim
k→∞

|E
{
ϑt(xi,k)

}
− E

{
ϑt(x̄k)

}
|2 = 0,

and
lim
k→∞

|E
{
ϑ̄t,k

}
− E

{
ϑt(x̄k)

}
|2

≤ 1
N lim

k→∞

N∑
i=1

|E
{
ϑt(xi,k)

}
− E

{
ϑt(x̄k)

}
|2 = 0.

(19)

This completes the proof. □

1If sequences {ck}, {ιk}, and {γk} satisfy ck+1 ≥ 0, ck+1 ≤ (1 +
ιk)ck + γk ,

∑∞
k=0 ιk<∞, and γk<∞, then limk→∞ ck = c ≥ 0.
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Theorem 1 states that the function values of the Moreau
envelope converge almost surely to the counterparts at the
mean x̄k. To achieve the explicit convergence performance
of the proposed algorithm, it is necessary to investigate the
convergence of ∥∇ϑt(x̄k)∥2, which is characterized in the
following theorem.

Theorem 2: Under Assumptions 1-4, if
∑∞

k=0 αk = ∞,∑∞
k=0 α

2
k < ∞, and h2

k ≤ αk, then

infk∈N+
E
{
∥∇ϑt(x̄k)∥2

}
≤ 2

(1−2tτ−2t)
∑∞

k=0 αk

[
E{ϑ̄t,0} − E{ϑ̄t,∞}

+
∞∑
k=0

Hk +
∞∑
k=0

G2
kα

2
k

2t

]
.

Proof. We rewrite the inequality (16) as follows
αk

t ( 1
2t − τ − 1)E{∥x̄k − sk∥2}

≤ E{ϑ̄t,k} − E{ϑ̄t,k+1}+Hk +
G2

kα
2
k

2t .
(20)

Taking the summation of (20) from k = 0 to ∞,
∞∑
k=0

αk

t ( 1
2t − τ − 1)E

{
∥x̄k − sk∥2

}
≤ E{ϑ̄t,0} − E{ϑ̄t,∞}+

∞∑
k=0

Hk +
∞∑
k=0

G2
kα

2
k

2t .
(21)

By Lemma 3, the definition of sk, and rearranging related
terms of (21) yields

infk∈N+
E
{
∥∇ϑt(x̄k)∥2

}
≤ 2

(1−2tτ−2t)
∑∞

k=0 αk

[
E{ϑ̄t,0} − E{ϑ̄t,∞}

+
∞∑
k=0

Hk +
∞∑
k=0

G2
kα

2
k

2t

]
.

(22)

According to
∑∞

k=0 αk = ∞,
∑∞

k=0 Hk < ∞, and∑∞
k=0 G

2
kα

2
k < ∞, we achieve the conclusion. □

By Theorem 2, when αk = O( 1√
k
) and h2

k = αk, we
directly obtain the following corollary.

Corollary 1: Under Assumptions 1-4, if αk = O( 1√
k
) and

h2
k = αk, then inf1≤k≤T E

{
∥∇ϑt(x̄k)∥2

}
= O( ln k√

k
) for a

sufficiently large T .
Remark 6: In contrast to the convergence rate of

O(ln k/
√
k) in [11], our method attains the same counterpart

even in the absence of exact gradient information. By relax-
ing the convexity assumption in [13], [14] as weak convexity,
we obtain a similar convergence rate to that in [13], [14].
Moreover, the convergence rate of our method is faster than
the O(1/ ln k) rate in [10], where the objective function is
also weakly convex.

V. NUMERICAL SIMULATION

We consider the following weakly convex problem to
illustrate the effectiveness of the proposed algorithm

min
x∈Rm

f(x) = 1
N

N∑
i=1

(
1
d

d∑
j=1

|⟨ui,j ,x⟩2−⟨ui,j , x̃⟩2|
)
, (23)

which is yielded from the robust phase retrieval problem
[11]. In this example, we set N = 5, d = 10 and randomly
choose the entry of x̃ from [−6,−4]. Moreover, the elements
of the measurements ui,j are drawn from the standard normal

distribution N (0, 1). Specifically, we design αk = 0.01l/
√
k,

hk =
√
αk and the network topology as an undirected circle.

