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Event-triggered distributed nonconvex optimization with progress-based
threshold

Changxin Liu' and Eric Shi®

Abstract— This work studies the distributed nonconvex op-
timization problem in bandwidth-limited communication en-
vironments. We develop a communication-efficient algorithm
based on the gradient-tracking based distributed optimization
method, where each computation node is equipped with a new
event-triggered communication scheduler. Such scheduler ap-
proves the broadcasting only when the innovation of exchanged
variables exceeds the change of decision variables in two
consecutive updates. Compared to the conventional scheduler
with time-dependent vanishing thresholds, the proposed one
adapts better to the optimization dynamics and thus leads to
more significant communication reduction. Finally, we prove
the convergence of the algorithm and illustrate its performance
via numerical examples.

I. INTRODUCTION

In the past decade, distributed optimization has received
increasing attention from both academia and industry [1],
since it enables a group of computing nodes to collabo-
ratively solve large-scale optimization problems over com-
munication networks. In order to tackle increasingly more
sophisticated learning and control tasks, the scale and com-
plexity of distributed optimization systems grow, resulting
in significantly heavier communication load on the network
during implementation. To proactively lower down the com-
munication load, different types of communication-efficient
distributed optimization algorithms have been proposed re-
cently.

In the literature, communication-efficient distributed opti-
mization algorithms might be roughly categorized into two
groups. In the first category, the message packets are quan-
tized deliberately to save communication while preserving
the convergence property in original algorithms [2]-[4]. A
typical technique to achieve this is the quantization of the
variable change in two consecutive updates rather than the
variable itself; see [4] for the case with stochastic gradients
and [5] for the case with full gradients.

Another strategy to save communication resources is the
event-triggered scheduling [6]. In this type of methods, the
local broadcasting of each computing node is governed by a
testing rule that compares the innovation of variables to be
sent out with a prescribed threshold. The scheduler approves
the broadcasting only when the up-to-date variables are
innovative enough, and therefore avoids unnecessary commu-
nication usage. Most of existing event-triggered distributed
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optimization algorithms considered convex problems. For ex-
ample, the works in [7] presented event-triggered distributed
gradient algorithms with thresholds that are summable over
time. For strongly convex problems, exponentially decaying
thresholds are used to maintain the linear convergence of
the original distributed optimization algorithm [8]. Notably,
the authors in [9] designed a threshold that evolves with the
consensus error, based on which the overall algorithm also
presents linear convergence. Nevertheless, event-triggered
distributed nonconvex optimization has rarely been explored.
One recent attempt used a summable threshold and showed
the convergence of the algorithm [10]. We remark that event-
triggered communication is orthogonal to quantization; they
can be combined to achieve more significant communication
reductions, as demonstrated in [11].

In this work, our focus is placed on event-triggered
distributed nonconvex optimization. We develop a new trig-
gering threshold that is proportional to the local progress
in optimization, that is, the change of decision variables in
two consecutive updates. The threshold automatically decays
along with the convergence of the algorithm. Compared to
the time-dependent vanishing thresholds, the new one adapts
well to the dynamic behavior of distributed optimization and
leads to greater communication reduction. Then, this scheme
is incorporated into the distributed optimization algorithm
with gradient tracking (DOGT) [12] for communication
reduction. We provide sufficient conditions on the step-size
and the parameter in threshold, under which the event-
triggered optimization algorithm converges for nonconvex
problems. The performance in communication reduction is
demonstrated via numerical examples.

The remaining of this work is organized as follows. We
formulate the problem with some preliminaries in Section II.
The algorithm is developed in Section III, followed by the
convergence analysis in Section IV. Section IV presents the
numerical experiments and Section V concludes this work.

II. PROBLEM STATEMENT AND PRELIMINARIES

A. Basic Set-up

Consider the standard distributed optimization problem, in
which a group of computing nodes/agents aim at solving the
following finite-sum optimization problem

m;n{f(w _ iim)} M)

where each f; is a possibly nonconvex function. We assume
the optimal value f* > —oo. Each agent 7 only has



access to the local objective function f;, and the information
exchange among the agents are restricted in the sense that
the communication topology is a sparse graph. In particular,
we use a doubly stochastic matrix P to describe the network
topology and the weights of connected links. We denote by
pi; the (4, j)-th element in P, and it is positive only if the
two agents ¢ and j are neighbors. The set of ¢’s neighbors is
denoted as MN;.

