
Minimal covariance realization and system identification algorithm for a
class of stochastic linear switched systems with i.i.d. switching

Elie Rouphael, Manas Mejari, Mihaly Petreczky, Lotfi Belkoura

Abstract— In this paper, we consider stochastic realization
theory of Linear Switched Systems (LSS) with i.i.d. switching.
We characterize minimality of stochastic LSSs and show exis-
tence and uniqueness (up to isomorphism) of minimal LSSs in
innovation form. We present a realization algorithm to compute
a minimal LSS in innovation form from output and input
covariances. Finally, based on this realization algorithm, by
replacing true covariances with empirical ones, we propose a
statistically consistent system identification algorithm.

I. INTRODUCTION

In this paper we consider the stochastic realization prob-
lem for stochastic linear switched systems (abbreviated as
LSS), i.e. for state-space representations:

S

{
x(t+ 1) = Aθ(t)x(t) +Bθ(t)u(t) +Kθ(t)v(t)

y(t) = Cx(t) +Du(t) + Fv(t)
(1)

where Aσ∈Rnx×nx , Bσ ∈Rnx×nu ,Kσ ∈Rnx×nn , σ ∈Σ =
{1, . . . , nµ}, C∈Rny×nx , F ∈Rny×nn , D∈Rny×nu and x,
v, u, y, θ are the stochastic state, noise, input, output and
switching processes. The process θ takes values in the set
of discrete states Σ. We call S from (1) a realization of the
tuple (ỹ,u,θ), if ỹ = y. We call nx the dimension of S.

LSSs of the form (1) contain LTI systems as a special
case, when nµ = 1. Moreover, they correspond to jump-
Markov linear systems if θ is a Markov process [7]. Both
switched and jump-Markov systems have a rich literature and
a wide variety of applications, e.g., [30], [7]. We refer to
(1) as switched rather than jump-Markov systems, because
in contrast to the latter, in the formulation of the system
identification problem, we treat the switching process as an
external input, whose role is similar to that of u. In contrast
to the standard definition [7], [30] for the sake of simplicity,
we assume that the matrices of the output equation do not
depend on the current discrete mode.

Motivation and context: In order to motivate the contri-
bution of the paper, we first define the system identification
problem of LSSs. To this end, let us define the deterministic
behavior B of a tuple S = ({Ai, Bi,Ki}

nµ
i=1, C,D, F ) of

matrices as the set of all deterministic signals (y, u, q), all
defined on Z, taking values in Rny ,Rnu ,Σ such that there
exists a state trajectory x and noise realization v satisfying:

x(t+ 1) = Aq(t)x(t) +Bq(t)u(t) +Kq(t)v(t)

y(t) = Cx(t) +Du(t) + Fv(t)
(2)
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That is, S can be viewed as a stochastic version of (2), in
particular, all samples paths of (y,u,θ) are elements of the
deterministic behavior of S.

Assume that S from (1), referred to as the true sys-
tem, is a realization of (y,u,θ), and we observe a
finite portion {(y(t), u(t), q(t))}Nt=0 of a sample path
of (y,u,θ). The identification task is to find matrices
Ŝ = ({Âi, B̂i, K̂i}

nµ
i=1, Ĉ, D̂, F̂ ) from {(y(t), u(t), q(t))}Nt=0

such that in the limit, as N →∞, the deterministic behavior
of Ŝ equals (approximates1) the deterministic behavior of the
true systems. The motivation for this problem formulation
is that in many control problems, the switching signal is
viewed either as a control input or as an arbitrary external
input/disturbance. That is, the output of the estimated model
should be close to that of the true one for switching and
inputs different from θ and u. For jump-Markov systems,
this can be relaxed by requiring that the estimated model
has the same output response as the true one for arbitrary
inputs but for the fixed switching process θ. In particular,
we think of the stochasticity of the observed signals as a
persistency of excitation assumption, not an assumption on
the desired model. Here persistence excitation is used in a
general sense: an external signal is persistently exciting if
the corresponding output response is sufficient to determine
the input-output behavior of the underlying system.

One way to make the problem above well-posed is to
ensure that both the estimated and true systems belong to
a class of LSSs with the following property: if two elements
of this class generate the same output for some stochastic
input, switching and noise process, then their matrices differ
only by a change of basis, i.e., they are isomorphic. Then if
the output response of the estimated system is approximately
the same as that of the true one for the designated processes
u and θ, then the it is isomorphic to the true one, and hence
the two systems have the same deterministic behavior.

For LTI systems, minimal systems in innovation form [17]
represent such a class, as any two minimal LTI systems in
innovation form realizing the same output are isomorphic.
Moreover, under suitable conditions, any stochastic LTI
system can be transformed into a minimal one in innovation
form while preserving its output [17]. Hence, it is reasonable
to assume that the true system is of this class. In addition,
there are several algorithms which return minimal systems in
innovation form, e.g., subspace identification methods [32],
[15] and some parametric methods [18]. For the latter, the

1For the same input and switching signals, the output trajectories are
close in a suitable distance (`1, `2, `∞, etc.)
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use of minimal systems in innovation form also justifies
viewing LTI systems as optimal predictors of the current
output based on past outputs and inputs. The uniqueness (up
to isomorphism) of minimal systems in innovation form is
also used for proving consistency of parametric [13], [14] and
subspace methods [17], [5]. In fact, the covariance realization
algorithm for LTI systems in innovation form [17] is the basis
for subspace identification algorithms.