The simulation results are shown in Fig. 1 with l = 1, 3,
and 5 cases, where redist(x̄k,X ∗) = dist(x̄k,X ∗)/dist(x̄1,
X ∗) and dist(x̄k,X ∗) is the distance between x̄k and the
optimal solution set X ∗. Notably, the methods in [15],
[26] both are the special case of our method with l = 1.
From Fig. 1, for a larger l, our algorithm achieves a better
convergence. Especially, the l = 3 and 5 cases provide
significant outperformance compared to that of [15], [26].

0 5000 10000 15000

10
-2

10
-1

10
0

Fig. 1. The results of numerical simulation

VI. CONCLUSIONS

In this paper, we propose a distributed projected pseudo-
gradient algorithm for solving a weakly convex optimization
problem with a feasible set constraint. We provide a thorough
analysis of our algorithm’s convergence, focusing on the
perspective of the Moreau envelope, under the premise of
employing an unsummable step size. Notably, employing the
design choices αk = α0l/

√
k and h2

k = αk, we demonstrate
an O(ln k/

√
k) convergence rate for our algorithm. Finally,

we illustrated the effectiveness of the proposed algorithm by
a numerical simulation. Future work will include extending
the proposed approach to nonsmooth optimization problems
with quantized and delayed communication.

APPENDIX

A. Proof of Lemma 5

Denoting p
(j)
i,k as the j-th column of Pi,k,

∥∇kfi(vi,k)− P⊤
i,k∇fi(vi,k)∥2

=
l∑

j=1

([∇kfi(vi,k)]j − ⟨∇fi(vi,k),p
(j)
i,k⟩)2.

(24)

By the descent lemma (see [24, Lemma 5.7]), we have

|fi(vi,k+hkp
(j)
i,k)−fi(vi,k)−hk⟨∇fi(vi,k),p

(j)
i,k⟩|

≤ λh2
k

2 ∥p(j)
i,k∥2.

(25)

Then divide (25) by hk,∣∣[∇kfi(vi,k)]j − ⟨∇fi(vi,k),p
(j)
i,k⟩

∣∣ ≤ λhk

2 ∥p(j)
i,k∥2, a.s. (26)
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Combining (24) and (26), and Assumption 4 yields

∥∇kfi(vi,k)− P⊤
i,k∇fi(vi,k)∥ ≤ λhkm

2
√
l
, a.s.. (27)

Based on (27) and the L-Lipschitz continuity of fi(·),

E
{
∥∇kfi(vi,k)∥2

}
≤ 2E

{
∥∇kfi(vi,k)− P⊤

i,k∇fi(vi,k)∥2
}

+2E
{
∥P⊤

i,k∇fi(vi,k)∥2
}

≤ 2(
λ2h2

km
2

4l + L2).

(28)

This completes the proof. □

B. Proof of Lemma 6

Based on the definition of ek, we have

∥ek∥2 ≤
N∑
i=1

∥vi,k − αkPi,k∇kfi(vi,k)− vi,k∥2

=
N∑
i=1

α2
km
l ∥∇kfi(vi,k)∥2.

(29)

By Lemma 5 and taking expectation on (29),

E
{
∥ek∥2

}
≤ 2m

l Nα2
k(

λ2h2
km

2

4l + L2) = NB2
kα

2
k. (30)

According to the dynamic of xk in (3) yields

∆k+1 = (I − J)A(k)xk + (I − J)ek
= A(k)∆k + (I − J)ek

= Φ(k, 0)∆0+
k−1∑
l=0

Φ(k, l+1)(I−J)el+(I−J)ek,
(31)

where the second equality follows from JA(k) = J =
A(k)J and the last one holds by expanding the second
equality. Since 1⊤∆l = 1⊤(I − J)xl = 0, ∀l ∈ N+,

∆k+1 =
[
Φ(k, s)− J

]
∆s +

k−1∑
l=s

[
Φ(k, l + 1)− J

]
×(I − J)el + (I − J)ek.

(32)

By Lemmas 1 and 4 and taking expectation on (32),

E
{
∥∆k+1∥

}
≤ cλk∥∆0∥+ c

√
NBk

k−1∑
l=0

λk−l−1αl

+
√
NBkαk

= O(
√
NBk

1−λ αk).

(33)

This completes the proof. □
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