Assumption 1: 1) The graph is connected; ii) P has a
strictly positive diagonal, i.e., p;; > 0; iii)) P1 = 1 and
17P =17, where 1 denotes the all-one vector of dimension
n.

Assumption 1 ensures that there exists a constant § €
(0,1) such that the second largest singular value of P

o2(P) < 5. 2

For the local objective function, we make the following
assumption.

Assumption 2: Each f; is continuously differentiable, and
V f; is Lipschitz continuous with constant L > 0, i.e.,

IVfi(x) = Vfi(y)ll < Lllz - yl|,
A direct consequence of Assumption 2 is

YV, y.

fily) < Jil@) +{VAia)y — ) + Sy —al, Va,y.

B. DOGT

Our algorithm is based on the DOGT algorithm, in which
each agent ¢ maintains two variables x; and s;, which
are local estimates of the solution and the gradient of f,
respectively. At each time ¢, agent ¢ performs the following
to update both variables:

xgt) = Zpij (xg-t_l) — ozsg-t_l)>

(3a)
j=1

s =3 pyst Y+ VEED) - VD) @b
j=1

where « is the step-size. For agent ¢ to implement the above
update, only information from its immediate neighbors is
required. The convergence of DOGT has been investigated
for convex and nonconvex problems [12], [13].

In (3), each agent ¢ needs to update with its neighbors
about x; and s; at each time ¢, which may result in
unnecessary communication. To tackle this problem in this
work, we employ the event-triggered communication strategy
that schedules the information exchange based on a local
event test, which reduces the utilization of communication
resources.

III. ALGORITHM DEVELOPMENT

A. Event-triggered Communication

Let ¢; = [x;; i), and §; denote the latest version of
q; that has been broadcast by agent ¢ to its neighbors. Each
agent ¢ only updates g; with its neighbors when the deviation
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between ¢; and ¢; exceeds a given threshold depending on
the progress being locally made, i.e.,

[

where Axl(t_l) = Q:Et) — :cgt_l) and 7 is a positive constant.

Here, the parameter 7 is made uniform across the agents
for brevity, and can be extended to the heterogeneous case
without much effort. Because each agent ¢ broadcasts zjgt)
when the condition in (4) is violated, there holds

— g2 > gllazi)? )

16" — g% < nll Az V2. ©)

Such progress-based triggering threshold is motivated by
the following. The progress made by optimization algorithms
at each iteration can be typically described by the differ-
ence between two consecutive updates. The lack of up-to-
date information from neighbors in distributed optimization
introduces noise to local updates. The magnitude of noise
is critical to convergence. If the noise caused by triggering
is restricted to be proportional to the optimization progress
with a tunable parameter as in (4), then it is sensible that
the algorithm remains convergent as long as the effect due
to noise can be compensated by sufficient progress.

Compared to time-dependent vanishing thresholds in the
literature, i.e.,

I — )1 > p® ©6)

where the nonnegative sequence {p(®)};>o is square
summable, the proposed one features the following. On one
hand, provided that the algorithm converges, Az; converges
to zero and thus the noise due to triggering vanishes. Thus the
new triggering strategy will not prevent the algorithm from
exact convergence, similar to the time-dependent vanishing
thresholds. One the other hand, the triggering threshold
depends on the algorithm dynamics and therefore triggers
the broadcast more wisely, as we will show in numerical
results.

B. Optimization Algorithm

By incorporating the event-triggered communication, we
modify the DOGT algorithm as

:E,Et) _ xgt—l) _ asgt_l) _ Zpij (jgt—l) _ j;:&—1))
j=1

+ad py <§§“1) - égt‘”) (7a)
j=1
Sz(t) _ Sl(_tfl) _ Zpij (ggt—l) _ §§t71))
j=1
+ V(@) = V@), (7b)

where Z; and §; denote the latest iterates of agent ¢ that is
made available to its neighbors, and §£0) = 350 and i:l(-o)
xgo). If ; = x; and 3; = s;, then (7) reduces to the update

in (3).



Algorithm 1 Event-triggered DOGT
Input: o > 0, (9
Output: xgt),t =1,2,...
1: Initialize: each agent i = 1,.

