
Strictly Positive Realness-Based Feedback Gain Design Under Imperfect
Input-Output Feedback Linearization in Prioritized Control Problem

Sang-ik An, Gyunghoon Park, and Dongheui Lee

Abstract— The prioritized control problem is a process to
find a control strategy for a dynamical system with prioritized
multiple outputs, so that it can operate outside its nonsingular
domain. Singularity typically leads to imperfect inversion in the
prioritized control problem, which in turn results in imperfect
input-output feedback linearization. In this paper, we propose
a method based on the Kalman-Yakubovich-Popov lemma that
compensates nonlinear feedback terms caused by the imperfect
inversion of the prioritized control problem. In order to realize
this idea, we prove existence of a feedback gain matrix that gives
a strictly positive real transfer function whose output matrix is
identical to the feedback gain matrix. Our proof is constructive
so that a set of such matrices can be found. Also, we provide
a numerical approach that gives a larger set of feedback gain
matrices and validate the result with numerical examples.

I. INTRODUCTION

Priority is a strategy to distribute a limited resource to
multiple tasks. The study of priority for control systems
started in the robotics society in 1980s in order to find
a control strategy for redundant robotic systems. Here, a
system is called redundant when the number of control
inputs is larger than the number of outputs. Thus, we can
consider a secondary task for a redundant system. We do
not specify what a task is but only assume that a task can
be represented by a set of output variables. The early effort
was made to formulate a control input that makes a priority
structure of a redundant system, in which a secondary task
is performed without affecting a primary task [1], [2], [3],
[4]. Later, this idea was extended for arbitrary finite number
of tasks [5], [6], [7]. The study of priority has been used and
expanded in many areas such as constrained control [8], [9],
task switching [10], [11], optimal control [12], [13], machine
learning [14], [15], [16], etc.

Notwithstanding extensive research on this subject, only a
few of them focus on analytic properties such as trajectory
existence, output tracking, and stability of a prioritized
control system. Here, prioritized control system designates
a control system that has a hierarchy structure generated by
priority. Antonelli [17] analyzed output tracking of a priori-
tized kinematic system. Sentis et al. [18] showed asymptotic
stability of robot postures when using prioritized whole-
body control structures. Ott et al. [19] analyzed asymptotic
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stability and output passivity of prioritized multi-task com-
pliance control in terms of conditional stability, and Dietrich
et al. [20], [21] improved this result for output regulation
and tracking. Basso and Pettersen [22] derived sufficient
conditions for the feedback linearization when a task-priority
operational space pre-feedback control law is applied.

Yet, in spite of 50 years of research, there is not a widely
accepted formal definition of the problem concerning priority
for control systems. It might be a reason why analytic proper-
ties of prioritized control systems have not been studied more
actively. Roughly speaking, the prioritized control problem
is a process to find a control strategy for a dynamical system
with multiple outputs along with the priority relation between
outputs. As an effort to formalize this rough definition, An
and Lee [23] proposed a generalization of the prioritized
inverse kinematics problem in the form of multiobjective
optimization with the lexicographical ordering. Recently, An
et al. [24] expanded this generalization to the input-output
feedback linearization.

Usually, the prioritized control problem contains two sub-
problems: orthogonalization and inversion [25]. The role of
orthogonalization is to ensure the priority relation between
outputs and that of inversion is to find a control input that
realizes the required behavior of outputs. A difficulty in
solving the prioritized control problem is to handle sin-
gularity that occurs whenever there are conflicts between
outputs. Specifically, if a prioritized control system operates
in a vicinity of a singular point, orthogonalization can be
discontinuous and inversion can be imperfect. Therefore,
prioritized control problem can be considered as an effort
to extend the domain of a dynamical system to singular
points, and a challenge is to find a solution to handle those
degenerate properties caused by singularity. Nevertheless,
previous works have not included singularity in their analysis
and the challenge still remains unaddressed.

In this paper, we propose an original method to handle a
part of the imperfect inversion in the prioritized control prob-
lem. The imperfect inversion, caused by singularity, typically
results in imperfect input-output feedback linearization, so
that the closed loop system of the output has trailing nonlin-
ear terms. The key idea is to separate the right hand side of
the closed loop system of the output into three parts: linear
feedback, nonlinear feedback, and nonlinear interconnection.
Then, we apply the Kalman-Yakubovich-Poppov lemma to
the closed system without the nonlinear interconnection in
order to find a positive definite function whose derivative is
negative definite. This idea requires that a transfer function,
whose output matrix is identical to the feedback gain matrix,
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should be strictly positive real. Therefore, we prove that there
exists a feedback gain matrix that makes the aforementioned
transfer function strictly positive real. Also, we find a set
of such matrices, provide a way to find a larger set of such
matrices numerically, and validate the result with numerical
examples.

