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Abstract— This paper studies N -cluster games with second-
order dynamics, wherein the players’ decisions are restricted
by local set constraints and nonlinear coupled inequality
constraints. The presence of second-order dynamics coupled
with constraints leads to difficulties in the design and analysis
of generalized Nash equilibrium (GNE) seeking algorithms,
since it may be impossible to directly determine the decisions
of players based on their control inputs. To facilitate the
autonomous execution of N -cluster game tasks through second-
order players, by employing state feedback, projection, primal-
dual, dynamic average consensus, and passivity methods, a
distributed algorithm is proposed to find the variational GNE
of the studied games, under which the players’ decisions
can satisfy the set constraints all the time. Additionally, the
algorithm’s convergence is rigorously analyzed, and its efficacy
is validated by a simulation example.

I. INTRODUCTION
Resource allocations and non-cooperative games reflect

the collaborative and competitive characteristics among a-
gents, respectively, with applications across various fields
like smart grids and sensor networks [1], [2]. In resource
allocations, agents work together to minimize a collective
cost function [3]. In non-cooperative games, each player
strives to minimize their own cost function selfishly [4].
Noteworthily, the simultaneous presence of collaboration and
competition among agents is common in fields like smart
grids and multi-party politics [2], [5], and this complex
interaction can be effectively modeled by N -cluster games.

In N -cluster games, multiple clusters exist, with each
cluster containing several players. Players in the same cluster
collaborate to minimize this cluster’s cost, i.e., the sum of
the cost of all players within the same cluster, by com-
peting against other clusters. The inter-cluster competition
persists until a Nash equilibrium (NE) is reached, where
no cluster can unilaterally reduce its cost by altering its
strategy. Recently, various algorithms have been developed
to find the NE or generalized NE (GNE) of N -cluster games.
For example, a subgradient-based algorithm was introduced
in [6] to handle non-smooth N -cluster games. To mitigate
communication and computation costs, the authors in [7]
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introduced an interference graph-based algorithm. However,
these algorithms require that each player has full access
to other players’ decisions, which is often impractical in
engineering scenarios due to privacy concerns. Thus, several
distributed algorithms based on partial-decision information
have been devised. For instance, a projection-based algorithm
for N -cluster games with local constraints was designed in
[8]. An average consensus-based algorithm was developed
in [9] for N -cluster games with consistency constraints. A
finite-time consensus-based algorithm was presented in [10]
for N -cluster games with local and linear equality coupled
constraints.

In engineering practices, various physical systems like
vehicles [11] and generators [2], can be effectively charac-
terized by second-order dynamics. Additionally, constraints
are frequently encountered in physical systems in consider-
ation of security, capacity, and inherent physical limitations.
Hence, to enable autonomous execution of distributed tasks
by physical systems, it is imperative to account for both con-
straints and dynamics in the design of distributed algorithms,
as done in [2], [12]. Motivated by above discussions, this
paper aims to investigate N -cluster games with second-order
dynamics, local and nonlinear coupled inequality constraints.

The contributions of this paper are:
• Compared with the N -cluster games investigated by

[6]–[10], players’ dynamics are additionally considered
in this paper. The cost functions and constraints are
more general than those in [2], [4], [12]. Furthermore,
unlike the N -cluster games studied in [6], [10], which
assumed that each player’s cost function is unaffected
by the decisions of other players in the same cluster,
while the cost functions of players considered in this
paper rely on the decisions of all players. This formu-
lation is more comprehensive and accurately captures
the collaborative characteristics within clusters.

• A distributed variational GNE (vGNE) seeking algorith-
m is proposed in this paper for constrained N -cluster
games with second-order dynamics. Compared with
the full-decision information-based algorithms [6], [7],
[12], only local information is required in the proposed
algorithm. Additionally, to guarantee that the decisions
of players satisfy set constraints all the time, the pro-
jection method used in this paper avoids the nonsmooth
analysis and simplifies the convergence analysis in the
meantime, while the barrier function approach [12] may
not.