0 _ A(O)

,n sets x;

20, 82(0) = §z(-0) = Vfi(z), and receives x( ) and s( 0
from j € N;

2: for t =1,2,..., each agent 7 synchronously do

3: update 2 by (7a)

4: update sz by (7b)

5: if (4) is satlsﬁed then

6: send 2\ and 5! to j € V;

7: end if

8: if new information is received from 5 € N; then

9: update m§ ) = x§t) and 3t

10: else

11: set x( ) = (f D and §§-t) = §§t_1)

12: end if

13: end for

IV. RATE ANALYSIS
A. Analysis Set-up
Denote

i=1 i=1 i=1
s-[sl, ,sn],éz[él; ,§n],§:s—1®§
x—[zl, xn],f(—[i”l; ;;in],fc:x—1®§
We obtain from (7) that
<) — P(X(t—D _ as(t—l))
(P -1 ((X(t—l) ~xD) st - S(t—l)))
s® = pgt-1) L v _ y(-1
(P - D)0 — s
®)
where P = P ® I and V(") = [Vfl(m?)); . .;an(:c;”)]

Because of Null(I — P!) = Span(1) where Null(-) denotes
the null space of a linear map, it can be verified that the
following conservation property holds for (7):

f(tJFl) — f(t) _ ag(t)

S 50 4 g4 _ ©)

g(t)
In addition, the update of {Z("};>; in (9) can be taken as
gradient descent with inexact gradients, whose convergence
property is summarized in the following lemma.

Lemma 1: Suppose Assumption 2 holds. For z(*) ¢
1,..., generated by (9), it holds that Ve > 0

0 (1@ - @) < (BEE - 1) jaxeve

L2
+ o &Y
€

(10)
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where Ax(t~D =x) _x(t=D gndx =10 7.

Lemma 1 can be taken as an unconstrained version of
[14, Lemma 3]; its proof is presented in Appendix for
completeness.

B. Rate Analysis
Define
a=[q; - 5qn], a=[d@;3d], a=4d-—q.
Given positive constants x and -, we define the following
Lyapunov candidate function
R(z,%,8,d) = nf(@) +[IX|* + slI5]* + yllal*.

Clearly, this function is bounded from below by f*. Next, we
investigate the sufficient conditions under which the function
value of R(Z, X, 8§, q) monotonically decreases.

Lemma 2: Suppose Assumptions 1 and 2 hold. If the
parameters «, k, v and 7 are chosen such that

2 2 2
pwzl—(lzm—ﬁ@—gg—i%m(lﬂL(lzﬁ)>
_ Ba?(1+ B)?
ps = Kk — k(1 — W(l +317)
_ 6yn(1+8)  2(1+5)
1 L+e 3s(1+p)°L? 5
O Y e U
are positive, where
_(1+p)? 302L%(1 + B)?
R s =
O 3(1+B)%L? (1+ B)?
=i ()
1+ﬁ 2(1 3(1+ﬁ)2L2>

and 8 € (07 1) is defined in (2), respectively, then it holds
that

Rz,
< —r(@W,

where

Z(HD) g1 gDy

SOISOIPION

— R(E(t), x® 5, q(t))

(T,%,8,a) = pa||[X[1* + ps|1811% + pallal® + py | AKIJ.
Proof: Using (9) and (8), we obtain

x® =pPxt-) 10zt — o (Ps(t*” -1 ®§(t*1)>
(P -1 <(5((t71) _ a3t — S(t71))>
1
117 I> x(t=1)

= (P I)x®b (n
( 117 ® I) stV
S(t—l)))

X(tfl)) _

(P®I)

(P -1 ((x) -

( % >®I>< (t-1) _ a-s(t*l))

(P —1) <( (t=1) _ x(t=1)) _ o (5(t-D) S(t—l))) .

XD — (gt —

E



Upon using
la+b+clf> <(1+k1)(1+ ko)lalf?

