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Abstract— In this article, we consider the problem of control-
ling a group of autonomous vehicles, which are maneuvering on
a road, such that smooth traffic flow can happen. For this, we
propose that every autonomous vehicle maneuvers with a pre-
specified velocity profile. The velocity profiles are determined in
such a way that either none of the vehicles wait near a signalized
junction or only a limited number of vehicles are accumulated
when the red light is ON. To maneuver the autonomous vehicles
with a pre-specified velocity profile, a control sequence is gener-
ated using a receding horizon control approach in the model-
predictive control framework. The associated problems, such
as the feasibility of the underlying constrained optimization
problem at every stage and the convergence analysis, are also
considered. The efficacy of the proposed approach is evinced
with numerical simulations.

Index Terms— Autonomous vehicles, Traffic control, Model
predictive control, LMI.

I. INTRODUCTION

Nowadays, traffic congestion has emerged as a major issue
in urban areas due to the growing population and increased
transportation needs. Some of the important factors in urban
transportation systems that need special attention are smooth
traffic flow, reduction in traffic congestion, avoidance of
accidents, and reduction in waiting time at signal posts.
At present, the most commonly adopted methodology to
manage roadway traffic flow at a signalized junction (SJ)
is through traffic signals. It has been observed in roadway
traffic that drivers maneuver their vehicles with maximum
possible velocities to reduce the travel time for reaching their
destinations. This maneuvering raises the risk of accidents
and causes vehicle congestion near SJs. Due to the fixed du-
ration of the green light ON near a SJ, only a limited number
of vehicles can cross, while others need to wait until the
next green signal turns on. This increases unnecessary wait-
time for the commuters near SJs, causing travel weariness.
TomTom Traffic Index 2023 [1] indicates that the extra travel
time required in major cities in India such as Bangalore, New
Delhi, and Mumbai are 63%, 48%, and 43%, respectively,
in comparison to free-flow traffic conditions.

To address the aforementioned issues, in this work, we
propose a scenario where every vehicle maneuvers with a
pre-specified reference velocity profile on roadway traffic.
The velocity profile for a vehicle is determined in such a way
that either none of the vehicles wait at an SJ or only a limited
number of vehicles get accumulated at an SJ when the red
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light is ON. Our approach assumes a simple roadway traffic
scenario with only autonomous vehicles (AVs), and there
are provisions for vehicle-to-infrastructure (V2I) and vehicle-
to-vehicle (V2V) communications. Further, the AVs are
identical, and they are maneuvering on a single lane through
multiple signalized junctions. Additionally, it is assumed that
each AV has its own sensing equipment and local controllers
to generate appropriate control signals. We consider a linear
time-invariant continuous time model for each AV. After
performing discretization of the model using the zero-order
hold method, we use the receding horizon control (RHC)
approach in the model-predictive control (MPC) framework
to generate appropriate control signals for each AV. By
designing suitable online polyhedral terminal set for each
AV, the inherent important issues in the RHC approach, such
as recursive feasibility and stability, are addressed.

The platoon control method for AVs has drawn sig-
nificant attention from researchers to address traffic con-
gestion related issues. To deal with traffic congestion at
the unsignalized junctions, an intersection manager-based
centralized coordination framework is proposed in [2] for
scheduling the AVs appropriately. Some of the other schedul-
ing strategies for AVs at unsignalized junctions include
graph-based AV scheduling approaches [3], bilevel energy-
optimal coordination framework [4], time-optimal control
framework [5], MPC framework [6]–[9]. Similarly, several
control approaches, such as multi-intersections-based fuel
efficient predictive control strategy [10], optimal control
framework [11], MPC framework [12]–[15] and adaptive
dynamic programming approach [16] are proposed to reduce
traffic congestion at signalized junctions. In the existing
MPC-based control approaches, however, the issues related
to recursive feasibility and stability are not investigated.

Notation: xi
j|k refers the predicted value of x of ith AV

at time step (k+ j) having the information at step k; S ≻ 0
denotes that S is symmetric positive definite matrix. ∥p∥2S :=
pTSp is weighted 2-norm of a vector p with weight matrix
S. Iq denotes the identity matrix of size q × q. Iba denotes
the set of integers in the interval [a, b]. m/sec and sec refer
to meter/sec and sec, respectively.