II. ISSUES IN PRIORITIZED CONTROL PROBLEM

A. Background on Prioritized Control Problem

We quickly recall the prioritized control problem [24].
Consider a multivariate nonlinear input-affine system with
multiple vector outputs

ẋ = f(x) +G(x)u (1a)
yi = hi(x) (1 ≤ i ≤ k) (1b)

where f : Rn → Rn, G : Rn → Rn×m, and hi : Rn → Rpi
for 1 ≤ i ≤ k are sufficiently smooth on Rn; n, m, and pi
are dimensions of the state x, input u, and the i-th output yi,
respectively; and k is the total number of vector outputs. We
assume p = p1+· · ·+pk ≤ m ≤ n and that for each yi there
exists ri ∈ N such that LGL

j
fhi(x) = 0 for all 0 ≤ j ≤ ri−2

and x ∈ Rn and Ji(x) = LGL
ri−1
f hi(x) has full rank almost

everywhere on Rn where Ljfhi(x) = (∂(Lj−1f hi)/∂x)f(x),
LGL

j
fhi(x) = (∂(Ljfhi)/∂x)G(x), and L0

fhi(x) = hi(x).
In this paper, we restrict our discussion to the case p ≤ m
but the main result also holds for the case p > m [26]. We
also clarify that the smoothness assumption on f , G, hi,
and J holds for a large class of systems such as Lagrangian
mechanics. Let κi(x) = Lrif hi(x). Then, we have

y
(ri)
i =

driyi
dtri

= κi(x) + Ji(x)u (1 ≤ i ≤ k). (2)

The reason for not combining outputs as a single vector
y := col(y1, . . . , yk) is to consider priority relations between
outputs y1, . . . , yk. (We will use notations h, κ, and J as the
same meaning of y. Also, •i:j will denote col(•i, . . . , •j)
unless otherwise stated.) The concept of priority is closely
related to the output controllability of (1) that depends on the
rank condition of the input gain matrix J(x). If J(x) has full
rank at some x ∈ Rn, then the system (1) has a vector relative
degree at x and the output y is controllable in a neighborhood
of x [27, Chapter 5]. If J(x) is rank deficient, then we cannot
always control all outputs at x simultaneously. In this case,
we introduce priority relations between outputs and then try
to control higher priority outputs prior to the lower priority
outputs. (We assume that the outputs are listed in the order
of priority such that y1 has the highest priority and yk has
the lowest priority.)

In order to realize this idea, we orthogonalize the input
gain matrix as in [23, Lemma 1]J1...

Jk


︸ ︷︷ ︸

J(x)∈Rp×m

=

L11 · · · 0 0
...

. . .
...

...
Lk1 · · · Lkk 0


︸ ︷︷ ︸
Le(x)=[Lij(x)]∈Rp×m

 Q1

...
Ql+1


︸ ︷︷ ︸

Qe(x)∈Rm×m

(3)

where Le is lower triangular, Qe is orthogonal, and Lij(x) ∈
Rpi×pj . Then, we can rewrite (2) as

y
(ri)
i = κi(x) +

i∑
j=1

Lij(x)Qj(x)uj (1 ≤ i ≤ k) (4)

where ui = Pi(x)u, Pi = QTi L
+
iiLiiQi, and •+ is the pseu-

doinverse of a matrix •. (We clarify that the orthogonalization
(3) has a special property that allows us to write (4). See
[23, Lemma 1] for details.) The orthogonal projectors Pi(x)
decompose the input space Rm into mutually orthogonal
subspaces R(Pi(x)) and ui ∈ R(Pi(x)) is the i-th input
that can be utilized for the control of the i-th output yi
under the priority relations. Thus, the prioritized control
problem usually finds ui for each yi first and then define
the prioritized control input as u = u1 + · · ·+ uk.

A formal definition of the prioritzed control input along
with some examples can be found in [23], [24], [28]. Among
them, the canonical prioritized control input is given as

ui = (QTi L
+(λi)
ii )(x)

vi − κi(x)−
i−1∑
j=1

(LijQj)(x)uj


(5)

where vi ∈ Rpi is the i-th external control input that can be
determined freely for yi, λi : Rn → [0,∞) is the damping
function, and •+(c) = •T (• •T +c2I)+ is the damped
pseudoinverse of a matrix • with the damping constant c ≥ 0.
By applying (5) into (4), we can formulate

y
(ri)
i = P ◦i (x)vi +N◦i (x)κ◦i (x, v1:i−1) (6a)

= vi −N◦i (x)(vi − κ◦i (x, v1:i−1)) (6b)

where P ◦i = LiiL
+(λi)
ii , N◦i = Ipi − P ◦i , and κ◦i = κi +∑i−1

j=1 LijQjuj . (Here, we write κ◦i (x, v1:i−1) to show that
κ◦i depends on x, v1, . . . , vi−1.) From (6), we can clearly see
how the orthogonalization (3) realizes the idea of priority.
Since

rank(J1:i(x)) =

i∑
j=1

rank(Pi(x)) =

i∑
j=1

rank(P ◦i (x)) (7)

holds for all 1 ≤ i ≤ k and x ∈ Rn by [23, Lemma 1], the
triangular structure of (3) ensures that whenever there are
conflicts between outputs, higher priority outputs occupy the
shared part of the control input.