+ (14 k) A+ kyH|I6)1% + (1 +

%(%—1) and

(g((t—l) _

ki)l
for k‘l = kQ =
X(t—1)> _

Oz(é(t_l) _ S(t—l)) H2

s“))1%)

< 2D = x| + fa(sY -
< 2llg* V2,
we obtain that

2 2 2
Hf((t)HZ < (1 Zﬁ) ||)~((t71)||2_|_ [‘304 (1+B)

2(1-p)

2(1+8) (t—
+ ﬁHP — I|Plla" "%

1502

(12)
Similarly, it can be verified from (8) that

5]
< GO enpe 4 1B yp - pppsc—h — se-be
(1+5)2L2 Ax D2
AxD]
21— 5)
< G jgen 4 T2 8y gy —gebe
272
3(1+ﬂ) L ||)~((t)||2 (1+ﬂ) ||)~((t_1 ”2
2501~ 7). 25(1 — B)
3(1+8)°L (t—1) )12
— —||AX
+ DL ey,
where we use
At

—fx® — %@ 4 gt -1 A2

<32 + 3%V P + 3| AR
to get the last inequality. Using (12) and

8D —st-1|12 < a2
— az )
we arrive at
51
1+5
< G jgenpe + D ye - rpae-ve
31+ B)2L% 21+ 8
D) (( MP Rl
28(-5) \ 1-
BaP(1+6)* _t—1)2 (14‘5) ~(t—1)2
+ 2(1_5)||s 12+ I)1)
314 B)2L | -1y 2 (1"‘6) (t—1)12
+ g I + g gy lAaxtY
250 >|\ P+ S5 )|| n
< GBI + GIIRV) + Gallg P
31+ 8)°L? (t—1)2
+ g |IAX
s 1A

where (1, (o and (3 are defined in (11). In addition, we have
la®]* < nflax=D)?
< 3 (%02 + R 4 AxCD2)

2
<o (14 2D jrene

3Ba”(1+B)* 1—1yy2
+2(1—_6)H5t Y
L 6+ 5)

g P~ IIPla" =212 + 3l axt= Y2,

13)

where (5) is used to derive the first inequality. Upon using
Lemma 1, we obtain

R(j(t)7i(t)7§(t) q(t)) _ R(*(t—l)
L+e¢
< (55 2) e
R [l

+<u+m
+3777 (1 + (1 25)2) ||)~((t71)||2

Z(=1) =1 =)

Ln<t”w

4

Ba(1+p)? 2(t—1)2
(Z5a=g o+ =) 15
3nyBa”(1 + B)? <(t—1))12

6yn(1+ 8) 2 - (t—1) |2

+ (2D p - e - o) a0

2(1 + B)

( e - IH24—KC3)Ikﬁt e
3/<; lJrﬂ)QL2 —(t—

%(3 U F) |AZE |2

< —p(ytD X(t 1) 50D gDy,

_|_

|

Remark 1: Lemma 2 presents sufficient conditions on the
parameters to ensure convergence of ET-DOGT. They are
stronger than that in conventional DOGT. This is because the
triggering behavior introduces additional noise, i.e., (13), that
should be counteracted properly. For the relation between pa-
rameters, the step-size « decreases as 3 and L increase, and
the triggering parameter decreases as the step-size decreases.
In the extreme case where » = 0, one can always find an
« for any parameter € (0,1). Next, we provide a set of
explicit conditions. Suppose the matrix P is designed such

that
2
B < i 1

Take
_Ba-p)
12L2(1 + )2’
To ensure p, > 0, there must hold
3-0+p? 1
3d+(1+p8)?) 24

e =2L%

ny <Nty = > 0.
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Note that both p, and p, are monotonically decreasing over
77y. Then p, and p, can be made positive by choosing «
satisfying both

a# r(1—B)*(3+ )
26(1 = B)(A + B)*(L+ 3n*y*) + 3cL>(1 + B)*
and
" 26(1 — ) |

B = B)(L +2L?) + 3k(1 + B)*L? + 6n*y*B(1 — B)
Finally, to ensure p, > 0, one sets

> (67*(71*95 b) 2(11_+§)) 1P — I||* + ks,
and, accordingly,

n < 77*7*.