Contribution: We extend the concept of minimal (dimen-
sional) systems in innovation form to a subclass LSSs and
apply it to system identification. We assume that both θ and u
are i.i.d. processes. These assumptions represent the simplest
case of persistently exciting data, and there is little hope to
tackle the more general case without solving this one first.

We present a necessary and sufficient condition for mini-
mality LSS realization of (y,u,θ) in innovation form, and we
show that all such realizations of an output are isomorphic.
In addition, we present a realization algorithm for computing
such LSSs from covariances of inputs and outputs.

Finally, we present a statistically consistent system iden-
tification algorithm which is based on the latter realization
algorithm, and which returns, in the limit, a minimal LSS in
innovation form. In particular, if the true system is a minimal
LSS in innovation form, then in the limit this identification
algorithm returns a LSS which is isomorphic to the true LSS,
hence, it has the same deterministic behavior. We further
improve this identification algorithm by combining it with
Gradient-Based (GB) methods [9].

Related work: Realization theory of deterministic
switched systems was studied in [23], for stochastic switched
systems with no inputs in [24], [25], [28]. To the best of our
knowledge, our results on realization theory of stochastic
LSS with inputs are completely new.

Identification of switched and jump-Markov systems is
an active research area, see the [16], [12], [3], [6], [1],
[2], and the references therein. However, most of the lit-
erature assumes that the switching signal is unobserved,
which makes the problem more challenging but also leads to
lack of consistency results for state-space representations. A
consistent subspace identification algorithms was presented
in [22] for noiseless LSSs. In [29] a consistent identification
algorithm for noisy LSSs was presented, but the noise gain
matrix and the noise covariance were not estimated, and the
identification was based on several i.i.d. time series.

LSSs can be viewed as a subclass of linear-parameter
varying (LPV) systems, if the switching signal is viewed
as a discrete scheduling. There is a wealth of literature on
system identification for LPV systems, including subspace
methods, [31], [10], [20], [34], [33] and the references
therein. Stochastic realization theory of LPV systems was
invetsigated in [20], [8]. In [8] the existence of LPV systems
in innovation form was investigated, but the noise gain
matrices of the obtained system depended on the current and
past scheduling. Moreover, [8] did not address minimality
and uniqueness of systems in innovation form. Unlike the
identification algorithm of this paper, the existing subspace
methods, see the overview [10], are not proven to be consis-

tent or to return a minimal system in innovation form.
A statistically consistent identification algorithm was pre-

sented in [19] for noisy LPV systems with no inputs, and
in [20] for noisy LPV systems with inputs. This paper is
an extension of [20], the main difference w.r.t. [20] is as
follows: (1) the conditions on the scheduling signals from
[20] do not directly apply for i.i.d. switching signals (see
Remark 1); (2) we characterize minimality and uniqueness
(up to isomorphism) of systems in innovation form; (3) the
proposed identification algorithm returns a minimal system
in innovation form, while the one of [20] returns a non-
minimal one; that is, the system returned by the algorithm
from [20] need not have the deterministic behavior as the
true system; (4) we present novel modifications to improve
the empirical behavior of the identification algorithm.

To sum up, the identification algorithm of this paper is the
first algorithm for noisy LSSs that has all of the following
properties: (a) it estimates the noise gain and the noise
covariance, (b) returns a minimal LSSs in innovation form,
and (c) applies to one single long time series.

This paper uses technical results from [27] on the decom-
position of outputs of LSSs into stochastic and deterministic
components. The latter is used in [27] to show existence
of a realization in innovation form and to provide sufficient
conditions for minimality and uniqueness of LSSs in innova-
tion form. In contrast, we formulate necessary and sufficient
conditions for minimality, and we show isomorphism of a
much wider class of LSSs in innovation forms. Moreover,
in contrast to this paper, [27] proposes no realization or
identification algorithm. A version of this paper with detailed
proofs is availabe in the report [26].

II. TECHNICAL PRELIMINARIES

In this section we recall some concepts from [25] which
we use to define a suitable subclass of LSSs.
Probability theory: We use the usual notation and termi-
nology of probability theory [4]. All the random variables
and stochastic processes are understood w.r.t. to a probability
space (Ω,F ,P). We use E for expected values. All the
stochastic processes in this paper are discrete-time ones
defined over the time-axis Z of the set of integers. We use
bold letters for random variables and stochastic processes.
Switching process: The process θ is independent, identically
distributed taking values in Σ = {1, . . . , nµ}, and

pσ = P(θ(t) = σ), σ ∈ Σ. (3)

Sequences of discrete modes: A non empty word over Σ
is a finite sequence of letters, i.e., w = σ1σ2 · · ·σk, where
0 < k ∈ Z, σ1, σ2, . . . , σk ∈ Σ. The set of all nonempty
words is denoted by Σ+. We denote an empty word by ε.
Let Σ∗ = ε ∪ Σ+. We define the concatenation of words
in the standard manner. The length of the word w ∈ Σ∗ is
denoted by |w|, and |ε| = 0.
Matrices and matrix products: Denote by In n×n identity
matrix. Consider n × n square matrices {Aσ}σ∈Σ. For the
empty word ε, let Aε = In. for any word w = σ1σ2 · · ·σk ∈
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Σ+, k>0 and σ1, . . . , σk ∈ Σ, we define

Aw = AσkAσk−1
· · ·Aσ1

. (4)

ZMWSII processes: Next, we recall the concept of zero-
mean wide-sense stationary (ZMWSII) process w.r.t. θ from
[25]. To this end, we introduce the following indicator
process µ(t) =

[
µ1(t), . . . , µnµ(t)

]T
where

µσ(t) = χ(θ(t) = σ) =

{
1 if θ(t) = σ
0 otherwise (5)

where χ is the indicator function. The process µ is admis-
sible in the terminology of [25].