B. Imperfect Input-Output Feedback Linearization

Let pi:j = pi + · · · + pj , ρi:j(x) = rank(Pi(x)) + · · · +
rank(Pj(x)), and Ωi:j = ρ−1i:j (pi:j). Since J(x) is assumed
to be sufficiently smooth on Rn, each Ω1:i ⊂ Rn is open and
Ω1:k ⊂ Ω1:k−1 ⊂ · · · ⊂ Ω1:1. The motivation of studying the
prioritized control problem is to extend the domain of the
system (1) from Ω1:k to Ω1:i for some i < k. Since J1:i(x)
has full rank on Ω1:i by (7), we see that Ljj(x) ∈ Rpj×pj has
full rank for all 1 ≤ j ≤ i and x ∈ Ω1:i. It follows that if we
let λj(x) = 0 in (6) for all 1 ≤ j ≤ i and x ∈ Ω1:i, we can
establish linear input-output relations y(rj)j = vj for 1 ≤ j ≤
i on Ω1:i, no matter what happens in lower priority outputs
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yi+1, . . . , yk. While it appears that we have successfully
addressed the prioritized control problem, letting λ1:i(x) = 0
leads to divergence of the canonical prioritized control input
(5) in the boundary of Ω1:i, rendering it impractical in many
applications. Thus, we are forced to define positive damping
functions λ1(x), . . . , λi(x) on Ω1:i in many cases. However,
positive damping functions make the linear input-output
relations imperfect because the nonlinear terms N◦j (vj−κ◦j )
remain. Although, we can compromise the nonliear terms
with the control input by adjusting the damping functions,
those trailing terms make the analysis of the imperfect input-
output feedback linearization (6) nontrivial.

In this paper, we present our analysis results of strictly
positive real transfer functions that are closely related to the
nonlinear terms in (6). To see this, let hij be the j-th compo-
nent of hi, ξij = col(L0

fhij(x), L1
fhij(x), . . . , Lri−1f hij(x)),

and ξi = col(ξi1, . . . , ξipi). Then, we can rewrite (6) as

ξ̇i = Aiξi +BiP
◦
i (x)vi +BiN

◦
i (x)κ◦i (x, v1:i−1) (8a)

yi = Ciξi (8b)

where (Ai, Bi, Ci) is the controllable canonical form repre-
sentation of pi chains of ri integrators. (Indeed, (8) is the
partial normal form of (1) applied by the canonical prioritized
control input (5). We do not consider the internal dynamics of
(1) in this paper.) Now, let vi = −Kiξi with some feedback
gain matrix Ki ∈ Rpi×piri for 1 ≤ i ≤ k and consider the
simultaneous stabilization of the multiple outputs y1, . . . , yk.
An important property of the canonical prioritized control
input is that for every 1 ≤ i ≤ k, every x ∈ Rn, and every
damping functions λi(x) ∈ [0,∞), there exists σi ≥ 0 such
that

Mi(x) := P ◦i (x)− σiIpi = Mi(x)T ≥ 0. (9)

Then, we may tackle the simultaneous output stabilization
problem of (8) with the following closed loop system

ξ̇i = (Ai − σiBiKi)ξi︸ ︷︷ ︸
linear feedback

+Bi(σiIpi − P ◦i (x))Kiξi︸ ︷︷ ︸
nonlinear feedback

+BiN
◦
i (x)κ◦i (x, v1:i−1)︸ ︷︷ ︸

nonlinear interconnection

(10a)

yi = Ciξi. (10b)

Obviously, it is not always possible to stabilize all outputs
simultaneously on Ω1:i because J(x) can be singular on Ω1:i.
Thus, we stabilize only higher priority outputs y1, . . . , yi on
Ω1:i. For that purpose, we use the additional property of (9)
that for every 1 ≤ i ≤ k, every compact C ⊂ Ω1:i, and
every λ1(x), . . . , λi(x) ∈ [0,∞), there exist σ1, . . . , σi > 0
satisfying (9) on C. The right-hand side of (10a) consists
of three parts: linear feedback, nonlinear feedback, and non-
linear interconnection between outputs. Our strategy to the
simultaneous output stabilization of y1, . . . , yi on a compact
set C ⊂ Ω1:i consists of two problems:

1) to find the feedback gain matrices K1, . . . ,Ki that
stabilize (10) without the nonlinear interconnection;

2) to find a stability condition when the nonlinear in-
terconnection is added as a perturbation to the first
problem.

In this paper, we focus on the first problem. Indeed, if we
solve the first problem, then a simple way to handle the non-
linear interconnection is to assume that N◦1 (x), . . . , N◦i (x)
are sufficiently small on C. (This condition can be achieved
by letting λ1(x), . . . , λi(x) sufficiently small.) However, if
we want to find a tighter stability condition for the second
problem, we need to use the structure of κ◦i (x, v1:i−1) that
also depends on the internal dynamics of (1). The stability
condition of the whole system including the nonlinear inter-
connection and the internal dynamics based on the result of
this paper can be found in our recent work [26].