Theorem 1: Suppose the premise in Lemma 2 holds.
Given € > 0, let T, = min{t : r(y®), 2 50 q®) < ¢} .
Then, it holds that

i) The sequence lim, . [%X(7| = 0 and
lim, o0 Yy Vi(27) = 0;
i) Tc = o(1/e).
Proof: 1) By Lemma 2 and the fact that R(7, X, S, q)
is bounded from below, we have that R(z™*),x®) 51 )

converges and

ZT(E(T)’R(T)’ g(T)’ q(T)) < 0.
7=0

Therefore
lim (", %™ 5 ¢y =o0.
T—00

By the definition of r, we obtain lim,_,||#(")|| = 0 and

vaZ (7')

ii) Upon using Lemma 2 and the definition of 7¢, we obtain

lim ||AZ7) || = hm
T—00

T I T
?Ee < Z (7 < R+ _ p(Te+1)
r=[Ze]+1

As € — 0, we consider the following two possibilities. If
T. — oo, then T, = o(1/¢) because of the convergence
of R™), ie., zf;tg 14177 = 0.1 Tt < oo, then R
converges in finite st2eps. This completes the proof. [ ]

V. EXPERIMENTS

In this section, we present experimental results on real-
world datasets to demonstrate the efficiency of ET-DOGT in
saving communication resources, by comparing the perfor-
mance with a few recent algorithms.
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Fig. 2. Testing accuracy versus the numbers of iterations and broadcasting
times.

Consider the logistic regression problem with a nonconvex
regularizer on the a9a dataset [15]. In particular, the unshuf-
fled dataset is evenly distributed to n = 10 agents, and the
local objective function is given by

= Zlog (1 + exp <fy;M;T:v)) + LZ
j=1

where Mj € R™ and yj € {—1,1} denote the j-th pair
of input feature and class label for agent i, x[! represents
the [-th entry of z, and the regularization parameter is set as
¢ = 0.05. For the communication network among the agents,
we construct an Erd6és-Rényi topology with connectivity
probability 0.8. Based on it, the fastest distributed linear
averaging (FDLA) matrix is chosen as the mixing matrix
[16].

We compare the ET-DOGT algorithm with the origi-
nal DOGT and the event-triggered distributed subgradient
method (ET-DSM) in [7]. For DOGT-based algorithms, the
step-size is set as o = 0.1. For ET-DSM, the step-size is
set as 1/(t + 1) to satisfy the theoretical conditions for
convergence. The parameter of the triggering condition (4) is
set as 7 = 1 for ET-DOGT, and for ET-DSM the parameter in
(6) is determined as p(*) = 2/(t + 1)2. For all the methods,
the initial variables are drawn from a uniform distribution
over [0,1).

The results are plotted in Figs. 1 and 2. Fig. 1 depicts the
change of gradient norm, ie., ||>_, Vfi(x;)|, over both

(xl0)2

1+ ( x[l]




the number of iteration steps and broadcasting times under
the three algorithms. The ET-DOGT algorithm presents a
similar convergence speed with DOGT in terms of itera-
tion number, however the event-triggered variant consumes
much less communication resources compared to the original
DOGT. ET-DSM converges much slower than the other
two methods, mainly due to the decaying step-size. Fig
2 evaluates the three algorithms via testing accuracy, and
the result demonstrates the same trend as in Fig. 1. In
summary, the proposed ET-DOGT algorithm helps reduce
the utilization of communication resources while preserving
a desired convergence speed.

VI. CONCLUSIONS

This work presented an event-triggered variant of the
distributed optimization algorithm with gradient tracking,
and provided sufficient conditions for the step-size and the
triggering parameter under which the proposed algorithm
converges for nonconvex and smooth problems. The pro-
posed triggering condition features that the threshold is deter-
mined by the change of two consecutive local updates, which
adapts well to the optimization dynamics. Experimental
results were presented to demonstrate the effectiveness of the
proposed algorithm. Future research includes the extension
to composite optimization problems, and linear convergence
results under stronger assumptions such as strong convexity.