Remark 1 (Relationship with [20]): If we view µ as a
scheduling signal, then it does not satisfy the assumptions
of [20]. By applying a suitable normalizing affine transfor-
mation to µ we can bring it to a form which satisfies [20].
The system matrices of the thus arising LPV system are
affine combinations of the system matrices of original LSS.
However, this transformation does not appear to simplify the
derivation of the results.

Next, we need the following products of components of
µ. For every word w ∈ Σ+ where w = σ1σ2 · · ·σk, k ≥ 1,
σ1, . . . , σk ∈ Σ, we define the process µw as follows:

µw(t) = µσ1
(t− k + 1)µσ2

(t− k + 2) · · ·µσk(t) (6)

For an empty word w = ε, we set µε(t) = 1. For the
constants {pσ}σ∈Σ from (3) define the products

pw = pσ1
pσ2
· · · pσk (7)

for any w ∈ Σ+, σi ∈ Σ. For an empty word w = ε, we
set pε = 1. For a stochastic process r ∈ Rr and for each
w ∈ Σ∗ we define the stochastic process zrw as

zrw(t) = r(t− |w|)µw(t− 1)
1
√
pw
, (8)

where µw and pw are as in (6) and (7). For w = ε,
zrw(t) = r(t). The process zrw in (8) is interpreted as the
product of the past of r and µ. The process zrw will be used
as predictors for future values of r for various choices of r.
We are now ready to recall from [25] the definition of
ZMWSII process w.r.t. θ (w.r.t; µ in the terminology of [25]).

Definition 1 ([25]): A stochastic process r is Zero Mean
Wide Sense Stationary (ZMWSSI) if

1. For t ∈ Z, the σ-algebras generated by {r(k)}k≤t, and
{µσ(k)}k≥t,σ∈Σ respectively are conditionally indepen-
dent w.r.t σ-algebra generated by {µσ(k)}k<t,σ∈Σ,

2. The processes {zrw}w∈Σ∗ are zero mean, square inte-
grable and jointly wide sense stationary, i.e. the covari-
ances {E

[
zrw(t)(zrv(t))

T
]
}w,v∈Σ∗ are independent of t.

The concept of ZMWSII is an extension of wide-sense
stationarity, if Σ+ is viewed as a time axis. More precisely,
for any two ZMWSII processes r and b and for sequences
w, v ∈ Σ∗, define the covariances:

Λr,b
w = E[r(t)(zbw(t))T ], T r,b

w,v = E[zrw(t)(zbv (t))T ] (9)

Then, T r,r
w,v = Λr,r

s if w = sv, and T r,r
w,v = (Λr,r

s )T if v = sw,
for some s∈ Σ∗, and T r,r

w,v=0 otherwise, i.e., the covariance
T r,r
w,v depends on the difference between w and v.

III. STATIONARY LSSS

Below we present the definition of the class of LSSs which
is studied in this paper. To this end, we recall from [27] the
notion of a white noise process w.r.t. θ.

Definition 2 (White noise w.r.t. θ, [27]): A ZMWSII
process r is a white noise w.r.t. θ, if for all w ∈ Σ+,
v ∈ Σ+, Λr,r

w = 0, and T r,r
w,v = 0 if w 6= v, and T r,r

w,w is
non-singular.
The notion of a white noise process w.r.t. θ (w.r.t. µ in the
terminology of [27]) is an extension of the usual concept of
the white noise process if Σ+ is viewed as an additional time
axis. In particular, if r is a white noise w.r.t. θ, the collection
{zrw(t)}w∈Σ+ is a sequence of uncorrelated random variables
and the covariance of zrw(t) does not depend on t and it
depends only on the first letter of w.

Next, we state the assumptions on the input and output.
Assumption 1 (Inputs and outputs): (1) u is a white noise

w.r.t. θ and the covariance Tu,u
σ,σ = Qu does not depend on

σ ∈ Σ. (2) The process
[
yT , uT

]T
is a ZMWSSI.

Now, we are ready to define the class of stationary LSS,
which is a special case of stationary generalized switched
linear systems defined in [27].

Definition 3 (Stationary LSS): A stationary LSS (abbrevi-
ated sLSS) is a system (1), such that

1. w =
[
vT , uT

]T
is a white noise process w.r.t. θ.

2. The process
[
xT, wT

]T
is a ZMWSSI, and Tx,w

σ,σ = 0,
Λx,w
w = 0 for all σ ∈ Σ, w ∈ Σ+.

3. The eigenvalues of the matrix
∑
σ∈Σ pσAσ ⊗ Aσ are

inside the open unit circle.
If Bσ = 0, σ ∈ Σ, and D = 0 the we call (1) an autonomous
stationary LSS (asLSS), and in this case we say it is an
asLSS realization of (y,θ).