II. MAIN RESULTS

We consider a platoon of autonomous vehicles traveling
on a roadway in a single lane. The first AV, which enters into
the control zone of a roadway, is considered as leader, and
other AVs are considered as followers. The set of such AVs is
referred to as connected autonomous vehicles (CAVs). In this
section, we first briefly describe the considered dynamics for
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an AV and, thereafter, propose methods for providing control
signals to ensure smooth traffic flow at signalized crossings.

Since each AV is traveling one after the other in a
single lane, we only consider the longitudinal motion of
the vehicles, and their lateral dynamics are ignored. The
following linearized model for longitudinal motion of ith

AV is considered (refer to [17], [18] for more details):ṗi(t)v̇i(t)
ȧi(t)


︸ ︷︷ ︸

ẋi(t)

=

0 1 0
0 0 1
0 0 − 1

ηi


︸ ︷︷ ︸

A

pi(t)vi(t)
ai(t)


︸ ︷︷ ︸

xi(t)

+

 0
0
1
ηi


︸ ︷︷ ︸

B

ui(t). (1)

where pi, vi, and ai denote the position, velocity, and
acceleration of ith AV, respectively, ηi denotes the engine
time constant, and the control input ui ∈ R represents the
throttle input to ith AV engine. We discretize (1) using the
zero-order hold method as in [19, Chapter 3] with sampling
time ts, and is represented as follows:pik+1

vik+1

aik+1


︸ ︷︷ ︸

xi
k+1

=

1 ts η2i e
− ts

ηi + ηits − η2i
0 1 ηi − ηie

− ts
ηi

0 0 e
− ts

ηi


︸ ︷︷ ︸

Ad

pikvik
aik


︸ ︷︷ ︸

xi
k

+

b1b2
b3


︸ ︷︷ ︸
Bd

ui
k.

(2)
where b1 = t2s/2−η2i (e

− ts
ηi −1)−ηits, b2 = ts+ηi(e

− ts
ηi −1),

and b3 = 1 − e
− ts

ηi . The velocity vik, acceleration aik, and
control input ui

k of each AV are considered to be bounded
by their upper and lower limits as follows:

v ≤ vik ≤ v, a ≤ aik ≤ a, u ≤ ui
k ≤ u. (3)

where v, a, and u denote the minimum values of velocity,
acceleration, and control input respectively, and v, a, and
u denote the maximum values of velocity, acceleration, and
control input respectively. Further, to ensure the avoidance
of rear-end collision between vehicle i and the preceding
vehicle l, we assume that a safe distance is maintained
between them. Such safe distance is modeled as follows:

plk − pik ≥ γ + ρvik, (4)

where γ is the static gap, and ρ is the reaction time.
As introduced in Section I, we first need to generate

a reference velocity profile for each AV. Considering the
velocity constraints in (3), we now propose an algorithm,
similar to [12], [16], for generating such reference velocity.

A. Generation of Reference Velocity for AVs

Assume that each SJ has its own control zone. Once an
AV enters into this control zone, it can access the traffic
signal duration information of that SJ. At each SJ, the time
period for which the red signal will remain ON is referred
to as red-time τr. Similarly, the time period for which the
green signal will remain ON is referred to as green-time
τg . Let dm be the distance from the AV’s position to the
upcoming SJ, denoted as SJm. Assume that SJm broadcasts
the following information to a vehicle once it enters into the
control zone: (i) the time period τ0, after which the next

signal, either green or red, will become ON, and (ii) the
duration of red time τr and green-time τg . Considering this
information as inputs to an AV, we now propose a procedure
in Algorithm 1 to generate reference velocity for that AV.
In order to generate the signal sequence as explained in
Algorithm 1, each AV communicates with SJs through V2I
communication within the control zone. Further, each AV
communicates exclusively through a V2V connection with
its preceding vehicle to ensure collision-free maneuvering.
In this way, there is no exchange of information among AVs
through any centralized command unit.

