
A Two-Layer Opinion Dynamics Model Coupling Static and
Bounded-Confidence Interactions *

Emmanuel Kravitzch1, Vineeth S. Varma2, Antoine O. Berthet3, and Yezekael Hayel1

1Laboratoire Informatique d’Avignon (LIA), Avignon Université, France
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Abstract— In this paper, we present a new bounded-
confidence model of opinion dynamics where agents with a
substantially different opinion may still be able to influence
each other along a static graph. Our intention is to account
for hard and fast ties present due to physical or social
proximity. This additional feature allows weak but persistent
interaction between disagreeing agents. Albeit simple, the model
remains difficult to analyse due to its separation of time scales.
We introduce an appropriate notion of stability, give some
properties of the system and formulate a conjecture supported
by numerical simulations.

I. INTRODUCTION

a) Research context and motivation: For quite a while
now, information diffusion and opinion dynamics over net-
works have been under the scope of a mathematical for-
malisation. Among the large body of literature, the class
of bounded-confidence (BC) models has been intensively
studied and refined in many ways since the seminal works of
Hegsellman and Krause [1] and Deffuant and Weisbuch [2].
In a BC model, agents over the network interact only if their
respective opinion is close enough. On the contrary, if two
agents stand too far (in opinion), they dismiss one each other.
This mechanism accurately encompasses a structural princi-
ple of social psychology, namely selective exposure, i.e., the
trend one has to dismiss dissonant information. Nonetheless,
many other behaviours shall be incorporated in order to make
a step closer to a more realistic behavioural description. For
instance, some authors include some group pressure [3] in
the modelling, others consider multi-dimensional dynamics
to take into account the multiplicity of topics in a discussion
[4]. For a recent survey of opinion dynamics and BC models,
the interested reader may refer to [5] or [6]. In this model,
we propose an extension of the Hegsellman-Krause (HK)
model in a different direction: in addition to the opinion-
driven interaction, the agents also influence one each other
over a sparse network. In the context of opinion dynamics,
the added network may represent the connectivity derived
from hardly avoidable links such as familial, professional,
or neighbourhood, just to name a few. This is why it is
reasonable to assume the graph constant. We also take it
sparse based on the premise that physical interactions are
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very limited because of time and attention. To this title, see
the current literature related to Dunbar number [7], which
has already taken as a core hypothesis of some opinion
dynamics’ model [8]. By contrast, the BC interaction, being
free of any physical or social constraint is dense and volatile.
These features remind online information seeking or news-
feed scrolling, behaviours heavily biased by the preexisting
opinion of the agent in consideration. It is clear that on
the Internet some leader-follower dynamics emerge and the
influence is not symmetric, but for sake of simplicity, we
restrain the analysis to leaderless communities.

b) Related literature: In the initial HK model, the
interaction only depends on the respective interacting agents.
Recently, various works incorporate a graph in the model. In
[9] and [10], the graph represents the physical limitation, is
kept constant and is viewed as a model parameter. In these
papers, the authors undertake deep mathematical analysis
to estimate the termination-time of the algorithm regarding
the graph structure. In a more empirical way, numerical
investigations have also been conducted to understand BC
dynamics over various networks [11]. Using similar methods,
another variant is proposed in [12] allowing the graph to
be adaptive: the graph changes throughout time in co-
evolution with the opinion distribution in accordance with
well-understood principles of social psychology, more pre-
cisely selective exposure [13] and homophily [14]. Finally,
another attempt to acknowledge the plurality of confidence
degrees in social interaction is to define for each agent
an individualised bounded confidence value. In this frame
known as heterogeneous models, the parameter is not a scalar
anymore but a whole vector, leading to specific mathematical
difficulties (see for instance [15] or [16]).
Although close to all of these models and pertaining to the
same research trend, the one presented in the current paper is
clearly distinct: the latter is indeed a superimposition of a BC
dynamics and a (weak but persistent) interaction across a
sparse and constant network. In this sense, the physical layer
is not a limitation but an additional influence. Furthermore,
interactions take place synchronously, which is not the case
in the works [11] and [12] quoted above, designed in the
Deffuant-Weisbuch fashion.