In the terminology of [25], an sLSS corresponds to a
stationary GBS (Generalized Bilinear System) w.r.t. inputs
{µσ}σ∈Σ and with noise w = [vT ,uT ]T . In the terminology
of [27], a sLSS is a stationary generalized switched system
for which the switching process is i.i.d. Note that the
processes x and y are ZMWSII, in particular, they are wide-
sense stationary, and that x is orthogonal to the future values
of the noise process v. We need stationarity, as even for
LTI case stochastic realization theory exists only for the
stationary case [17].

As it was noted in [27], the state of an sLSS is uniquely
determined by its matrices and noise and input process, i.e.,

x(t) =
∑

σ∈Σ,w∈Σ∗

√
pσwAw (Kσz

v
σw(t) +Bσz

u
σw(t)) (10)

where the right-hand side is absolutely convergent in the
mean-square sense. This motivates the following notation.

Notation 1: We identify a sLSS of (y,u,θ) of the form
(1) with the tuple S = ({Aσ, Bσ,Kσ}

nµ
σ=1, C,D, F,v).

IV. MINIMALITY OF SLSS IN INNOVATION FORM

In this section, we present the main results on existence
and uniqueness of minimal sLSSs in innovation form. To this
end, first, we recall realization theory of deterministic linear
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switched systems, and then relate it with realization theory
of sLSSs.

A. Review of deterministic realization theory of LSSs

A deterministic linear switched system (abbreviated as
dLSS), is a system of the form

S

{
x(t+ 1) = Aq(t)x(t) + Bq(t)u(t)

y(t) = Cx(t) +Du(t)
(11)

where {Aσ,Bσ}σ∈Σ, C,D are matrices of suitable dimen-
sions, q : Z → Σ is the switching signal, x : Z → Rnx

is the state trajectory u : Z → Rnu is the input trajectory
y : Z → Rny is the output trajectory with finite support 2.
We identify a dLSS of the form (11) with the tuple

S = ({Ai,Bi}
nµ
i=1, C,D) (12)

We refer to [23], [21] for a detailed definition input-output
behavior of dLSSs, their realization theory, minimality, etc.
In particular, let us call any function M : Σ∗ → Rny×nu a
Markov function. The dLSS S realizes M , if for all w ∈ Σ∗,

M(w) =

{
CAsBσ, w = σs, σ ∈ Σ, s ∈ Σ∗

D. w = ε
(13)

If S is a realization of M , then M is referred to as the
Markov function of S and it is denoted by MS . The values
{M(w)}w∈Σ∗ of MS are the Markov parameters of S .
From [23], [21] it then follows that two dLSSs have the
same input-output behavior, if and only if their Markov
functions are equal. For dLSS (11) the integer nx is called the
dimension of S , and we say that a dLSS is minimal, if there
exists no other dLSS of smaller dimension which realizes
the same Markov-function. From [23], [21], it follows that
a dLSS is minimal if and only if it is span-reachable and
observable, and the latter properties are equivalent to rank
conditions of the extended reachability and observability
matrices [21, Definition 23, Theorem 1, Theorem 2]. Further-
more, any dLSS can be transformed to a minimal one with
the same Markov function, using a minimization algorithm
[21, Procedure 3 1]3. For a more detailed discussion see [21].
Moreover, any two minimal dLSS which are input-output
equivalent are isomorphic, i.e. they are related by a linear
change of coordinates [21, Theorem 1].

B. Relationship between sLSSs and dLSSs

The idea behind relating sLSSs and dLSSs is to express
the covariances of outputs of sLSSs as Markov parameters of
dLSSs. To this end, we need to recall [27] the decomposition
of the output y into deterministic and stochastic parts, and
the notion of orthogonal projection from [27].

Notation 2 (El): Recall from [4] that the set H1 of real
valued square integrable random variables is a Hilbert-space
with the scalar product 〈z1, z2〉 = E[z1z2]. If M is a closed
subspace of H1, then denote by El[h |M ] the orthogonal

2A function g : Z −→ Rp has a finite support, then it ∃ t0 ∈ Z, such
that ∀ t < t0, g(t) = 0

3[21, Corollary 1] should be applied with zero initial state

projection, in the usual sense for Hilbert-spaces, of h ∈ H1

onto M . Let z = (z1, . . . , zk)T be a k-dimensional random
variable such that zi belongs to H1 for all i = 1, . . . , k.
The orthogonal projection of z onto M , denoted by El[z |
M ], is defined as k-dimensional random variable (El[z1 |
M ], El[z2 |M ], . . . , El[zk|M ])T . If S is a subset of vector
valued random variables, coordinates of which all belong to
H1, and M is generated by the coordinates of the elements
of S, then instead of El[z |M ] we use El[z | S].
Intuitively, El[z | S] is minimal variance linear prediction
of z based on the elements of S.

The deterministic component yd and the stochastic com-
ponent ys of y are defined as

yd(t) = El[y(t) | {zuw(t)}w∈Σ+ ∪ {u(t)}],
ys(t) = y(t)− yd(t).