Explanation for Algorithm 1: Steps 1-7: A sequence of
time periods is generated based on the information (τ0, τg ,
τr, and whether the red or green light turns ON after τ0 sec)
received from mth signalized junction SJm. In steps 1 to
3, we compute: τr1 = τ0 + τg , τg2 = τr1 + τr up-to Γ, and
generate a sequence N , if the green signal turns ON after
τ0 sec. The time horizon Γ is chosen to be large enough
(possibly: Γ ≥ 2(τ0 + τr + τg)) so that each AV gets a
feasible green interval to cross SJm. Similarly, in steps 4 to
6, we compute τg2 = τ0 + τr, τr2 = τg2 + τg up-to Γ, and
generate a sequence N , if the red signal turns ON after τ0
sec. For instance, let SJm broadcasts: τ0 = 20 sec, τg = 20
sec, and τr = 25 sec, and the green signal turns ON after
τ0 sec. Then, by selecting Γ = 175 sec, the generated signal
sequence is: N = {20, 40, 65, 85, 110, . . . , 175}, as shown
in Fig. (1).

Algorithm 1 Generation of Reference velocity (vref )

Input: dm, [v, v], δ, τ0, τg , τr
Output: vref
1: if green signal ON after τ0 then
2: τr1 ← (τ0 + τg), τg2 ← (τr1 + τr), . . . up-to Γ
3: N ← {τ0, τr1 , τg2 , . . . up-to Γ}
4: else if red signal ON after τ0 then
5: τg2 ← (τ0 + τr), τr2 ← (τg2 + τg). . . up-to Γ
6: N ← {τ0, τg2 , τr2 , . . . up-to Γ}
7: end if
8: for j = 1 : length(N ) do
9: Vfeasible ←

[ dm
τrj − δ

,
dm

τgj + δ

]
∩ [v, v]

10: if (Vfeasible ̸= ∅) then
11: [vlow, vhigh]← Vfeasible

12: break
13: else continue
14: end if
15: end for
16: return vref ← vhigh

Steps 8-13: In these steps, we compute the reference velocity
profile for an AV to cross SJm. Let dm be the distance from
the AV’s position to the upcoming signalized junction SJm.
Adding a certain level of safety margin, let the jth green light
interval (as shown in Fig. (1)) be: [τgj +δ, τrj −δ] (instead of
[τgj , τrj ]), where δ is some small positive number. Then, by
considering the velocity constraint for an AV, we compute the

velocity interval as follows: Vfeasible =
[ dm
τrj − δ

,
dm

τgj + δ

]
∩

[v, v]. If we get a feasible velocity interval: Vfeasible ̸=
∅, then the highest value of Vfeasible; that is, vhigh is
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considered as reference velocity vref for an AV; else the
AV will compute the velocity interval Vfeasible for (j+1)th

green light interval: [τgj+1 + δ, τrj+1 − δ]. For instance,
by considering dm = 1000 m, δ = 5 sec, v = 0 m/sec, and
v = 25 m/sec, the feasible velocity interval for 1st green light
interval be computed as: Vfeasible = [28.57, 40]∩[0, 25] = ∅.
Therefore, the search is continued for the 2nd green light
interval, where a feasible velocity interval is obtained as
follows: Vfeasible = [12.5, 14.28] ∩ [0, 25] = [12.5, 14.28].
Hence, the reference velocity of the AV is vref = 14.28
m/sec. This is demonstrated in Fig. (1).

Fig. 1. Schematic of the trajectory of an AV, passing through three SJs. Red
(solid) and green (dashed) lines denote the red signal and green signal turn-
ON timings, respectively. The jth green light interval is: [τgj +δ, τrj −δ].

B. Control Scheme for an AV

Once vref is generated for an AV using Algorithm 1, it
is required to accelerate/decelerate the vehicle through an
appropriate control scheme to reach that velocity profile.
Since the states and control signals are constrained to satisfy
(3) and (4), an acceptable control signal (sequence of signals)
is computed by solving a constrained optimization problem
in the MPC framework [20]. For this, we considered a
nonzero steady-state reference point xi

ref = [piref , v
i
ref , 0]

T

for an ith AV. With respect to the vehicle dynamics as in
(2), at steady state, we have: xi

k+1 = xi
k = xi

ref . Then,
by denoting ui

ref as input to the vehicle at steady state, we
obtain the following relation from (2):

xi
ref = Adx

i
ref +Bdu

i
ref ⇒ Bdu

i
ref = (In−Ad)x

i
ref . (5)