• Based on the Lyapunov stability theory and LaSalle’s
invariance principle, the designed algorithm is rigor-
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TABLE I: Notations

Symbols Explanations
R the set of real numbers
R+ the set of nonnegtive real numbers
Rn the n-dimensional Euclidean space

∇f(·) the gradient of a function f(·)
× or

∏
Cartesian product

⊗ Kronecker product
[n] {1, 2, . . . , n} for positive integer n

diag{(ki)i∈[n]} a diagonal matrix with k1, . . . , kn being its
principal diagonal elements

col((xi)i∈[n]) [xT
1 , . . . , x

T
n ]

T

∥x∥2 or ∥x∥ the Euclidean norm of a vector x
∥X∥ the spectral norm of matrix X
XT the transpose of matrix X
1n an n-dimensional vector with all its elements

being 1
0n an n-dimensional vector with all its elements

being 0
In the n× n identity matrix

λmin(X) the smallest eigenvalue of matrix X
λ2(X) the second smallest eigenvalue of matrix X

ously analyzed and can drive all players’ decisions to
the exact vGNE of N -cluster games, instead of merely
approaching the neighborhood of the vGNE [12].

The structure of this paper is as follows: Section II
provides the preliminaries. Section III introduces the problem
formulation. In Section IV, a distributed vGNE-seeking
algorithm and its convergence analysis are given. Section V
is a simulation example. Finally, Section VI concludes the
paper.

II. PRELIMINARIES

This section presents some preliminaries and clarifies the
notations used in this paper, as detailed in Table I.

A. Graph Theory

Denote by G := {V, E ,A} as an undirected graph, with
V := [N ], E ⊆ V × V , and A = [aij ]N×N being the vertex
set, the edge set, and the adjacency matrix, respectively.
Moreover, aij is the weight of {i, j}. Specifically, aij > 0
if {i, j} ∈ E , and aij = 0 otherwise. For a connected
undirected graph G, its Laplacian matrix L is symmetric
(i.e., LT = L) and satisfies L1N = 0N , which indicates
that λmin(L) = 0 and λ2(L) > 0. More details can be found
in [13].

B. Projection Operator

Given that C is a nonempty closed convex set, the follow-
ing results hold.

Denote by NC(x) = {y : ⟨y, υ − x⟩ ≤ 0,∀υ ∈ C} the
normal cone to C at x, and by TC(x) = {z ∈ Rn | zT y ≤
0,∀y ∈ NC(x)} the tangent cone to C at x. The projection
of x to C is PC(x) = argminy∈C ∥x − y∥. Moreover,
for any x ∈ C and y ∈ Rn, the projection of y over set
C at the point x is defined as ΠC(x, y) := PTC(x)(y) =

limδ→0+
PC(x+δy)−x

δ [14]. Two useful lemmas are given
below.

Lemma 1: [15, Lemma 2.11]: For a closed convex set
C ⊆ Rn, one has ⟨x− PC (x) ,PC (x)− y⟩ ≥ 0,∀x ∈
Rn,∀y ∈ C.

Lemma 2: [4, Lemma 1]: Let C ⊆ Rn be a closed convex
set and x, y ∈ C, then (x− y)TΠC(x, z) ≤ (x− y)T z,∀z ∈
Rn.

III. PROBLEM FORMULATION

Consider an N -cluster game composed of N clusters.
Cluster j ∈ [N ] contains nj players with second-order
dynamics. The second-order dynamics of player i ∈ [nj ]
in cluster j ∈ [N ] can be described as:{

ẋji =v
j
i

v̇ji =uji
(1)

where uji and xji ∈ R are the control input and the decision of
player i in cluster j, respectively. Let x := col(xj , x−j) de-
note the decisions of all players, where xj := col((xji )i∈[nj ])
is cluster j’s decision, and x−j := col((xr)r∈[N ]\{j}) repre-
sents the decision of all clusters except cluster j. The feasible
decision set of x is Λ := {x ∈ Rn | h(x) ≤ 0, x ∈ C},
where C :=

∏N
j=1 C

j , Cj :=
∏nj

i=1 C
j
i with Cj

i ⊆ R
being the local decision constraint of player i in cluster j,
h(x) :=

∑
j∈[N ]