(14)

Intuitively, yd is the best linear prediction of y based on the
present and past values of u multiplied by indicator functions
of past discrete modes. In fact, by [27, Theorem 1], yd (resp.
ys) is the output of the asLSS obtained from (1), by setting
Kσ = 0 (resp. Bσ = 0), for all σ ∈ Σ

Define the Markov function My,u : Σ∗ → Rny×(ny+nu)

My,u(w) =


[
Λyd,u
w Q−1

u , Λys
w

]
w 6= ε[

Λyd,u
ε Q−1

u , Iny

]
w = ε

(15)

It can be shown that the first components of My,u can be
expressed as Markov parameters of a suitably defined dLSS.
Since, by [27], ys is the output of an asLSS, and hence of
a GBS in terminology of [25], then by [25, Lemma 4] Λys

w

can be shown to be the Markov function of a suitable dLSS.
That is, My,u has a dLSS realization.

Formally, define the process xs(t) = x(t) − El[x(t) |
{zuw(t)}w∈Σ+ ∪ {u(t)}] and the matrices

Gσ =
√
pσ(AσT

xs,xs

σ,σ CT +KσT
v,v
σ,σ F

T ) (16)

Then define the dLSS associated with sLSS as

SS = ({√pσAσ,
[√
pσBσ Gσ

]
}nµσ=1, C,

[
D Iny

]
),

Note that by [27, proof of Theorem 1] xs(t) is the state of
the asLSS obtained from S by considering Bσ = 0, and
hence xs is a ZMWSII process and Txs,xs

σ,σ is well-defined.
Lemma 1: If S is a sLSS realization of (y,u,µ), then the

associated dLSS SS is a realization of My,u.
The proof, see [26], uses [25, Lemma 4], [27, Theorem 2].

Remark 2 (Computing Gσ): In order to compute Gσ , we
can use that by [27, proof Theorem 1] xs is the state of
the asLSS obtained from (1) by setting Bσ = 0, σ ∈ Σ.
Hence, by [25, Lemma 5], the covariance of xs satisfies
pσT

xs,xs

σ,σ = limN→∞ PNσ , where P 0
σ = 0 and PN+1

σ =
pσ
∑
σ1∈Σ(Aσ1

PNσ1
ATσ1

+ pσ1
Kσ1

Tv,v
σ1,σ1

KT
σ1

).
Conversely, we can associate with any dLSS realization of
the Markov function My,u a sLSS realization of (y,u,θ). In
order to define the latter, we need to specify its noise process,
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which happens to be the innovation noise es of ys as defined
in [25, eq. (16)]. By [27, Theorem 2],

es(t) = y(t)− ŷ(t)

ŷ(t) = El[y(t) | {zyw(t), zuw(t)}w∈Σ+ ∪ {u(t)}]
(17)

That is, es(t) is the prediction error of the best linear
predictor ŷ(t) of y(t) given the products of past outputs,
inputs and discrete modes, i.e., es is direct extension of the
classical innovation noise. We say that y is full rank, if for
all σ ∈ Σ, the covariance T es,es

σ,σ is invertible. This is a direct
extension of the classical notion of a full rank process. If y
is full rank, for an observable dLSS

S = ({Âσ,
[
B̂σ Ĝσ

]
}nµσ=1, Ĉ,

[
D Iny

]
)

for which
∑nµ
σ=1 Âσ⊗Âσ is a Schur matrix4, define the sLSS

SS associated with S as

SS = ({ 1
√
pi
Âσ,

1
√
pσ
B̂σ, K̂σ}

nµ
σ=1, Ĉ, D̂, Iny , e

s),

where K̂σ = limI→∞ K̂Iσ , and {K̂Iσ }σ∈Σ,I∈N satisfies

P̂ I+1
σ =pσ

∑
σ1∈Σ

1

pσ1

(
Âσ1 P̂

I
σ1
ÂTσ1

+ K̂Iσ1
Q̂Iσ1

(K̂Iσ1
)T
)

Q̂Iσ = pσT
ys,ys
σ,σ − ĈP̂ Iσ (Ĉ)T

K̂Iσ =

(
Ĝσ
√
pσ −

1
√
pσ
ÂσP̂

I
σ (Ĉ)T

)(
Q̂Iσ

)−1

(18)

with P̂ 0
σ = 0. Note that the noise process of SS is the

innovation noise, and its noise and state covariances satisfy

pσT
es,es

σ,σ = lim
I→∞

Q̂Iσ , pσT
x̂,x̂
σ,σ = lim

I→∞
P̂ Iσ (19)

where x̂ is the unique state process of SS . The convergence
of (18) and (19) follow from the proof of [25, Theorem 3].

Lemma 2: If y is full rank and (y,u,θ) has a realization
by sLSS, and S is a minimal dLSS realization of My,u, then
the associated sLSS SS is a sLSS realization of (y,u,θ).
The proof, see [26], uses [27, Theorem 2], [25, Theorem 3].

C. Main result on minimal sLSSs in innovation form

A sLSS of the form (1) is said to be in innovation form, if
its noise process v equals es from (17) and F = Iny . Note
that the sLSS associated with a dLSS is in innovation form.
The sLSS (1) in innovation form is a predictor

x(t+1)=(Aθ(t)−Kθ(t)C)x(t) +Bθ(t)u(t) +Kθ(t)yu(t)

ŷ(t)=Cx(t) +Du(t), yu(t) = y(t)−Du(t)

which generates the best linear prediction ŷ(t) of the output
y(t), see (17), while being driven by past outputs and inputs.

We say that a sLSS realization of (y,u,θ) is minimal, if
it has the smallest dimension among all sLSS realizations
of (y,u,θ). In order to study minimality, we need the
concepts of reachability and observability. We call a sLSS S
reachable (resp. observable), if the associated dLSS SS is
span-reachable, (resp. observable) according to the definition
of [21, Definition 19], applied to zero initial state.