APPENDIX
A. Proof of Lemma 1
By Assumption 2, it holds that

F@®) - f@h)
< (VAEOD), 30 ~ 2Dy 4 2|0 D)2
= (Vf(@t D) — gD 7O _ g1 (14)
L
+ <g(t—1)’§(t) _ f(t—1)> + EHEU) _ f(t—l)HQ.
Since gV = o 1@V — 7)), we have
f(f(t))_f(f(t_l)) <Vf(m(t 1)) gtz —E(t_1)>
1 L
- (a — 2) |Z®) —zt=1)12.
(15)
In addition, we have
Ivf@Et=Y) =gt
2
_ —1va —(t—1) Vf( (t— 1))

IA

LS IV E) — VA
i=1

2
< L ze-npe,
n

where the first inequality is due to the convexity of norm
square and Jensen’s inequality, and the second inequality
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follows from Assumption 2. Therefore, it holds that

(7 FED) — §<t—1)77<t) _ gty
g _ —(t—
S*Hx(t)—x(t VP2 + HVf(l"(t D) =312 (16
L
< *Hw(t) VP4 g XUV, Ve > 0.

Combining (15) and (16) completes the proof.

REFERENCES

T. Yang, X. Yi, J. Wu, Y. Yuan, D. Wu, Z. Meng, Y. Hong, H. Wang,
Z. Lin, and K. H. Johansson, “A survey of distributed optimization,”
Annual Reviews in Control, vol. 47, pp. 278-305, 2019.

[1]

[2] A. Kashyap, T. Basar, and R. Srikant, “Quantized consensus,” Auto-
matica, vol. 43, pp. 1192-1203, 2007.
[3] H. Tang, S. Gan, C. Zhang, T. Zhang, and J. Liu, “Communication

compression for decentralized training,” Advances in Neural Informa-
tion Processing Systems, vol. 31, 2018.

A. Koloskova, S. Stich, and M. Jaggi, “Decentralized stochastic
optimization and gossip algorithms with compressed communication,”
in International Conference on Machine Learning, pp. 3478-3487,
PMLR, 2019.

Y. Xiong, L. Wu, K. You, and L. Xie, “Quantized distributed gradient
tracking algorithm with linear convergence in directed networks,”
IEEE Transactions on Automatic Control, 2022.

D. V. Dimarogonas, E. Frazzoli, and K. H. Johansson, “Distributed
event-triggered control for multi-agent systems,” IEEE Transactions
on automatic control, vol. 57, no. 5, pp. 1291-1297, 2011.

Y. Kajiyama, N. Hayashi, and S. Takai, “Distributed subgradient
method with edge-based event-triggered communication,” IEEE Trans-
actions on Automatic Control, vol. 63, no. 7, pp. 2248-2255, 2018.
C. Liu, H. Li, and Y. Shi, “Resource-aware exact decentralized
optimization using event-triggered broadcasting,” IEEE Transactions
on Automatic Control, vol. 66, no. 7, pp. 2961-2974, 2020.

M. Li, L. Su, and T. Liu, “Distributed optimization with event-
triggered communication via input feedforward passivity,” IEEE Con-
trol Systems Letters, vol. 5, no. 1, pp. 283-288, 2020.

T. Adachi, N. Hayashi, and S. Takai, “Distributed gradient descent
method with edge-based event-driven communication for non-convex
optimization,” IET Control Theory & Applications, vol. 15, no. 12,
pp. 1588-1598, 2021.

N. Singh, D. Data, J. George, and S. Diggavi, “Sparg-sgd: Event-
triggered and compressed communication in decentralized optimiza-
tion,” IEEE Transactions on Automatic Control, 2022.

A. Daneshmand, G. Scutari, and V. Kungurtsev, “Second-order guar-
antees of distributed gradient algorithms,” SIAM Journal on Optimiza-
tion, vol. 30, no. 4, pp. 3029-3068, 2020.

J. Xu, S. Zhu, Y. C. Soh, and L. Xie, “Augmented distributed gradient
methods for multi-agent optimization under uncoordinated constant
stepsizes,” in 2015 54th IEEE Conference on Decision and Control
(CDC), pp. 2055-2060, IEEE, 2015.

C. Liu, X. Wu, X. Yi, Y. Shi, and K. H. Johansson, “Rate analysis of
dual averaging for nonconvex distributed optimization,” arXiv preprint
arXiv:2211.06914, 2022.

C.-C. Chang and C.-J. Lin, “Libsvm: a library for support vector
machines,” ACM transactions on intelligent systems and technology
(TIST), vol. 2, no. 3, pp. 1-27, 2011.

L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Systems & Control Letters, vol. 53, no. 1, pp. 65-78, 2004.

[5]

[6]

[7]

[8]

[10]

(11]

[12]

[13]

[14]

[15]

[16]