∑
i∈[nj ]

hji (x
j
i ) with hji : R → R being a

nonlinear function, and n :=
∑

j∈[N ] nj . Player i in cluster j
is equipped with a cost function f ji (x

j , x−j), and cluster j’s
cost function is f j(xj , x−j) :=

∑
i∈[nj ]

f ji (x
j , x−j). This

N -cluster game can be denoted as Γ(N , f,Λ) with N := [N ]
and f := {f1, . . . , fN}. The aim of each cluster j ∈ [N ]
in Γ(N , f,Λ) is to selfishly minimize its cost function f j ,
i.e., to seek the GNE of N -cluster game Γ(N , f,Λ), which
is defined as:

Definition 1: [16]: The decision x∗ := col((xj∗)j∈[N ]) is
a GNE of N -cluster game Γ(N , f,Λ) if

xj∗ ∈ argmin
xj

f j(xj , x−j∗), s. t .(xj , x−j∗) ∈ Λ, ∀j ∈ [N ].

To proceed, some mild assumptions for N -cluster game
Γ(N , f,Λ) are given below.

Assumption 1: There exists x ∈ C such that h(x) < 0
holds.

Assumption 2: For each j ∈ [N ], i ∈ [nj ], C
j
i is a

nonempty, compact, and convex set. hji (x
j
i ) is convex and

twice continuously differentiable. f ji (x
j , x−j) is twice con-

tinuously differentiable and convex in xj for any fixed x−j .
Besides, ∇xj

i
f jk(x) :=

∂fj
k(x)

∂xj
i

is Lipschitz continuous in x,

i.e., there exists l > 0 such that ∥∇xj
i
f jk(x)−∇xj

i
f jk(x

′)∥ ≤
l∥x− x′∥, ∀x, x′ ∈ Rn.

Assumption 3: F(x) is strongly monotone in x, i.e.,
∀x, y ∈ C, there exists µ > 0 such that (x −
y)T (F(x) − F(y)) ≥ µ∥x − y∥2, where F(x) :=
col((∇xj

i
f j(xj , x−j))j∈[N ],i∈[nj ]).

Assume that all players communicate with each oth-
er through undirected graph G0, and players in cluster j
communicate with each other through undirected graph Gj .
Moreover, for each j ∈ [N ], Gj is a subgraph of G0.
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Assumption 4: G0,G1, . . . ,GN are undirected and con-
nected graphs.

Suppose that Assumptions 1 and 2 hold, according to [16,
Theorem 4.6], x∗ is a GNE of N -cluster game Γ(N , f,Λ)
iff, ∀j ∈ [N ], there exists Lagrange multipliers ϑj∗ ∈ R
such that the classical KKT conditions for N -cluster game
Γ(N , f,Λ)

0nj ∈ ∇xjf j(x∗) +∇xjh(x∗)Tϑj∗ +NCj (xj∗)

h(x∗) ≤ 0, ϑj∗h(x∗) = 0, ϑj∗ ≥ 0
(2)

are satisfied.
From (2), one can observe that the Lagrange multipliers

may be different for each cluster for the same coupled
constraint, which indicates that system (2) is ill-posed. Thus,
this paper focus on vGNE, which is a special GNE that
satisfies (2) with the same Lagrange multiplier, i.e., ϑj∗ =
ϑk∗ = ϑ̄∗ for all j, k ∈ [N ]. It is worth mentioning that
the vGNEs of N -cluster games enjoy economic justifiability
and computational convenience (see [17]). This paper aims
to propose a distributed algorithm for second-order players
to seek the vGNE of N -cluster game Γ(N , f,Λ).

Remark 1: Assumptions 1-4 are standard in distributed
games, which are widely made in [2], [4], [7]–[9]. Assump-
tion 1 implies that the Slater’s is satisfied. Assumption 2
guarantees the existence of the vGNE of N -cluster game
Γ(N , f,Λ) (see [18, Proposition 2.2]). Under Assumption 3,
the strong monotonicity of F(x) indicates that there exists
a unique vGNE of N -cluster game Γ(N , f,Λ) (see [19,
Theorem 2.3.3]).

Remark 2: N -cluster game considers both cooperation
and competition among players, while only competition or
cooperation among players was discussed in [1], [3], [4].
Moreover, N -cluster game Γ(N , f,Λ) is more general than
related problems investigated in [2], [4], [6]–[10], [12], since
it considers not only strategy constraints but also the second-
order dynamics of players. Furthermore, in Γ(N , f,Λ), the
cost function of every player relies on the decisions of all
players, while the cost function of every player in [6], [10]
only depends on its own decision and the decisions of other
clusters, which implies that N -cluster games studied in this
paper can characterize the cooperation within clusters better.