III. MAIN RESULT

We consider a linear system with linear and nonlinear
feedbacks

ξ̇ = (A− σBK)ξ +Bu (11a)
y = Kξ (11b)
u = −M(x)y (11c)

where r = r1 + · · ·+rp, ξ = col(ξ1, . . . , ξp) ∈ Rr, ξi ∈ Rri ,
A = diag(A1, . . . , Ap) ∈ Rr×r, B = diag(B1, . . . , Bp) ∈
Rr×p, Ai =

[
0 Iri−1
0 0

]
∈ Rri×ri , Bi =

[
0
1

]
∈ Rri , σ >

0, K ∈ Rp×r, y, u ∈ Rp, and M(x) = M(x)T ≥ 0 on
C ⊂ Rn. (We assume that a linear feedback u′ = −Kξ is
already applied to the system ξ̇ = Aξ+σBu′+Bu in (11a).)
Note that (11) represents (10a) without the interconnection.
(We dropped the index i in (10) in order to simplify the
notation but considered different relative degrees for each
component of yi in (10) in order to make the main result
more applicable.) Thus, if we find K that stabilizes ξ of
(11), then Ki = K will also stabilize the output yi of (10)
without the nonlinear interconnection term.

The transfer function of (11a)–(11b) from u to y given by

H(s) = K(sIr −A+ σBK)−1B (12)

has a property that the output matrix is identical to the
feedback gain matrix. Thus, poles and zeros of each entry of
H(s) are coupled by the matrix K. This unique characteristic
of H(s) requires additional efforts in the analysis compared
to the usual case in which the transfer function is given as
C(sIr−A+σBK)−1B with an output matrix C [29], [30],
[31]. We present our analysis result of a strictly positive real
H(s) in Theorem 1. Let Ac = A− σBK.

Theorem 1: For all σ > 0 there is K ∈ Rp×r satisfying
(A) (Ac, B) is controllable,
(B) (Ac,K) is observable, and
(C) H(s) is strictly positive real.

Once we find K satisfying Theorem 1, we can analyze
stability of ξ in (11) by using the Kalman-Yakubovich-Popov
(KYP) lemma [32, Lemma 6.3] along with the condition
M(x) = M(x)T ≥ 0 on C ⊂ Rn as follows. By Theorem
1 and the KYP lemma, there exist a positive constant c and
matrices K, P = PT > 0, and L such that

PAc +ATc P = −LTL− 2cP (13a)

PB = KT . (13b)
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Let V (ξ) = 1
2ξ
TPξ. Then, we have

V̇ (ξ) =
1

2
ξT (PAc +ATc P )ξ − ξTPBM(x)Kξ

=
1

2
ξT (−LTL− 2cP )ξ − ξTKTM(x)Kξ

≤ −cV (ξ) (14)

for all ξ ∈ Rr and x ∈ C.
We must clarify that (14) does not guarantee ξ(t)→ 0 as

t→∞ for a solution ξ(t) of (11) because the theorem holds
only for x ∈ C. Indeed, the system (11) does not include
the evolution of x, so we need additional information. For
example, if x = φ(ξ) ∈ C holds for all ξ ∈ Rr, then (14)
guarantees ξ(t) → 0 as t → ∞. For the original problem
(10), we need an internal dynamics η̇ = f◦(η, ξ)+G◦(η, ξ)u
along with a diffeomorphism (η, ξ) = Φ(x) and should
analyze stability of (η, ξ) together [26]. As we stated earlier,
we do not expand our discussion to this subject in this paper.

The proof of Theorem 1 to be presented in Section IV is
constructive, listing up Conditions 1–9 that explicitly give a
set of K ∈ Rp×r satisfying Theorem 1. In the following, we
summarize and restate the conditions in a way that additional
information on the desired location of poles and zeros of
H(s) is pointed out.
(D1) Let zia = αia + jβia ∈ C for 1 ≤ i ≤ p and 1 ≤ a ≤

ri−1 be such that αia < 0; zib = αia−jβia for some
1 ≤ b ≤ ri − 1; and

εi0 = min
1≤a≤ri−1

|αia| > max
1≤a,b≤ri−1

|zia − zib| = εi1.

(15)
(D2) Let cia ∈ R be such that

ri−1∏
a=1

(s− zia) = sri−1 +

ri−1∑
a=1

cias
a−1 (16)

and define ci = max{1, |ci1|, . . . , |ci,ri−1|} and di =
(1 +

√
1 + 1/ci)/σ.

(D3) Define constants mia,Mia ∈ (0,∞) for 1 ≤ a ≤ 3 as:

mi1 =

(
r − 1∑ri−1

a=1 (1 + β2
ia/α

2
ia)(r−1)/2

)1/(r−1)

mi2 = max
1≤a≤ri−1

(
|αia| cot

π

4(ri − 1)
+ |βi|

)
mi3 =

(
1 +

3
√

3

16

)(
1 +

π

8

) ri−1∑
a=1

(|αia|+ |βia|)

Mi1 = max{mi2,mi3}/(σmi1) (17a)
Mi2 = (1 + σcidi)/(σ − 1/di) (17b)

Mi3 = (1 + σcidi)
2/(σ(εi0 − εi1)). (17c)