4All its eigenvalues are inside the unit disk

In order to investigate uniqueness of minmal sLSS in
innovation form, we need the concept of isomorphism
Let S and S̃ be sLSSs realization of (y,u,µ) in inno-
vation form such that S is of the form (1) and S̃ =
({Ãσ, B̃σ, K̃σ}

nµ
σ=1, C̃, D̃, Iny , e

s). We say that S and S̃ are
isomorphic, if there exists a nonsingular matrix T such that

Ãσ = TAσT
−1, K̃σ = TKσ, B̃σ = TBσ, σ ∈ Σ

C̃ = CT−1, D = D̃
(20)

Theorem 1 (Main result: minimal innovation form):
Assume that (y,u,θ) has a sLSS realization and that y is
full rank w.r.t. u and θ. Then the following holds.

1. A sLSS realization of (y,u,θ) is minimal if and only
if it is reachable and observable.

2. If a dLSS Sm is a minimal realization of My,u, then
the associated sLSS SSm

is a minimal sLSS realization
of (y,u,θ) in innovation form.

3. There exists a minimal sLSS realization of (y,u,θ) in
innovation form.

4. Any two minimal sLSS of (y,u,θ) in innovation form
are isomorphic.

The proof is presented in [26], it relies on the fact that any
dLSS can be transformed to a minimal one, that minimal
input-output dLSS are isomorphic and on Lemma 1-2.

Moreover, an sLSS can be transformed to a minimal one in
innovation form as follows: first we compute the associated
dLSS, we minimize it using [21, Procedure 3], and then we
compute the sLSS associated with the latter minimal dLSS.

Remark 3 (Relationship with [27]): For a sLSS (1), the
minimality condition of [27] is a sufficient condition for
reachability and observability of the associated dLSS. Like-
wise, [27] shows isomorphism between sLSSs in innovation
form which satisfy the above sufficient condition for mini-
mality, and for which the image of Bσ belongs to the image
of Kσ . In contrast, Theorem 1 establishes isomorphism for
a much wider class of sLSSs in innovation form.

V. MINIMIAL COVARIANCE REALIZATION ALGORITHM

In this section we present a Ho-Kalman-like algorithm for
computing a minimal sLSS realization innovation form from
My,u. To this end, we first recall the Ho-Kalman realization
algorithm for dLSS.

A. Reduced basis Ho-Kalman algorithm for dLSS

Below we recall from [8] an adaptation of the Ho-Kalman-
like algorithm. Define a (n, ny, nu)-selection (selection for
short) as a pair of word-index sets (α, β) such that,

α = {(υi, ki)}ni=1, β = {(σj , νj , lj)}nj=1, (21)

for some υi ∈ Σ+, |υi| ≤ n, ki ∈ {1, 2, · · · , ny}, σj ∈ Σ,
νj ∈ Σ+, |νj | ≤ n, lj ∈ {1, 2, · · · , nu}, i, j ∈ {1, . . . , n}
Intuitively, the components of α, β determine the choice of
Markov parameters, while the other components determine
a choice of row and column indices of the chosen Markov
parameters, see [20] for an example. Formally, let M : Σ∗ →
Rny×nu be a Markov function. Define the Hankel matrix
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HMα,β ∈ Rn×n and the matrices HMσ,α,β ∈ Rn×n, HMα,σ ∈
Rn×nu and HMβ ∈ Rny×n as follows:[
HMα,β

]
i,j

=[M(σjνjυi)]ki,lj , i, j = 1, . . . , n (22)[
HMσ,α,β

]
i,j

= [M(σjνjσυi)]ki,lj , i, j = 1, . . . , n (23)[
HMα,σ

]
i,j

=[M(συi)]ki,j , j=1, . . . , nu, i=1, . . . , n (24)[
HMβ

]
i,j

=[M(σjνj)]i,lj , i = 1, . . . , ny, j = 1, . . . n (25)

where (υi, ki) ∈ α, (σj , νj , lj) ∈ β are as in the ordering in
(21). Finally, let Lα,β be the set of all words w ∈ Σ∗ such
that M(w) occurs in one of the matrices, (22) – (23), i.e.,

Lα,β = {υi, σjνj , σjνjυi, σjνjσυi, συi | σ ∈ Σ}ni,j=1

The promised algorithm is presented in Algorithm 1.

Algorithm 1 Ho-Kalman for dLSSs
Input: (n, ny, nu)-selection (α, β), {M(w)}w∈Lα,β , M(ε)

Construct the matrices HMα,β , HMσ,α,β HMα,σ and HMβ , and set

Âσ = (HMα,β)−1HMσ,α,β , B̂σ = (HMα,β)−1HMα,σ, Ĉ = HMβ .

Output: dLSS ({Âσ, B̂σ}
nµ
σ=1, Ĉ,M(ε))

Lemma 3 ([8]): Assume that there exists a minimal dLSS
realization of M of dimension n. Then there exists an
(n, ny, nu)-selection (α, β) such that rank(HMα,β) = n. For
any (n, ny, nu)-selection (α, β) for which rank(HMα,β) = n,
Algorithm 1 returns a minimal dLSS realization of M .