Note that in the expression (5), it may not be possible to
compute ui

ref exactly for every given xi
ref . In that case,

we consider ui
ref as a minimum-norm solution to an asso-

ciated least-squares problem, and the solution is computed
as follows: ui

ref = B†
d(In − Ad)x

i
ref , where B†

d is the
pseudo-inverse of Bd. Then, by considering xi

ref and ui
ref ,

we formulate the quadratic reference tracking cost function
J i
k for our optimization as follows: J i

k = ∥xi
j|k − xi

ref∥2Q +

∥ui
j|k − ui

ref∥2R, where Q ⪰ 0 and R = BT
d WBd > 0 (with

W is a positive scalar) are the state and control input weight
matrices, respectively. Further, we also include a terminal
cost ∥xi

N |k−xi
ref∥2P to the cost function J i

k, where P ≻ 0 is
terminal cost weight matrix and N is the prediction horizon.
After the end of prediction horizon N , it is expected that the
state xi

N |k should reach a pre-defined terminal set X i
Tk

; that

is, xi
N |k ∈ X i

Tk
. In the MPC setting, we need the terminal

set X i
Tk

to be a maximal positive invariant set. We now give
a procedure to construct the set X i

Tk
.

Consider the vehicle dynamics (2). Assume that a control
law: ui

k = ui
ref +K(xi

k − xi
ref ), where K is feedback gain

matrix, is applied to ith AV only within the terminal set X i
Tk

.
Hence, the closed-loop system inside X i

T is:

xi
k+1 = (Ad +BdK)xi

k +Bd(u
i
ref −Kxi

ref ), (6)

It follows from (5) that Bdu
i
ref = (In−Ad)x

i
ref . Using this

relation in (6), we have the following autonomous system
inside the terminal set X i

Tk
:

xi
k+1 = (Ad +BdK)xi

k + (In − (Ad +BdK))xi
ref . (7)

Let the constraint sets given in (3) and (4) be written in the
following form:

F ixi
k ≤ ξik, giui

k ≤ βi. (8)

where

F i =



1 ρ 0
0 1 0
0 0 1
0 −1 0
0 0 −1
0 0 0
0 0 0


, gi =



0
0
0
0
0
1
−1


, ξik =



plj|k − γ

v
a
−v
−a
0
0


, βi =



0
0
0
0
0
u
−u


.

Now, by adding both the equations in (8), and replacing ui
k =

ui
ref +K(xi

k − xi
ref ), we have the following relation:

(F i + giK)xi
k ≤ ξik + βi + gi(Kxi

ref − ui
ref ). (9)

Note that the inequality (9) becomes a constraint set for the
closed-loop dynamics (7) inside the terminal set X i

Tk
. Using

(9), define a constraint set for closed-loop dynamics (7) as:

Ωi
k = {xi

k : (F i + giK)xi
k ≤ cik,∀xi

k ∈ X i
Tk
}. (10)

where cik = ξik + βi + gi(Kxi
ref − ui

ref ). Then, it follows
from [20, Theorem 10.1] that the terminal set X i

Tk
is a

maximal positive invariant set with respect to the closed-loop
dynamics (7) with constraint set (10) if and only if:

X i
Tk

⊆ Pre(X i
Tk
) (11)

where Pre(X i
Tk
) is the precursor set of X i

Tk
[20, Chapter

10]. The relation (11) implies Pre(X i
Tk
)∩X i

Tk
= X i

Tk
. Using

this, we now propose Algorithm 2 to compute X i
Tk

.

Algorithm 2 Computation of X i
Tk

for ith AV [20, Chapter 10]

Input: System dynamics (7), Constraint set Ωi
k as in (10)

Output: Maximal positive invariant set X i
Tk

1: Ψ0 ← Ωi
k, l← 0

2: while (1) do
3: Ψl+1 ← Pre(Ψl) ∩Ψl

4: if (Ψl+1 = Ψl) then break
5: else
6: Ψl ← Ψl+1

7: end if
8: l← l + 1
9: end while

10: return X i
Tk
← Ψl
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Once, the maximal positive invariant sets X i
Tk

are com-
puted using Algorithm 2, we use them to formulate the
following constrained optimization problem OP:

OP : min
Ui

k∈Ui
J i
k ≜ ∥xi

N |k − xi
ref∥2P

+

N−1∑
j=0

{
∥xi

j|k − xi
ref∥2Q + ∥ui

j|k − ui
ref∥2R

}
(12a)

subject to, xi
j+1|k = Adx

i
j|k +Bdu

i
j|k, ∀j ∈ IN−1

0 (12b)

xi
0|k = xi

k, F ixi
j|k ≤ ξik, giui

j|k ≤ βi, ∀j ∈ IN−1
0 (12c)

xi
N |k ∈ X i

Tk
, (12d)

where U i is input constraint set. To obtain a sequence of
control inputs for ith AV, we use the RHC approach in
the MPC framework, where the optimization OP needs to
be solved repeatedly at each time step over the prediction
horizon N . There is a possibility that the optimization OP
becomes infeasible at some time step. In the following result,
we show that the imposition of constraint (12d) will ensure
that the feasibility of OP at the first step guarantees the
feasibility of OP at every step.

Lemma 1: Assume that the state vector xi
N |k ∈ X i

Tk
. Let

the optimization OP be feasible at time step k. Then, OP is
feasible for future time step: k + j, ∀j ∈ I∞0 .

Proof: Given that the optimization OP is feasible at
time step k (it satisfies (12b), (12c) and (12d)), there exists
an optimal control sequence U i

k = {ui
j|k}

N−1
j=0 . Let the

corresponding optimal state sequence be: Xi
k = {xi

j|k}
N
j=0,

which satisfies the state and input constraints (12c) and the
terminal constraint xi

N |k ∈ X i
Tk

. For the time step k + 1,
construct a control sequence as follows:

Ũ i
k+1 = {ui

1|k, u
i
2|k, u

i
3|k · · · , u

i
N−1|k, u

i
N−1|k+1} (13)

where {ui
j|k}

N−1
j=1 are the optimal control sequence computed

at time-step k and ui
N−1|k+1 := ui

ref+K(xi
N |k−xi

ref ). Note
that the choice of last control sequence ui

N−1|k+1 is possible,
since at kth time-step: xi

N |k ∈ X i
Tk

. Then, the corresponding
predicted state sequence be: X̃i

k+1 = {xi
j|k+1}

N
j=0, where

xi
j|k+1 = xi

j+1|k, ∀j ∈ IN−1
0 and xi

N |k+1 = Adx
i
N |k +

Bd(u
i
ref+K(xi

N |k−xi
ref )). The last state vector is the same

as in (6) since it is inside the terminal set X i
Tk

. This shows
that the optimization problem OP has a feasible solution at
k + 1 time-step. Note that the constructed control sequence
(13) may not be an optimal control sequence. However, it
guarantees the feasibility of OP. Hence, in a similar way,
we can extend the control sequence construction process for
(k + j)th steps for j ∈ I∞0 . This is possible due to the fact
that xi

N |k+j ∈ X i
Tk

. Hence, the feasibility of OP is ensured
at every time step.

Note that according to Lemma 1, the feasibility of OP
at kth time step guarantees that it is feasible for all future
time steps. We now give a procedure to select the initial
states xi

0|0 such that the optimization is feasible at time step

k = 0. For this, we first construct a set X i
0 as follows, which

is the N-step backward reachable set to terminal set X i
Tk

[20, see definition in Chapter 10]. First, consider the the
terminal set X i

Tk
, and define SN = X i

Tk
. Compute SN−1 =

Pre(SN ) ∩ X i, where X i = {xi
k : F ixi

k ≤ ξik}. Continue
this process until N = 0. Then, the resulting set X i

0 is N-
step backward reachable set of X i

Tk
. Note that the sets X i

Tk
,

Pre(X i
Tk
), X i

0 are polyhedral sets, which are characterized
by a set of linear inequalities. To construct all such sets,
one may use the Multi-Parametric Toolbox (MPT) [21] in
MATLAB.

We now show that the state trajectory xi
j|k, generated by

the application of control sequence U i
k according to the RHC

approach, converges to the reference state trajectory xi
ref .

This is ensured by appropriately designing the terminal cost
matrix P and feedback gain matrix K.