(D4) Define K ∈ Rp×r as

kiri > max{Mi1,Mi2,Mi3} (18a)
kia = kiricia (1 ≤ a ≤ ri − 1) (18b)
Ki = row(ki1, ki2, . . . , kiri) (18c)
K = diag(K1,K2, . . . ,Kp). (18d)

Theorem 2: For every σ > 0 and every K ∈ Rp×r defined
by (D1)–(D4), Items (A)–(C) of Theorem 1 hold. Also, if
pia ∈ C for 1 ≤ i ≤ p and 1 ≤ a ≤ ri satisfies

ri∏
a=1

(s− pia) = sri + σ

ri∑
a=1

kias
a−1,

then, without loss of generality, |pia − zia| < εi0 for 1 ≤
a ≤ ri − 1 and piri + σkiri +

∑ri−1
a=1 zia → 0 as kiri →∞.

Although Theorem 2 gives a set of K satisfying Theorem
1, the condition on K is quite conservative. Thus, it can
be beneficial for practical applications to have a numerical
method that finds a larger set of K satisfying Theorem 1.
The following corollary can be used for that purpose.

Corollary 3: Let zia = αia+ jβia ∈ C for 1 ≤ i ≤ p and
1 ≤ a ≤ ri − 1 be such that αia < 0 and zib = αia − jβia
for some 1 ≤ b ≤ ri − 1. Let cia ∈ R be as in (16). Then,
there exists kiri > 0 for 1 ≤ i ≤ p such that Theorem 1
holds for K ∈ Rp×r defined by (18b)–(18d). Such kiri can
be found by checking (C1)–(C3).

We will show in Section IV that (C2) holds for all kiri >
Mi1 and (C3) holds for all kiri > Mi0 = σ−1

∑ri−1
a=1 |αia|.

The lower bound Mi0 of kiri for (C3) is tight (see Section
IV-D) and Mi1 for (C2) is somewhat conservative but ac-
ceptable. Since Mi1 > Mi0, we may check (C1) and (C2)
numerically by using Mi0 as a minimum value of kiri or
only (C1) by using Mi1. We will discuss it in Section V.

IV. PROOF OF MAIN RESULT

A. Overview

For the proofs of Theorems 1–2 and Corollary 3, we
will find Conditions 1–9 on the feedback gain matrix K ∈
Rp×r. Conditions 1–7 will be used to prove Theorem 1 and
Corollary 3 and Conditions 1–9 will be used for Theorem 2.

Condition 1: Let Ki =
[
ki1 · · · kiri

]
∈ R1×ri and

K = diag(K1, . . . ,Kp) ∈ Rp×r.
Condition 2: Let ki1 6= 0 for 1 ≤ i ≤ p.
Since A, B, and K are block diagonal, Ac = A−σBK =

diag(Ac1, . . . , Acp) and

Aci = Ai − σBiKi =


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

−σki1 −σki2 · · · −σkiri

 .
Also, H(s) = diag(H1(s), . . . ,Hp(s)) and

Hi(s) =

∑ri
a=1 kias

a−1

sri + σ
∑ri
a=1 kias

a−1 . (19)

Thus, the proof is complete if we show that for every 1 ≤
i ≤ p and σ > 0 there exists Ki ∈ R1×ri such that (Aci, Bi)
is controllable, (Aci,Ki) is observable, and Hi(s) is strictly
positive real. Since Hi(s) is a strictly proper transfer function
and Hi(0) = 1/σ > 0 by Condition 2, Hi(s) is strictly
positive real if and only if [32, Lemma 6.1]
(C1) poles of Hi(s) have negative real parts;
(C2) Re(Hi(jω)) > 0 for all ω ∈ R;
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(C3) either Hi(∞) > 0 or Hi(∞) = 0 and

lim
ω→∞

ω2Re(Hi(jω)) > 0.

Fix 1 ≤ i ≤ k and σ > 0. In the rest of the proof, we drop
the index i in order to simplify the notation.

B. Proof of Items (A) and (B)

We can easily check that (Ac, B) is controllable from the
controllability matrix[

B AcB · · · Ar−1c B
]

=


0 0 · · · 0 1
0 0 · · · 1 −σkr
...

...
. . .

...
...

1 −σkr · · · (−σkr)r−2 (−σkr)r−1

 .
Since the observability matrix of (A,K) is given by

K
KA

...
KAr−1

 =


k1 k2 · · · kr
0 k1 · · · kr−1
...

...
. . .

...
0 0 · · · k1

 ,
Condition 2 implies that (A,K) is observable. By [33,
Lemma 9.18] , there exists M ∈ Rr so that real or complex
conjugate eigenvalues of A−MK can be assigned arbitrarily.
Let N ∈ Rr and M = σB+N . Since Ac−NK = A−MK
and (A,K) is observable, [33, Lemma 9.18] implies that
(Ac,K) is also observable.

C. Proof of (C2)

Condition 3: Let kr > 0.
By Condition 3, we can consider the factorization of the

polynomial

sr−1 +

r−1∑
i=1

ki
kr
si−1 =

r−1∏
i=1

(s− zi) (20)

and let zi = αi + jβi ∈ C. By Condition 2, zi 6= 0 for all
1 ≤ i ≤ r − 1. Then, we can rewrite (19) as

H(s) =
1

σ

[
1 +

s

σkr

r−1∏
i=1

(
1− αi + jβi

s

)−1]−1
for all s 6∈ {0, z1, . . . , zr−1}.