c) Paper contributions and overview: The paper con-
tains three main contributions. Firstly, we construct a two-
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layers network model: the first layer is the classical bounded-
confidence interaction, and the second one corresponds to
a fixed and symmetric sparse graph. To the best of our
knowledge, this model has never been presented before.
From this construction, a slow time scale emerges, and
mirrors in some ways the long term mutual influence aris-
ing from local interaction. Secondly, we introduce a new
notion of stability appropriate for this model and use it to
characterise some properties. We hope this stability concept
can also be of interest in a different context. Thirdly, we
state a conjecture, thus pinpointing the critical challenge of
the discrete-time slow-fast model dynamics. The paper is
organised as follows. In Section II, we describe the model.
In Section III, we define the suited notion of stability for
the model analysis and prove a property. In Section IV, we
formulate a conjecture on the system behaviour. Section V
is dedicated to numerical simulations. Finally, Section VI
concludes the paper by summarising the main findings and
listing some research perspectives.

d) Notations: In the sequel, we systematically note
[K] for {1, ...,K} as a shorthand. In the linear space
RK , we define the canonical basis (ek)k∈[K] and note
1 :=

∑K
j=1 ej ∈ RK . We also make use of the infinite

norm ||x||∞ := maxk∈[K] |xk|. P is the set of probability
measures supported on [0, 1], and δx ∈ P is a Dirac measure
at point x ∈ [0, 1]. For u ∈ RK , define the diagonal matrix
diag(u) ≡

∑
j ujeje

T
j . We note 1U the indicator of any set

U : 1U (x) = δx(U) = 1 if x ∈ U and 0 if x /∈ U . Finally,
in the graph GA represented by the matrix A, the degree of
node j is noted degA(j) or more lightly dj .

II. MODEL DESCRIPTION

Let be a population of agents of size K, each agent is
indexed by an integer k ∈ [K] ≡ {1, 2, ...,K}. At each time
t ∈ N, the scalar value Xk(t) ∈ [0, 1] corresponds to the
opinion of agent k at time t. The vector X(t) ∈ [0, 1]K is
the opinion profile. In addition, we set a fixed unweighted
graph GA represented by a matrix A ∈ {0, 1}K2

, supposed to
be sparse, symmetric and connected: akj = ajk (symmetry)
and maxj∈[K] degA(j) = o(1) as K −→ +∞ (sparsity),
degA(j) being the degree of agent j within the graph A.
The static graph A represents the imposed interaction layer
that cannot be dismissed regardless of the opinion gap
between two agents. Thus agents connected through the
adjacency matrix interact and influences each other opinion
even if their opinions are very different. At the same time, a
second layer of influence occurs as chosen interactions based
on opinion levels only. Indeed, agents with close opinions
interact and influence each other through this second layer.
But as each individual level of opinion is dynamic over
time, this latter interaction graph is also dynamic, which
is not the case for the physical interactions. This second
layer of interaction follows an HK model with parameter
r ∈ [0, 1], i.e. two agents with opinion levels close to
each other by a value lower than r interact. We denote
by φrkj(t)

def
= 1{

|Xk(t)−Xj(t)|<r
} the indicator function that

takes one if agents k and j interact at time t based on their
opinion levels. Thus, the overall system can be represented
by a two-layer graph model as illustrated on Figure (1) for
8 agents with r = 0.1 at a particular time t with specific
opinion level for each agent. In this example, agents 4 and 5
mutually influence both at the rigid layer (i.e. a45 = 1) and
also at the dynamical layer because their opinion levels are
close to each other, i.e. |X4(t)−X5(t)| = 0.01 < 0.1. On the
contrary, agent 5 interacts with agent 6 only on the physical
layer. Similarly, agents 6 and 3 are not interacting physically,
but due to their opinion levels they interact at the social layer.
Considering the interactions throughout the state-dependent
symmetric matrix φr(t), then a parameter λ ∈ [0, 1] stands
as the influence parameter for BC interaction in detriment
of the physical interaction with intensity (1− λ). Based on
the two coupled interactions, the discrete-time evolution of
the opinion level of an agent k is thus given by:

Xk(t+ 1) =

∑
j

(
λφrkj(t) + (1− λ)akj

)
Xj(t)

λ
∑
j φ

r
kj(t) + (1− λ)dk

. (1)

Recall that dk is the degree of agent k: dk =
∑
j akj .