B. Covariance realization algorithm

Theorem 1, together with Algorithm 1 and Lemma 3
suggests that in order to compute a sLSS realization of
(y,u,θ), one could apply Algorithm 1 to Hankel-matrices
corresponding to My,u. However, the definition of My,u uses
the covariances of the processes yd and ys, which are not
directly available. Below we show how to compute My,u
using only the covariances of y and u.

To this end, define the Markov function Ψu,y such that
Ψu,y(w) is formed by the first nu columns of My,u(w),
i.e. Ψu,y(w) = Λyd,u

w Q−1
u . Then Ψu,y has a realization by

a dLSS: by Lemma 1 ({√pσAσ,
√
pσBσ}

nµ
σ=1, C,D) is a

dLSS realization of Ψu,y.
Lemma 4: If there exists a sLSS of (y,u,θ). Then

Λyd,u
w =Λy,u

w , Λys,ys
σw =Λy,y

σw − Λyd,yd
σw ,

T ys,ys
σ,σ =T y,y

σ,σ− T yd,yd
σ,σ

(26)

for all w ∈ Σ∗, σ ∈ Σ. Moreover, if ({Ãdσ, B̃dσ}
nµ
σ=1, C̃

d, D̃d)
is a minimal dLSS realization of Ψu,y, then

Λyd,yd
σw =

1

pσw
C̃dÃdw(ÃdσP̃σ(C̃d)T + B̃dσQu(D̃d)T )

T yd,yd
σ,σ =

1

pσ
(C̃dP̃σ(C̃d)T + D̃dQu(D̃d)T )

(27)

where P̃σ = lim
I→∞

P̃ Iσ , and P̃ 0
σ = 0 and P̃ I+1

σ =

pσ
∑
σ1∈Σ

(
1
pσ1

Ãdσ1
P̃ Iσ1

(Ãdσ1
)T + B̃dσ1

Qu(B̃dσ1
)T
)

.

The proof of Lemma is presented in [26]. The first part of
the lemma relies on orthogonality of ys(t) and {zu

w(t)}w∈Σ∗

established in [27]. The second part follows by identifying
dLSS realizations of Ψu,y with asLSS realizations of yd
whose noise is u, and using the equations in [25, Lemma
4] for the covariances of yd.

We can then use Lemma 4 to compute the necessary
values of My,u as follows. First, we compute a minimal dLSS
realization of Ψu,y using Algorithm 1, and then use (26) –
(27) to compute those values of Λys,ys

w , and hence of My,u,
which are necessary for applying Algorithm 1 to My,u. This
idea is formalized in Algorithm 2.

Algorithm 2 Minimal covariance realization algorithm
Input: (nx, ny, nu + ny)-selection (α, β); (n̄, ny, nu)-
selection

(
ᾱ, β̄

)
; covariances {Λy,u

w }w∈Lα,β∪Lᾱ,β̄ ,
{Λy,y

w }w∈Lα,β , Λy,u
ε , {T y,y

σ,σ}σ∈Σ; integer I > 0.

1. Use (26) to compute {Ψu,y(w)}w∈Lᾱ,β̄ and Ψu,y(ε).
2. Run Algorithm 1 with M = Ψu,y and selection (ᾱ, β̄)

and denote the result by Sd = ({Ãi, B̃i}
nµ
i=1, C̃, D̃).

3. Compute {Λys,ys
w ,Λyd,u

w }w∈Lα,β , using (26), (27) and
{Λy,ys

w }w∈Lα,β .
4. Compute My,u(w) from {Λys,ys

w ,Λyd,u
w } for w ∈ Lα,β .

5. Run Algorithm 1 with M = My,u and selection (α, β),
and denote by S = ({Âi, B̂i, Ĝi}

nµ
i=1, Ĉ, D̂) the result.

6. From {T y,y
σ,σ}σ∈Σ compute {T ys,ys

σ,σ }σ∈Σ using (26) and
(27). Let K̂Iσ , Q̂Iσ as in (18).

Output: Matrices { Âσ√pσ ,
B̂σ√
pσ
, K̂Iσ , Q̂

I
σ}
nµ
σ=1, Ĉ, D̂.

Corollary 1: Assume that y is full rank and there exists a
minimal sLSS realization of (y,u,θ) of dimension nx, and
a minimal dLSS realization of Ψy,u of dimension n̄. If the
selections (α, β) and (ᾱ, β̄) satisfy

rankH
My,u

α,β =nx, rankH
Ψu,y

ᾱ,β̄
=n̄. (28)

then Algorithm 2 returns matrices such that the sLSS
S̃ = ({Âσ/

√
pσ, B̂σ/

√
pσ, K̂σ, }

nµ
σ=1, Ĉ, D̂, e

s) is a minimal
realization of (y,u,θ) in innovation form, where K̂σ =
limI→∞ K̂Iσ and T es,es

σ,σ pσ = limI→+∞ Q̂Iσ , σ ∈ Σ. More-
over, there exist an (nx, ny, nu + ny)-selection (α, β) and
(n̄, ny, nu)-selection (ᾱ, β̄) which satisfy (28).
For the proof of Corollary 1 see [26].

That is, Algorithm 2 returns a minimal sLSS in innovation
form based on the input and output covariances, if the
selections (α, β), (ᾱ, β̄) give Hankel-matrices of a correct
rank, and there always exists such selections.

That is, by finding a minimal sLSS of (y,u,θ) in in-
novation form, Algorithm 2 finds a sLSS which has the
same deterministic behavior as the true system, i.e. the same
output response as the true system for any inputs, noise and
switching signals, if the true system is assumed to be minimal
in innovation form.