Condition 4: Let αi < 0 for all 1 ≤ i ≤ r − 1.
By Condition 4, jω 6∈ {z1, . . . , zr−1}. Let ω ∈ R \ {0},

γi = 1− βi/ω, δi = αi/ω, and

P (jω) = 1 +
jω

σkr

r−1∏
i=1

1

γi + jδi
. (21)

Then, H(jω) = 1/(σP (jω)) and

Re(H(jω)) =
Re(P (jω))

σ|P (jω)|2 > 0 ⇐⇒ Re(P (jω)) > 0.

Let τi = |γi + jδi|, τ =
∏r−1
i=1 τi, θi = ∠(γi + jδi) =

atan2(δi, γi), and θ =
∑r−1
i=1 θi. Then, we have

Re(P (jω)) = 1 +
ω sin θ(ω)

σkrτ(ω)
. (22)

Since τi(ω)→ 1 and θi(ω)→ 0 as ω → ±∞, we expand
sin θ around θ = 0 as

sin θ =

r−1∑
i=1

atan2(δi, γi) + r(θ)

where r(θ) = −(θ2/2) sin θ0 for some θ0 ∈ [−θ, θ] by the
Taylor’s theorem [34, Theorem 5.15]. Since γi(ω)→ 1 and
δi(ω) → 0 as ω → ±∞, we expand atan2(δi, γi) around
(δi, γi) = (0, 1). Observe that if |ω| ≥ |αi| + |βi|, then
γi > 0 and δi ∈ [−γi, γi] such that δi/γi ∈ [−1, 1] and

atan2(δi, γi) = arctan(δi/γi) = δi/γi + r0(δi/γi)

where r0(δi/γi) = −(z/(1 + z2)2)(δi/γi)
2 for some z ∈

[−1, 1] by the Taylor’s theorem. Therefore, we have

ω sin θ =

r−1∑
i=1

(
αi
γi

+ wr0

(
δi
γi

))
+ ωr(θ) (23)

for all |ω| ≥ ω0 = max1≤i≤r−1(|αi|+ |βi|) where

|r(θ)| ≤ θ2/2 (24a)

|r0(δi/γi)| ≤ (3
√

3/16)(δi/γi)
2. (24b)

If there exist constants M1 > 0 and M2 < ∞ satisfying
M1 ≤ infω 6=0 τ(ω) and M2 ≥ supω 6=0 |ω sin θ(ω)|, we can
find a lower bound of (22) as

Re(P (jω)) ≥ 1− |ω sin θ|
σkrτ

≥ 1− M2

σkrM1
. (25)

Since limω→0 τ
2
i (ω) =∞, limω→±∞ τ2i (ω) = 1, and

dτ2i (ω)

dω
=

2

ω2

(
βi −

α2
i + β2

i

ω

)
,

we have minω 6=0 τi(ω) = |αi|/
√
α2
i + β2

i and

min
ω 6=0

τ(ω) ≥M1 =

(
r − 1∑r−1

i=1 (1 + β2
i /α

2
i )

(r−1)/2

)1/(r−1)

by Condition 4 and the inequality between the geometric
mean and the harmonic mean. Let

ω1 = max
1≤i≤r−1

(
|αi| cot

π

4(r − 1)
+ |βi|

)
.

Obviously, |ω sin θ| ≤ ω1 for all 0 < |ω| < ω1. By using
(23), (24), and the fact that

|θ| ≤
r−1∑
i=1

∣∣∣∣arctan
αi

ω − βi

∣∣∣∣ ≤ r−1∑
i=1

arctan
|αi|

|ω| − |βi|
≤ π

4

for all |ω| ≥ ω1, we can find an upper bound of |ω sin θ| as

|ω sin θ| ≤
r−1∑
i=1

 |αi|
1− |βi|

|αi|+|βi|

+
3
√

3

16
(|αi|+ |βi|)

∣∣∣∣ δiγi
∣∣∣∣


+
1

2

(
1 +

3
√

3

16

)
|θ|

r−1∑
i=1

(|αi|+ |βi|)

≤
(

1 +
3
√

3

16

)(
1 +

π

8

) r−1∑
i=1

(|αi|+ |βi|) = M ′2
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on |ω| ≥ ω1. Since |ω sin θ| ≤ M2 = max{ω1, M
′
2} < ∞

for all ω 6= 0, (C2) follows from (25) and the following
condition.

Condition 5: Let kr > M2/(σM1).

D. Proof of (C3)

Since H(s) is strictly proper, H(∞) = 0. From (21),

lim
ω→∞

∣∣∣∣P (jω)

ω

∣∣∣∣ = lim
ω→∞

∣∣∣∣∣ 1ω +
j

σkr

r−1∏
i=1

1

γi + jδi

∣∣∣∣∣ =
1

σkr
.