IV. MAIN RESULTS

A section proposes a distributed vGNE-seeking algorithm
and provides a rigorous analysis of its convergence.

A. Algorithm Design

The distributed vGNE seeking algorithm for player i in
cluster j is designed in Algorithm 1.

Algorithm 1 : Fully Distributed vGNE Seeking Algorithm

Initialization: For any k, i ∈ [nj ], j ∈ [N ], set
xji (0), x̃

j
i (0) ∈ Cj

i ;
∑

k∈[nj ]
ηjk,i(0) = 0; α > c

2 , β >
2+(c+2)µ
2µλ2(L) , γ > 4(1+

√
n)2l21+4µl1+µ
4µλ2(L0) .

Gradients Estimation: The dynamic average consensus
algorithm is employed for player i in coalition j to

estimate 1
nj

∑nj

k=1 ∇xj
i
Jj
k(x̂

j k) by ψj
i,i:

η̇jk,i = −β
∑

l∈N j
k

(ψj
k,i − ψj

l,i) (3a)

ψj
k,i = ηjk,i + nj∇xj

i
Jj
k(x̂

j k), ηjk,i(0) = 0 (3b)

where j k =
∑j−1

l=0 nl + k with j ∈ [N ], k ∈ [nj ] and
n0 = 0, which is related to player k in coalition j; x̂j k =
col((x̂j k

r s)r∈[N ],s∈[nr]) with x̂j k
j k = x̃jk and x̂j k

r s being the
estimate of player k in cluster j on x̃rs of player s in
cluster r for any j k ̸= r s; x̃ = col((x̃ji )j∈I0,i∈Ij ) with
x̃ji := xji + vji ; N j

k is the neighboring set of player k in
coalition j in graph Gj .
Update of Lagrangian Multipliers: According to KKT
conditions (2), the Lagrangian multipliers ϑji are updated
as follows:

ϑ̇ji = −ϑji + ϑ̃ji (4a)

λ̇ji = −
∑

r s∈N 0
j i

(ϑ̃ji − ϑ̃rs) (4b)

where ϑ̃ji = PR+(ϑ
j
i +h

j
i (x̃

j
i )+

∑
r s∈N 0

j i
(λji −λrs)+ λ̇

j
i ).

Design of Control Laws uji : The control of player i in
coalition j is based on the following control law

uji = ΠCj
i

(
x̃ji ,−αv

j
i − ψj

i,i −∇hji (x̃
j
i )

T ϑ̃ji

− γ
∑

r s∈N 0
j i

(x̂j i
j i − x̂s r

j i )
)
− vji (5)

˙̂xj i
−j i = −γ

∑
r s∈N 0

j i

(x̂j i
−j i − x̂r s

−j i) (6)

where x̂j i = (x̂j i
j i, x̂

j i
−j i) = col((x̂j i

r s)r∈[N ],s∈[nr]), N 0
j i

is the neighboring set of player i in cluster j in graph G0,
L := diag{(Inj ⊗Lj)j∈[N ]} with Lj being the Laplacian
matrix of graph Gj , and L0 is the Laplacian matrix of
graph G0.

Remark 3: When simultaneously considering the dynam-
ics and set constraints of players, the algorithms in [4]
can only guarantee that set constraints are asymptotically
satisfied, and the barrier function-based algorithm in [12]
requires that the set constraints possess piecewise-smooth
boundaries. Due to the employment of barrier function
method, the vGNE sought by the algorithm proposed in
[12] may not be the vGNE of the original game, as vGNE
may lie in the constraint boundaries. Furthermore, using
barrier functions necessitates nonsmooth analysis, which
complicates the convergence analysis of the algorithm. In
contrast, in the scenario with more general cost functions
and constraints, Algorithm 1 not only keeps the players’
decisions always in the set constraints, but also can drive the
players’ decisions to the exact vGNE of the studied game.