The parameter r is standard in BC models: it is regarded
as the bounded-confident parameter. In what follows, the
superscript will be omitted for sake of simplicity: φr = φ. As
the BC parameter is kept constant throughout the text, this
slight abuse does not contravene in any way the legibility. It
has also to be noted that if λ = 1, we recover the standard
HK model. Finally, we can put the opinion level dynamics
in a matrix form, and it gives:

X(t+ 1) = sto
(
λφ(t) + (1− λ)A

)
X(t), (2)

where sto(.) is the row-wise normalisation operator defined
by sto(M) :=

[
diag(M1)

]−1
M for any matrix M for which

the last expression is well-defined. Note that here, the inverse
operation is indeed well-defined because φkk = 1 implying
that

∑
j (λφ+ (1− λ)A)kj is always strictly positive. We

then obtain a highly non-linear dynamical system analysed
in the next section.

Remark 1: Like many Opinion Dynamics model, the one
defined above is not confined to social context but may
also describe robotic systems addressing rendez-vous issues:
suppose that agent k is a moving robot in a cooperative
system, and the values Xk(t) are coordinates in space. Then,
r shall be seen as interaction signal range, and static bonds
correspond to long-range communication.

III. ANALYSIS

A. Consensus

In the case of the pure BC type models (here when λ = 1),
it is well known that the converging points of the opinion
dynamics are clustered configurations. Due to the presence of
the physical layer term, the situation is slightly different for
the dynamics defined by equation (1). But even in our multi-
layer context, an asymptotic global consensus is achieved as
it is proved in next proposition.
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X1(t) = 0.95
•

X2(t) = 0.33•

X3(t) = 0.84•

X4(t) = 0.70
•

X5(t) = 0.71
•

X6(t) = 0.87•

X7(t) = 0.93•

X8(t) = 0.26
•

Fig. 1. We represent the two types of interaction (physical in blue and
social in red) for an arbitrary opinion profile with K = 8 and r = 0.1
at a given time t. In thick blue line, the static physical graph A, here a
cycle graph. In dashed red line, the fleeting links based on opinion distance
φrkj(t), k, j ∈ [[1; 8]].

Proposition 2: If λ < 1 and the graph GA is connected,
then asymptotic global consensus is achieved:

∃c ∈ [0, 1],∀k ∈ [K], Xk(t) −→
t→∞

c. (3)
Proof: The result is a simple application of a well-

known theorem on consensus for time-varying networks: see
for example theorem 12.4 of [17] (chapter 12) or theorem 3.1
of [18] (chapter 3). For sake of completeness, the result is
given now. Consider the following discrete-time linear time-
varying dynamics in RK , K ≥ 1:

X(t+ 1) = A(t)X(t), (4)

where for all t ≥ 1:
• A(t) is stochastic;
• aii(t) > 0 and there exists some positive scalar ε > 0

such that ∀(i, j), aij(t) > 0 =⇒ aij(t) > ε;
• there exists some T such that the graph

⋃T
j=1 GA(t+j)

contains a globally reachable node;
then, we have

∃c,∀k,Xk(t) −→ c as t −→ +∞. (5)

It is clear that dynamics given by Equation (1) verifies the
previous assumptions: all the matrices M(t) are stochastic;
furthermore, akk(t) ≥ 1

K+d , and akj(t) > 0 =⇒ akj(t) >
1

K+d ; and finally the third hypothesis of the cited theorem
above is also verified because we have assumed the graph GA
to be connected. Applying the result stated above terminates
the proof of the existence of a global consensus for our multi-
layer dynamic.

The time to reach this consensus may be unreasonably
long when K grows to infinity. This is why in essence
the simple convergence result is not satisfying to appreciate
accurately the dynamical process in its whole lifetime. In
addition, another important think to notice is that one has
for almost all k,

∑
j φkj = Θ(K) � maxk degA(k) as

K −→ +∞. In addition, by a simple computation, we get

Xk(t+ 1) =

∑
j φkj∑

j φkj + dk

∑
j φkjXj∑
j φkj

+

∑
j akjXj∑
j φkj + dk

.

The dynamics can then be reformulated as

X(t+ 1) = ~η(t)sto
(
φ(t)

)
X(t) + ~εAX(t), (6)

where εk(t) =
K→∞

o(1) and ηk(t) −→
K→∞

1. This is why a
time-scale separation occurs: at the first period of time, the
HK dynamics prevails until X reaches a stable state of the
HK dynamics. Then after, a new stage in the evolution of the
system occurs. In order to quantify it more precisely, define
the clustering time: it is the first time instant after which the
opinion profile forms clusters:

T rclust := inf
{
t > 0 : ∃p ≥ 1, C : [K] 7→ [p],

C(k) = C(j) ⇐⇒ |Xk(t)−Xj(t)| < r
}
.