From (22), (23), and (24), we also have

lim
ω→∞

Re(P (jω))

= lim
ω→∞

(
1 +

1

σkrτ

r−1∑
i=1

(
αi

1− βi/ω
+ ωr0

)
+

ωr

σkrτ

)

= 1 +
1

σkr

r−1∑
i=1

αi.

Therefore, (C3) follows from

lim
ω→∞

ω2Re(H(jω)) = lim
ω→∞

1

σ

∣∣∣∣P (jω)

ω

∣∣∣∣−2 Re(P (jω))

= σk2r

(
1 +

1

σkr

r−1∑
i=1

αi

)
and the next condition.

Condition 6: Let kr > σ−1
∑r−1
i=1 (−αi).

E. Proof of (C1)

Consider the factorization of the denominator of (19) along
with (20)

D(s) = sr + σkr

r−1∏
i=1

(s− zi) =

r∏
i=1

(s− pi). (26)

Since pi 6= 0 for all 1 ≤ i ≤ r by Condition 2, we have

D(pi)

pri
= 1 + σkr

∏r−1
a=1(pi − za)

pri
= 0 (27)

for all 1 ≤ i ≤ r and kr > 0. By the properties of the
root loci [35, Chapter 7], (27) shows that without loss of
generality pi → zi for 1 ≤ i ≤ r− 1 and Re(pr)→ −∞ as
kr →∞. (Indeed, pr < 0 for sufficiently large kr; thus, we
can safely write pr → −∞.) By Condition 4, there exists
M3 < ∞ such that Re(pi) < 0 for all 1 ≤ i ≤ r and
kr > M3. Therefore, (C1) follows from the next condition
and it completes the proof of Theorem 1 and Corollary 3.

Condition 7: Let kr > M3.

F. Speed of Divergence of pr
In Section IV-E, we showed pr → −∞ as kr → ∞. We

can also find the speed of divergence of pr. By (26),

σkr
pr

= −
r−1∏
i=1

(
1− zi

pr

)−1
→ −1 (kr →∞)

and

D(pr)

pr−1r

= pr + σkr

(
1− z1

pr

)(
1− z2

pr

)
· · ·
(

1− zr−1
pr

)
= pr + σkr −

σkr
pr

(z1 + · · ·+ zr−1 + r′(pr)) = 0

where r′(pr)→ 0 as pr → −∞. Therefore,

pr + σkr +

r−1∑
i=1

zi =

(
1 +

σkr
pr

) r−1∑
i=1

zi +
σkr
pr

r′(pr)→ 0

(28)
as kr →∞.

G. Finding M3

Let d1, . . . , dr > 0, D = diag(d1, . . . , dr), and

M = [mab] = (DAcD
−1)T

=


0 0 · · · 0 −σ(dr/d1)k1

d1/d2 0 · · · 0 −σ(dr/d2)k2
0 d2/d3 · · · 0 −σ(dr/d3)k3
...

...
. . .

...
...

0 0 · · · dr−1/dr −σkr

 .

Obviously, the eigenvalues of M coincides with Ac, i.e., the
poles p1, . . . , pr. Let di = kr and ci = ki/kr for 1 ≤ i ≤
r − 1. The Gershgorin discs of M [36, Theorem 6.1.1] is
given as

Di =


{s ∈ C : |s| ≤ σdr|c1|}, i = 1

{s ∈ C : |s| ≤ 1 + σdr|ci|}, 2 ≤ i ≤ r − 1

{s ∈ C : |s+ σkr| ≤ kr/dr}, i = r.

Let c0 = max{1, |c1|, . . . , |cr−1|}. Then,

Di ⊂ D0 = {s ∈ C : |s| ≤ 1 + σdrc0}

for 1 ≤ i ≤ r − 1. By [36, Theorem 6.1.1] , if dr > 1/σ
and kr > (1 + σdrc0)/(σ − 1/dr), then Dr ∩

⋃r−1
i=1 Di = ∅

such that p1, . . . , pr−1 ∈ D0 and pr ∈ Dr. We can easily
check that dr = (1+

√
1 + 1/c0)/σ minimizes the following

problem

min
d>1/σ

1 + σc0d

σ − 1/d
=

1 + σc0dr
σ − 1/dr

= M4.

Thus, if kr > M4, then |pi| ≤ 1 + σdrc0 for 1 ≤ i ≤ r − 1
and pr < −σdrc0 < 0.

Condition 8: Let M3 ≥M4 and

ε0 = min
1≤i≤r−1

|Re(zi)| > max
1≤a,b≤r−1

|za − zb| = ε1.

Since |pi − zi| < ε0 implies Re(pi) < 0, if we find an
upper bound of kr for the condition |pi − zi| ≥ ε0, then
every kr greater than that bound will guarantee Re(pi) < 0.
From (26), Conditions 7 and 8, and the inequality between
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Fig. 1. The plots show variations of ω2Re(H(jω)) for different values
of kr . The horizontal axis is ω and the vertical axis is ω2Re(H(jω)).
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Fig. 2. The plots show H(jω) on the complex plane for different values of
kr . The horizontal axis is Re(H(jω)) and the vertical axis is Im(H(jω)).

the geometric mean and the harmonic mean, we have

kr =
|pi|
σ

(
r−1∏
a=1

|pi − za|r−1
|pi|r−1

)−1/(r−1)

≤ |pi|
2

σ

(
1

r − 1

r−1∑
a=1

1

(|pi − zi| − |zi − za|)r−1

)1/(r−1)

≤ (1 + σdrc0)2

σ(ε0 − ε1)
= M5

for every |pi − zi| ≥ ε0. Therefore, the following condition
completes the proof of Theorem 2.