Remark 4: In comparison with the algorithms presented
in [6], [7], [12], Algorithm 1 is under the partial-decision
information and does not need decisions and gradient-related
information of all players. Instead, learning strategies are
applied to estimate these factors.
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B. Convergency Analysis
The convergence of Algorithm 1 is analyzed in this

subsection. By (1), Algorithm 1 can be rewritten as the
following compact form:

ẋ =v (7a)
˙̂x =RTΠC(x̃,−αv −Ψ−H(x̃)T ϑ̃ (7b)

− γR(L0 ⊗ In)x̂)− γSTS(L0 ⊗ In)x̂ (7c)
η̇ =− βLψ (7d)
ψ =η + F(x̂), η(0) = 0∑N

j=1 n2
j

(7e)

ϑ̇ =− ϑ+ PRn
+
(ϑ+ h(x̃) + L0λ+ λ̇) (7f)

λ̇ =− L0ϑ̃ (7g)

where x := col((xj)j∈[N ]), xj := col((xji )i∈[nj ]), v :=

col((vj)j∈[N ]), vj := col((vji )i∈[nj ]), x̂ := col((x̂j)j∈[N ]),
x̂j := col((x̂j i)i∈[nj ]), x̂j i := col((x̂j i

r s)r∈[N ],s∈[nr]),
R := diag{(Rj

i )j∈[N ],i∈[nj ]}, Rj
i := [0Tj i−1 1 0Tn−j i],

Rx̂ := x̃ = x + v, x̃ := col((x̃j)j∈[N ]),
x̃j := col((x̃ji )i∈[nj ]), Ψ := col((ψj

i,i)j∈[N ],i∈[nj ]),
ψ := col((ψj)j∈[N ]), ψj := col((ψj

k,i)i∈[nj ],k∈[nj ]),
H(x̃) := ∇h(x̃) = diag{(∇hji (x̃

j
i ))j∈[N ],i∈[nj ]},

ϑ := col((ϑj)j∈[N ]), ϑj := col((ϑji )i∈[nj ]),
ϑ̃ := col((ϑ̃j)j∈[N ]), ϑ̃j := col((ϑ̃ji )i∈[nj ]),
η := col((ηj)j∈[N ]), ηj := col((ηjk,i)i∈[nj ],k∈[nj ]),
λ := col((λj)j∈[N ]), λj := col((λji )i∈[nj ]),
h(x̃) := col((hj(x̃j))j∈[N ]), h

j(x̃j) := col((hji (x̃
j
i ))i∈[nj ]),

Fj
i (x̂

j) := col((∇xj
i
f jk(x̂

j k))k∈[nj ]), F(x̂) :=

col((Fj
i (x̂

j))j∈[N ],i∈[nj ]), S := diag{(Sj
i )j∈[N ],i∈[nj ]},

Sj
i =

[
I(j i)−1 0T(j i)−1 0((j i)−1)×(n−j i)

0(n−j i)×((j i)−1) 0T(n−j i) I(n−j i)

]
.

First, the equilibrium point (EP) of Algorithm 1 is ana-
lyzed, leading to the following result.

Lemma 3: Under Assumptions 1, 2 and 4, consider the
N -cluster game Γ(N , f,Λ). If (x∗, x̂∗, η∗, ψ∗, ϑ∗, λ∗) is an
EP of (7), then x∗ is a vGNE of N -cluster game Γ(N , f,Λ).

Proof: 1) An EP (x∗, x̂∗, η∗, ψ∗, ϑ∗, λ∗) of 1

0n =v∗ (8a)

0n2 =RTΠC(x̃
∗,−αv∗ −Ψ∗ −H(x̃∗)T ϑ̃∗

− γR(L0 ⊗ In)x̂
∗)− γSTS(L0 ⊗ In)x̂

∗ (8b)
0ñ =− βLψ∗ (8c)
ψ∗ =η∗ + F(x̂∗), η(0) = 0ñ (8d)

0n =− ϑ∗ + PRn
+
(ϑ∗ + h(x̃∗) + L0λ∗) (8e)

0n =− L0ϑ̃∗ (8f)

where ñ :=
∑N

j=1 n
2
j .

On the basis of the definition of R and S , one has

RTR+ STS = In2 , RRT = In

RST = 0n×n(n−1), SST = In(n−1).
(9)

By left multiplying S to (8b), one has (L0 ⊗ In)x̂
∗ = 02n,

which together with (8a) indicates that x̂∗ = 1n⊗x∗. Based

on and η(0) = 0ñ, one has
∑

k∈[nj ]
ηjk,i(0) = 0, ∀i ∈ [nj ].