Lemma 2: Let the cost functions of OP at time steps k
and k + 1 be J i

k and J i
k+1, respectively. Assume that OP is

feasible at time step k. Then, the following relation holds:
J i
k+1 ≤ J i

k, k = 0, 1, 2, · · · , if

(Ad+BdK)TP (Ad+BdK)−P +Q+KTRK ⪯ 0. (14)

Proof: As the optimization problem OP is feasible
at time step k, we get the optimal control sequence U i

k

and the corresponding sequence of state trajectories Xi
k,

respectively,discussed Lemma 1. Since OP is feasible at time
step k, it follows from Lemma 1 that an optimal control
sequence U i

k+1 also exists for the next time step k + 1.
However, since the optimal control sequence U i

k+1 is not
known exactly, we consider a sub-optimal control sequence
Ũ i
k+1 as in (13). Let the corresponding state trajectories be

X̃i
k+1 and the corresponding cost function would be J̃ i

k+1.
Since Ũ i

k+1 is not optimal, we have: J̃ i
k+1 ≥ J i

k+1. The cost
function J̃ i

k+1 can be expressed as follows:

J̃ i
k+1 = ∥xi

N+1|k − xi
ref∥2P +

N∑
j=1

{
∥xi

j|k − xi
ref∥2Q

+ ∥ui
j|k − ui

ref∥2R
}
. (15)

Now subtracting (15) from (12a), we obtain:

J̃ i
k+1−J i

k = ∥Adx
i
N |k+Bdu

i
N |k−xi

ref∥2P +∥xi
N |k−xi

ref∥2Q
+ ∥ui

N |k − ui
ref∥2R − ∥xi

N |k − xi
ref∥2P

− ∥xi
0|k − xi

ref∥2Q − ∥ui
0|k − ui

ref∥2R. (16)

Note that ui
N |k = ui

N−1|k+1 = ui
ref +K(xi

N |k − xi
ref ), and

according to (5): (Ad − In)x
i
ref +Bdu

i
ref = 0. Using these

relations in (16), following relation is obtained:

J̃ i
k+1−J i

k = (xi
N |k−xi

ref )
T[(Ad+BdK)TP (Ad+BdK)−P

+Q+KTRK](xi
N |k − xi

ref )−
[
∥xi

0|k − xi
ref∥2Q

+ ∥ui
0|k − ui

ref∥2R
]
. (17)

The term, (∥xi
0|k − xi

ref∥2Q + ∥ui
0|k − ui

ref |2R) > 0. Further,
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since (14) holds, it follows from (17) that: J̃ i
k+1 − J i

k < 0.
Further, since J̃ i

k+1 ≥ J i
k+1, we have: J i

k+1 < J i
k. Hence,

the cost function J i
k decreases at each iteration.

According to Lemma 2, the cost function converges J i
k as

the time step advances if the matrix inequality (14) holds.
Note that in (14), the matrices P and K are variables, and
they are the design parameters. We will now formulate a
linear matrix inequality (LMI) optimization to compute P
and K. Note that Lemma 2 is also true when the equality
holds for (14). In such case, one may compute P and K
by solving an LQR problem. Consider two matrices L and
M such that L = P−1 and M = KL. Then, multiply (14)
from left and right with L, which yields the following matrix
inequality:

(LAT
d +MTBT

d )L
−1(AdL+BdM)− L+ LTQL

+MTRM ⪯ 0. (18)

Using (18), we formulate the following LMI optimization to
compute P and K.

min
L,M

− logdet(L) such that L LAT
d+MTBT

d LQ
1
2 R

1
2 MT

AdL+BdM L 0 0

Q
1
2 L 0 I3 0

R
1
2 M 0 0 I1

 ⪰ 0. (19)

One may use LMI solvers, such as YALMIP [22] to solve the
above LMI optimization. Once the above LMI optimization
is solved, we obtain the matrices P = L−1 and K = ML−1.

The overall implementation of the control scheme for CAV
is summarized in Algorithm 3.

Algorithm 3 MPC algorithm for each AV
Offline: Compute P and K by solving (19).
Online:

1: Compute viref using Algorithm 1 for each signalized junction.
2: for k ≥ 0 do
3: Compute X i

Tk
using Algorithm 2.

4: Run OP and generates a control sequence U i
k ={ui

j|k}N−1
j=0 .