(7)

Here above, C the partition map. By the last definition, from
Tclust on Equation (7), for any BC parameter r ∈ [0, 1],
from T rclust on, the matrix φr(t) is block-diagonal (up to an
index permutation) with the following blocks Klj , j ∈ [p]:
φ = Diag

(
Kl1 , ...,Klp

)
, where each Klj corresponds to a

complete graph of size lj ,
(
Klj

)
lm

= 1.

B. Set Stability

In order to capture more precisely the overall system’s
behaviour, one has to introduce a specific notion of stability.
Hereafter, we propose a natural generalisation of stability
properties of dynamics to set points. Let first define the
neighbourhood of any set U . For any ε > 0 and subset
U ⊂ RK , we define the ε−neighbourhood of U as U ε :={
x ∈ RK : infy∈U ||x− y|| < ε

}
.

Definition 3 (Set-stability): For any dynamical system
(X(t))t∈N with initial point X(0), a set U is set-stable if it
verifies:

∃η > 0, ∀X(0) ∈ Uη : X(t) −→
t→∞

U. (8)

But an accurate notion of stability is a weaker one that can
be called weak set-stability.

Definition 4 (Weak set-stability): For a dynamical system
(X(t))t∈N with initial point X(0), a set U is weakly set-
stable if it verifies:

∀x ∈ U,∃ηx > 0, ||x−X(0)|| < ηx =⇒ X(t) −→
t→∞

U.

(9)
In words, the last formula (equation 9) means that the set U
has various degrees of robustness to disturbance, depending
on the initial value taken. On the contrary, the preceding one
(equation 8) states a fixed level of tolerance to disturbance.

Note that in general, standard set-stability considers a
neighbourhood of the whole set.
With this in mind, we can now focus on the set of equilibria
E for the pure HK dynamics (λ = 1), that is defined as the
set of following points:

E =
{
X ∈ [0, 1]K : ∀(k, j) ∈ [K]2,

Xk = Xj or |Xk −Xj | > r
}
.
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Rather than considering the opinion profile (Xk)k∈[K], one
can consider the empirical measure µXt := 1

K

∑K
j=1 δXj(t) ∈

P . Using this definition, the opinion dynamic of agent k
given by Equation (1) can be rewritten as:

Xk(t+ 1) =

λ
∫
s
s1(
|Xk(t)−s|<r

)µXt (ds) + 1−λ
K

∑
j akjXj(t)

λ
∫
s
1(
|Xk(t)−s|<r

)µXt (ds) + 1−λ
K
dk

.

(10)
Considering the previous measure-theoretic description of

the opinion dynamics, the set of stable equilibria can be
described as follows:

S :=
{
µ ∈ P : µ =

N∑
k=1

αkδvk with αk ≥ 0, N ≥ 1

and k 6= j =⇒ |vk − vj | > r
}
.

(11)

Each value vk represents a cluster point and the value N
corresponds to the number of clusters. In the linear space
coordinates, one may reformulate it as

µX =
∑
k

αkδvk ∈ S ⇐⇒ ∀p ∈ [K] ∃k,Xp = vk.

Actually, the set of clustered configurations is a disjoint
union of subsets Sj such that:

S =

Mr⋃
j=1

Sj , (12)

where Sj is the set of probability measures formed with j

clusters: µ =
∑j
k=1 αkδvk ∈ S ⇐⇒ µ ∈ Sj . For any

BC parameter r ∈ [0, 1], Mr is the maximum number of
clusters possible to build by the opinion dynamics. Note that
each set Sj is a manifold of dimension j. In particular, S1

is the set of global consensus configurations, S2 is the set
where there are two clusters, etc. In a similar fashion, we
now characterise the unstable equilibria with j clusters:

Uj =

{
µ ∈ P : µ =

j∑
k=1

αkδvk : |vp − vq| ≥ r, such that

∃(p∗, q∗) with p∗ 6= q∗ and |vp∗ − vq∗ | = r

}
.