Moreover, according to the property of undirected graphs,
for all j ∈ [N ], k, i ∈ [nj ], one has

∑
k∈[nj ]

η̇jk,i(t) = 0

for all t ≥ 0, by left multiplying diag{(Inj
⊗ 1Tnj

)j∈[N ]} to
η̇(t) = −βLψ(t). Thus, ∀j ∈ [N ]∑

k∈[nj ]
ηjk,i(t) =

∑
k∈[nj ]

ηjk,i(0) = 0. (10)

It follows from (8c) that ψj∗
k,i = ψj∗

l,i , ∀k, l, i ∈
[nj ]. Besides, according to (10), by left multiplying
diag{(Inj

⊗ 1Tnj
)j∈[N ]} to (8d), one obtains

∑
k∈[nj ]

ψj∗
k,i =

nj
∑

k∈[nj ]
∇xj

i
f jk(x̂

j k∗), which implies that ψj∗
k,i = ψj∗

l,i =∑
k∈[nj ]

∇xj
i
f jk(x̂

j k∗). Subsequently, it follows from x̂∗ =

1n ⊗ x∗ that Ψ∗ = F(x∗). Then, based on (8b), one has

0n = F(x∗) +H(x∗)T ϑ̃∗ +NC(x
∗). (11)

Based on (8e), if ϑ∗ = ϑ̃∗ = 0n, one has h(x∗) +
L0λ∗ ≤ 0n, which yields h(x∗) ≤ 0 by left multiplying
1Tn . Obviously, ϑ̃j∗i h(x

∗) = 0. If ϑ∗ = ϑ̃∗ > 0n, one
gets h(x∗) + L0λ∗ = 0n, which yields h(x∗) = 0 by left
multiplying 1Tn . Therefore, ϑ̃j∗i h(x

∗) = 0. To sum up, it
follows from (8e) and (8f) that

h(x∗) ≤ 0, ϑ̃j∗i h(x
∗) = 0, ϑ̃j∗i = ϑ̃r∗s . (12)

Based on (2), it follows from (11) and (12) that x∗ is the
vGNE of N -cluster game Γ(N , f,Λ).

Lemma 3 indicates that by Algorithm 1, the second-order
player (1) can converge to the vGNE of N -cluster game
Γ(N , f,Λ), if Algorithm 1 can converge to its EP.

Before analyzing Algorithm 1, a necessary lemma is given
below.

Lemma 4: Under Assumption 2, F (x̂) is l1-Lipschitz,
where l1 := nmaxl, nmax := maxj∈[N ]{nj}, and

F (x̂) := col
((∑

k∈[nj ]
∇xj

i
f jk(x̂

j k)
)
j∈[N ],i∈[nj ],k∈[nj ]

)
.

Proof: Define ŷ := col((ŷj i)j∈[N ],i∈[nj ]), ŷ
j i :=

col((ŷj i
r s)r∈[N ],s∈[nr]). Then, based on Assumption 3 and

the definition of F (x̂), one has

∥F (x̂)− F (ŷ)∥2

=
∑
j∈[N ]

∑
i∈[nj ]

∥∥∥ ∑
k∈[nj ]

∇xj
i
f jk(x̂

j k)−
∑

k∈[nj ]

∇xj
i
f jk(ŷ

j k)
∥∥∥2

≤
∑
j∈[N ]

∑
i∈[nj ]

(
nj

∑
k∈[nj ]

∥∇xj
i
f jk(x̂

j k)−∇xj
i
f jk(ŷ

j k)∥2
)

≤ n2maxl
2
∑
j∈[N ]

∑
k∈[nj ]

∥x̂j k − ŷj k∥2

≤ n2maxl
2∥x̂− ŷ∥2

which indicates the l1-Lipschitz continuity of F (x̂).
Theorem 1: Suppose that Assumptions 1-4 hold.
(i) The decisions of players satisfy their own local cons-

triants all the time, i.e., x(t) ∈ C for all t ∈ [0,∞).
(ii) Executing Algorithm 1, the decisions of all second-

order players converge to the vGNE of N -cluster game
Γ(N , f,Λ).