5: Consider the first element ui
0|k of U i

k and apply ui
0|k in (2)

with initial state xi
0|k, and get xi

1|k.
6: Share the updated state xi

1|k of ith AV with (i+ 1)th AV.
7: k ← k + 1.
8: end for

III. NUMERICAL SIMULATION

We consider a CAV system consisting of four AVs, which
are moving in a line on a single-lane road. Let the dynamics
of each AV be as in (2), where (considering ηi = 0.55 sec
and ts = 0.2 sec):

Ad =

1 0.2 0.0178
0 1 0.1677
0 0 0.6951

 , Bd =

0.00220.0323
0.3049


We also considered that the vehicles are crossing the 4
signalized junction. The initial states of AVs are considered
as: x1

0 = [560 12 0]T, x2
0 = [546 15 − 1.2]T, x3

0 =

[527 13 1]T and x4
0 = [515 8 3]T. The state and input

constraints for ith AV are: 0 ≤ vik ≤ 30, −5 ≤ aik ≤ 8, and
−8 ≤ ui

k ≤ 6, for i = 1, 2, · · · , 4. It is considered that the
static gap and the reaction time, as used in (4), are: γ = 5
m and ρ = 0.5 sec, respectively. Then, by choosing Q =
diag(10−9, 10, 2), W = 10, and the prediction horizon N =
45, we follow the procedures given in Algorithm 3. In the
offline design we computed: P =

[
0.0005 0.0004 0.00009
0.0004 45.2104 8.5689
0.00009 8.5689 5.4187

]
and K = [−0.00003 − 2.4547 − 1.2195]. It is observed
that each AV requires at most 1.21 sec for each iteration in
simulation, which includes computing the terminal set and
MPC. The terminal sets of four AVs at the initial time step
(k = 0) are shown in Fig. (2). Note that the constraints
set (3) for each AV is fixed over all k, whereas the safe
distance constraint (4) gets updated at each time step k.
Hence, it is required to compute the terminal set X i

Tk
at

each time step k for each AV. The positions of each AV,
passing through four signalized junctions, are depicted in
Fig. (3). It can be observed that the AVs have adjusted their
speed profiles so that they do not have to wait near the
SJs. Further, Fig. (4) shows that the constraints on velocity,
acceleration, and control input profile for each AV are also
satisfied. Additionally, it can be observed from Fig. (5) that
the safe distance among the vehicles is also maintained.

Fig. 2. Terminal sets of AVs at time step k = 0; (a) AV 1, (b) AV 2, (c)
AV 3, (d) AV 4.
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Fig. 3. Positions of AVs crossing four SJs. Red lines (solid) denote red
signal duration, and green lines (dashed) denote green signal duration.
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Fig. 4. (a) Velocity profile. (b) Acceleration. (c) Control input of each AV.

0 50 100 150 200 250
Time (sec)

5

10

15

20

25

30

35

40

Lo
ng

itu
di

na
l g

ap
s 

be
tw

ee
n 

ve
hi

cl
es

 (
m

)

0 5 10 15

10

15

Fig. 5. Actual gap and gap constraint between two AVs on the road. The
dashed lines (magenta, blue, brown) represent gap constraints between AVs
1 & 2, AVs 2 & 3, and AVs 3 & 4, respectively. The solid lines (magenta,
blue, brown) represent the actual gap between AVs 1 & 2, AVs 2 & 3, and
AVs 3 & 4, respectively.

IV. CONCLUSION

This work proposes a velocity-guided control scheme for
a CAV system such that either none of the AVs wait at an
SJ or only a limited number of vehicles get accumulated at
an SJ when the red light is ON. For this, appropriate control
signals for each AV are generated through the RHC approach
in the MPC framework. An algorithm is proposed to generate
reference velocities for the vehicles. Further, the inherent
issues that arise in the MPC framework, such as recursive
feasibility and stability analysis, are also investigated. To
demonstrate the developed algorithms, numerical simulation
is performed on a four vehicle CAV system, where satisfac-
tory results are obtained. Note that in this work, we have
considered an ideal scenario for roadway traffic, where real-
world difficulties, such as vehicle dynamics uncertainties,
communication uncertainties, and the intervention of human-
driven vehicles, are not considered. It is expected that the
uncertainties related issues can be addressed in the robust
MPC framework. We are leaving these extensions as our
future research work.
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