(13)

It is clear that these configurations are unstable, but are
only sensitive to specific disturbances: when a significant
proportion of agents of a same cluster move. A different
definition of stability can be found in [19]. Relying on the
definitions given above, the next proposition characterises
the set stability of the equilibria for the HK model, i.e. when
λ = 1.

Proposition 5: For the pure HK dynamics (λ = 1), for
j ≥ 2, the sets Sj are weakly set-stable but not strongly
set-stable.

Proof: We first show weak set-stability. For, fix a point
x ∈ Sl, l ≤ Mr. Without loss of generality, let us index by
order the cluster values v1 < v2 < ... < vl−1 < vl, and set
β := mink∈[K] |vk+1 − vk| which is by construction larger

than r. This means that we have a margin of m = β−r
2 .

Formally, this implies that for all y in the ball
{
u : ||u −

x||∞ < min(m2 ,
r
3 )
}

, the clusters remain:

xk = xj =⇒ |yk − yj | <
2r

3
and

xk 6= xj =⇒ |yk − yj | > r.

The first equation means that two agents k and j initially in
the same cluster cannot be moved away one from each other
by a distance superior of r. The second inequality means
that two agents from two distinct clusters cannot be brought
closer to a distance inferior of r. To show this, consider two
agents k and j with xk = vp and xj = vp+1. Bringing closer
yk and yj together leads to yk = vp+m and yj = vp+1−m
but

yj − yk = (vp+1 − vj)− 2m = β − 2m > r. (14)

Hence, because of clusterization, the distribution converges
to S in one iteration, which concludes the first part of the
proof.
Next, we show that there is no global basin of attraction
uniformly for all equilibria. It is sufficient to find a counter-
example. Let us consider the following situation: µ = αδx+
(1 − α)δx+r−ε ∈ Sε2. It is clear that this configuration
converges to S1 for all ε > 0. This allows to conclude that
there is no global basin of attraction for Sj , j ≥ 2.

Remark 6: Note that the counter-example stands only if
we have at least two clusters, this is why S1 is not weakly
set-stable.

IV. CLUSTER COHESIVENESS

The next statement presented as a conjecture is clear in
view of the several numerical experiments, but some patho-
logical cases complicate the rigorous mathematical proof.

Conjecture 7 (cluster cohesiveness): Suppose that the ini-
tial distribution is i.i.d according to a given measure with
density f :

(Xk(0))k∈[K] ∼i.i.d f.

Then, for any t > Tclust, the clusters maintain with high
probability in K, that is the probability that the next property
does not occur vanishes when K grows:

|Xk(t)−Xj(t)| < r =⇒ |Xk(s)−Xj(s)| < r ∀s ≥ t.
(15)

The conjecture means that two individuals in a cluster remain
in the same cluster for ever. Then, there is no cluster fission
in the particular sense that we define now: consider a cluster
C ⊂ [K] at time t ∈ N. We say a s−fission (s for significant)
has occurred if at time t′ ≥ t we have

∃U1, U2 ⊂ C, (k, j) ∈ U1 × U2 =⇒ |Xk −Xj | > r and

min

(
|U1|
|U2|

,
|U2|
|U1|

)
≥ s.

For such a fission to occur, two clusters Cl and Cr shall stand
each of which on either side of the focal one C according to
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X(0)

t = 0

X(t) ∈ Sεj
t > Tclust

slow drift
X(t) ∈ Uεj
t ≥ T out

j

X(t) ∈ Sεj−1

fusion

t ≥ T in
j−1

...
X(t) ∈ S1

Consensus at t =∞

Fig. 2. This scheme recaps the main steps of the evolution according the
hitting times defined earlier. Tclust is probably reached very quickly. The
fusion period is also very short.

a very specific distance. More precisely, agents in C shall be
influenced by one and only one of the two lateral clusters.
Otherwise, suppose there exists a significant part of agents
pertaining to C under the two opposite influences of C1

and C2, or on the contrary they are not influenced at all
by members of Cl, Cr. In both cases, this mass of agents
remain stable after this step, and may bring back to the initial
position other agents having significantly moved.
In the preceding counterexample, the particularity is due to
the very precised relative position of the three blocks, and
this is why the last case is taken as very unlikely.