Condition 9: Let M3 = max{M4,M5}.
V. NUMERICAL EXAMPLES

In this section, we verify the analysis results presented in
Section III numerically. Specifically, we show how Corollary
3 can be used to find a matrix K that makes the transfer
function (12) strictly positive real and compare the results
with Theorem 2. As we discussed in Section IV-A, if we
assume Conditions 1 and 2, then we only need to check
if (19) satisfies (C1)–(C3) for each i. Thus, we restrict our

−15 −10 −5 0
−10

−5

0

5

10

M0M1

M0
M1

M2

M3

M0
M1M2M3

M0M1M2
M3

(a) Case I

−15 −10 −5 0

−10

−5

0

5

10 M0M1

M2

M3

M0
M1

M0
M1M2

M3

M0M1M2

M3

(b) Case II

−4 −3 −2 −1 0 1

−2

−1

0

1

2

M0

M1

M0

M1

M0

M1

M0

(c) Case III

−6.0 −4.5 −3.0 −1.5 0.0

−3.0

−1.5

0.0

1.5

3.0

M0

M0

M1

M0

M1

M0M1
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Fig. 3. The plots show the root loci of the characteristic equation (29) with
respect to kr ∈ (0,M3] for Cases I and II and kr ∈ (0,M1] for Cases III
and IV. The blue X marks are the locations of the poles of R(s) (kr = 0)
and the blue O marks are the locations of zeros of R(s) (kr = ∞). The
horizontal axis is the real part and the vertical axis is the imagenary part.

TABLE I
VARIOUS LOWER BOUNDS OF kr FOR THEOREM 2 AND COROLLARY 3

M0 M1 M2 M3

Case I 100 229.5 1620 66420
Case II 110 244.8 2060 67550
Case III 25 164.6 N/A N/A
Case IV 35 115.9 N/A N/A

discussion to a scalar transfer function (19). (Also, we omit
the index i in order to simplify the notation.) Let r = 4
and σ = 0.1. We need to choose zeros zi = αi + jβi ∈ C
for 1 ≤ i ≤ 3, real or complex conjugate pairs, satisfying
αi < 0. We consider the following four cases:

• Case I: z1 = −4, z2 = −3 + j, z3 = −3− j
• Case II: z1 = −3, z2 = −4 + j, z3 = −4− j
• Case III: z1 = −1.5, z2 = −0.5 + j, z3 = −0.5− j
• Case IV: z1 = −0.5, z2 = −1.5 + j, z3 = −1.5− j

where Cases I and II satisfy the condition (15), while Cases
III and IV do not. We show various lower bounds of kr for
Theorem 2 and Corollary 3 in Table I. The lower bounds
M2 and M3 are not available for Cases III and IV because
(15) does not hold.

We can easily check the condition (C3) by plotting
ω2Re(H(jω)) as shown in Figure 1. It is clearly seen that the
lower bound of kr for (C3) given by M0 = σ−1

∑r−1
i=1 |αi|

is tight. We can also check the condition (C2) by plotting
H(jω) on the complex plane and then by checking if H(jω)
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is on the right half-plane as shown in Figure 2. We see that
the lower bound M1 of kr for (C2) given by Theorem 2 is
a bit conservative, but not too much except for the Case III
in which kr = M1/5 also satisfies (C2). In order to check
(C1), we draw the root loci of the characteristic equation

1 + kR(s) = 1 + σkr

∏r−1
i=1 (s− zi)

sr
= 0 (29)

for k = σkr > 0 as shown in Figure 3. We can observe
that the poles pi for 1 ≤ i ≤ 4 of (19) starts from 0 when
kr = 0 and, as kr → ∞, three of them converge to zeros
and one of them diverges to −∞. We also observe from
Cases I and II that the lower bound max{M2,M3} of kr
for (C1) in Theorem 2 is quite conservative. Indeed, Cases
III and IV that do not satisfy (15) require smaller values
of kr to locate the poles near the zeros. Therefore, although
Theorem 2 gives a specific set of K satisfying Theorem 1, the
numerical approach based on Corollary 3 is recommended
for the practical applications.

VI. CONCLUSION

We proposed a method based on the Kalman-Yakubovich-
Popov lemma that compensates the nonlinear feedback term
of the imperfect input-output feedback linearization in the
prioritized control problem. In order to realize this method,
we proved existence of a feedback gain matrix that gives a
strictly positive real transfer function in Theorem 1 and found
a set of such matrices in Theorem 2. We also provided a way
to find a larger set of feedback gain matrices numerically in
Corollary 3 and validated the result numerically.
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