3194



Proof: Due to the page limitation, the proof is omitted
here, which will be provdied in the full paper version.

Remark 5: In contrast to the algorithm proposed by [12],
which only converges to the neighborhood of vGNE, Al-
gorithm 1 achieves exact convergence to the vGNE of the
N -cluster game Γ(N , f,Λ).

111

444 555

333 777

888 999

666

222

Fig. 1: The communication topology among generators.

TABLE II: Explanations of symbols

Symbols Explanations
f j
i the cost function of generaor i of power plant j
f j the cost function of power plant j
P j
i the output power of generaor i of power plant j

uj
i the control input of generaor i of power plant j

Cj
i define as [P j

i , P
j
i ]

P
j
i the upper bound of P j

i

P j
i the lower bound of P j

i

dji the local demand of electricity markets

TABLE III: The parameters of power plants.

Generator aji bji cji P j
i (0) Cj

i dji
Plant 1 1 (1) 6 10 2 3 [3 5] 12

2 (2) 5 15 3 4 [4 6] 11
1 (3) 4 20 4 5 [4 9] 10

Plant 2 2 (4) 3 25 2 7 [5 10] 7
3 (5) 2 5 5 8 [6 9] 9
1 (6) 9 15 3 9 [6 12] 5

Plant 3 2 (7) 7 25 2 9 [7 11] 8
3 (8) 6 35 4 8 [8 12] 7
4 (9) 5 25 1 11 [9 12] 11

V. NUMERICAL EXAMPLES

Consider an electricity market game of 3 power plants.
Power plant j ∈ {1, 2, 3} has nj generators with n1 = 2,
n2 = 3, and n3 = 4. The interactions among those generators
are depicted by Fig. 1. In electricity markets, power plant j
faces the following problem:

min
P j∈Rnj

f j(P ), f j(P j , P−j) =

nj∑
i=1

f ji (P
j , P−j)

s. t .

3∑
j=1

nj∑
i=1

P j
i ≥

3∑
j=1

nj∑
i=1

dji

P j
i ∈ Cj

i

(14)

where the symbols are explained in Table II and P :=
col((P j

i )j∈[3],i∈[nj ]). The cost function of generaor i of

power plant j is

f ji (P
j , P−j) = σj

i (P
j
i )− p(P j , P−j)P j

i

where σj
i (P

j
i ) = aji + bjiP

j
i + cji (P

j
i )

2 is the generation
cost of generaor i of power plant j with aji , bji , cji being the
characteristics of generaor i of power plant j; p(P j , P−j) =
p0−ϵ

∑3
j=1

∑nj

i=1 P
j
i is the electricity price with p0, ϵ being

positive constants.
Neglecting the mechanical and electromagnetic losses, by

virtue of feedback linearization, the dynamics of generator
i in power plant j can be modeled as second-order system:
P̈ j
i = uji (see [20]).
All parameters of the generators are presented in Table III.

Besides, α = 100, β = 40, γ = 50, p0 = 200 and ϵ = 1.
One can easily verify that Assumptions 1-4 are satisfied.
Then, the electricity market game (14) can be solved by
Algorithm 1. The simulation results are displayed in Fig.
2. As shown in Fig. 2, the output powers of all power plants
is convergent, which together with Lemma 1 indicates that
the output powers of all power plants converge to the vGNE
of electricity market game (14). Moreover, it is clear that the
output powers of all power plants satisfy the given local and
coupled constraints, which implies that the simulation results
validate the validity of Algorithm 1.
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Fig. 2: The evolutions of P j
i .

VI. CONCLUSIONS

This paper delved into the study of N -cluster games in-
volving second-order dynamics, local and nonlinear coupled
inequality constraints. To seek the vGNE of N -cluster games
distributedly, this paper proposed a distributed algorithm
leveraging state feedback, projection, primal-dual, dynamic
average consensus, and passivity methodologies. Addition-
ally, the proposed algorithm’s convergence was rigorously
analyzed. The algorithm guarantees that players’ decisions
consistently meet set constraints and converge to the exact
vGNE of N -cluster games. Finally, the validity of the algo-
rithm was demonstrated through simulations.
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