Figure 2 is a schematic diagram representing the main
steps of the dynamics. We define the following important
time in the dynamics. For all j ∈ {1, . . . ,Mr}, let be:

T in
j : = inf {s > 0 : X(s) ∈ (Sj)

ε} , and (16)

T out
j : = inf

{
s > T in

j : X(s) /∈ (Sj)
ε
}
. (17)

It is clear that T in
j < T out

j < T in
j−1. Here we get forced to

state it using set approximation because sets Uj and Sj are
configurations at equilibrium for the HK dynamics only, but
because of opinion exchange over static graph the opinion
profile X(t) gets pushed out of these sets until consensus,
revealing the inherent difficulties of slow-fast discrete time
systems.

V. NUMERICAL EXPERIMENTS

In this section, we display some illustrative numerical
simulations. They have been conducted with K = 500
agents (excepted for the fission example where we have
taken K = 450) and the graph taken is a simple line
graph: akj = 1{|k−j|≤1}. Initial distribution is taken uniform
(figures 3 and 4) or according to a measure with a continuous
density f(x) = 12(x − 1

2 )21[0,1](x) (figure 5). This latter
initial distribution may model cases when the agents are
facing a burning topic: the population is thus significantly
polarised and there is very few people with a neutral opinion.
We use as a benchmark the system uniformly distributed at
initial time and with line graph as static graph A (see figure
3). This is because we consider the line graph as a simple
physical graph, and that we make no specific assumption on
the underlying topic generating the uniform distribution.

A. Time-scale separation
In every case, the time-scale separation is clearly visible

at long term: quickly after t = 0 (see figure 4), clusters form

and curves of same clusters are indistinguishable (t > Tclust).
At the macroscopic size (cf. figures 3 and 5), one can only
observe a few trajectories, and the clusters merge all
together progressively to finally reach a global consensus
.In the case with an non uniform initial distribution, the
time to reach a clustered configuration is larger, and there
are some isolated agents at the first steps, but the global
picture is very similar to the uniform case.

Fig. 3. The individual trajectories for K = 500, λ = 0.8 and r = 0.05 for
t = 0, 1, ..., 900. The initial distribution is taken uniform: Xk(0) ∼i.i.d
Unif[0,1].

Fig. 4. The same system that the one above, but taken from a shorter
time-horizon: t = 0, 1, ..., 60. In the first dozens of steps, the dynamics is
quasi stable and the cluster slowly drift toward fusion (see figure 4). Before
t = 50, one observe only one fusion and six clusters remain.

B. Fission

Although highly improbable when the initial distribution
is drawn randomly according to a non-atomic measure, it is
possible to construct a configuration when a fission occurs.
Take the following initial measure:

µ =
1

9
(δ0 + δ1) +

1

3
(δ0.25 + δ0.75) +

10

9
1[0.45,0.55] (18)

with r = 0.25, λ = 0.8. The central block quickly splits
because of the two properly aggregated clusters at 0.25
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Fig. 5. Here we have taken exactly the same parameters but with a different
initial distribution: Xk(0) ∼i.i.d f with f(x) = 12(x − 1

2
)21[0,1](x).

As illustrated in the zoom-in box (bottom right), one can see that at the
beginning of the dynamics, there are some isolated agents -for instance the
red trajectory- that finally reach clusters. It is due to the particular initial
distribution with very few agents in the center of the opinion space.

and 0.75. For the illustrative numerical experiment figure
6 below, we have taken K = 450, and a very small time-
horizon in order to focus on the fission event.

Fig. 6. A fission occurs when a very peculiar initial distribution with atoms
is set, here according to equation 18. We see very clearly the central cluster
getting splitted as fission.

VI. CONCLUSION

In this paper, we have presented a new BC model of
opinion dynamics where agents with a substantially different
opinion may still be able to influence each other along a
static graph. Although we have been able to identify some
interesting properties, the analysis is still incomplete. A
mathematical framework of time-scale separation in discrete
time could significantly enlighten it. Another approach would
be to analyse the asymptotic system in the number of agents,
taking K −→ +∞, leading to an eulerian description of the
system, as it has been done in [19], [20]. But as K grows,
the sparse graph vanishes, highlighting the inherent difficulty
to deal with asymptotic behaviour of sparse graphs, unlike

dense graphs theory which has now reached maturity [21].
Just this model driven by only two parameters r and λ, many
questions remain unsolved. Specifically, the influence of λ
is the whole dynamics may drastically impact the overall
dynamics. Another structural feature of the presented model
is indeed that updates take place synchronously. Investigating
the asynchronous counterpart would also be of great interest.
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