VI. IDENTIFICATION ALGORITHM

We formulate an identification algorithm based on Algo-
rithm 2, by using empirical covariances instead of the true
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ones Λy,u
w , Λy,y

w , T y,y
σ,σ when applying Algorithm 2. To this

end, we make the following assumptions.
Assumption 2: (1) The (nx, ny, nu +ny)-selection (α, β)

and the (n̄, ny, nu)-selection (ᾱ, β̄) satisfy (28), y is full
rank, and nx and n̄ satisfy the hypothesis of Corollary 1.

(2) The process (y,u,θ) is ergodic, and the observed
sample paths y : Z → Rny , u : Z → Rnu and q : Z → Σ
of y, u and θ respectively satisfy the following. For all
w, v ∈ Lα,β∪Lᾱ,β̄∪Σ∪{ε} define the empirical covariances

T y,b
v,w,N =

∑N
t=N0

zyv (t)(zbw(t))T

N −N0
, (29)

where b =

{
y b = y
u b = u

, and for all µσ(t) = χ(q(t) = σ),

σ ∈ Σ, and for all w = σ1σ2 . . . σr ∈ Σ+, r > 0,
σ1, . . . , σr ∈ Σ, b ∈ {y, u}

µw(t) = µσ1
(t− k + 1)µσ2

(t− k + 2) · · ·µσr (t)

zbw(t) = b(t− r)µw(t− 1)
1
√
pw
, zbε(t) = b(t),

and N0 is an upper bound on the length of words in Lα,β ∪
Lᾱ,β̄ ∪ Σ. Then we assume that for all b ∈ {y,u},

Λy,u
w = lim

N→∞
Ty,b
ε,w,N , Ty,y

σ,σ = lim
N→∞

Ty,y
σ,σ,N (30)

The first assumption is not restrictive, such selections always
exist, and they can be found by an exhaustive search through
all the possible selections. The assumption (30) says that the
observed sample (y, u, q) satisfies the law of large numbers;
ergodicity, which is a standard assumption in identification,
implies that almost any sample satisfies (30).

Algorithm 3 Identification sLSS
Input: Data {y(t), u(t), q(t)}Nt=1, (nx, ny, nu+ny)-selection
(α, β) and (n̄, ny, nu)-selection

(
ᾱ, β̄

)
; integer I > 0.

1. Run Algorithm 2 with the covariances Λy,b
w , T y,y

σ,σ being
replaced by the empirical covariances T y,b

ε,w,N , T y,y
σ,σ,N

respectively for b ∈ {y,u} and w ∈ Lα,β∪Lᾱ,β̄ , σ ∈ Σ.

Output: The matrices {ÃNσ , B̃Nσ , K̃N,I
σ , Q̃N,Iσ }nµσ=1, C̃

N , D̃N

returned by Algorithm 2.

Lemma 5 (Consistency): Under Assumption 2 the matri-
ces returned by Algorithm 3 satisfy the following:

K̃σ = lim
I→∞

lim
N→∞

K̃N,I
σ , pσT

es,es
σ,σ = lim

I→∞
lim
N→∞

Q̃N,Iσ

[Ãσ, B̃σ] = lim
N→∞

[ÃNσ , B̃
N
σ ], [C̃, D̃] = lim

N→∞
[C̃N , D̃N ]

and S = ({Ãσ, B̃σ, K̃σ, }
nµ
σ=1, C̃, D̃, x̂, e

s) is a minimal
sLSS realization of (y,u,θ) in innovation form.
That is, Algorithm 3 is a statistically consistent. Moreover, if
the true system is a minimal sLSS in innovation form, which,
by Theorem 1 we can assume w.l.g, then the sLSS returned
by Algorithm 3 will be isomorphic to the true system, as
N → ∞. In particular, in the limit, the identified system
has the same deterministic behavior as the true system. That

is, while the data used for identification had to be sampled
from certain distributions, the identified model recreates the
behavior of the true one for any switching signal and input.

Algorithm 3 can be improved as follows.
Remark 4 (Computing empirical covariances): Using

(29) directly for computing empirical covariances T y,b
ε,w,N ,

b ∈ {y,u} results in slow convergence. Instead, we
propose to compute the empirical covariances by solving
a linear regression problem. More precisely, assume that
Lα,β ∪ Lᾱ,β̄ = {w1, . . . , wk} and Lα,β = {w1, . . . , wr} for
some k, r > 0. Let us then define the following matrices

R =

y(N0)
...

y(N)

 , Φb =

z
y
w1

(N0) · · · zbwl(b)
(N0)

...
...

zbw1
(N) · · · zbwl(b)

(N)


where for b = y, l(b) = r and b = y, and for b = u,
l(b) = k and b = u. By the well-known formula, Θ̂b =
(ΦTbΦb)−1ΦTbR is the least squares solution of the equation
R = ΦbΘ̂b. Hence, 1

N−N0
(ΦTbΦb)Θ̂b = 1

N−N0
ΦTbR,

and the latter contains all covariances T y,b
ε,w,N , b ∈ {u, y}

required for Algorithm 3. In turn, Θ̂b can be computed using
standard linear regression tools.

Remark 5 (Refinement using gradient descend): In order
to enhance the performance of Algorithm 3, inspired by [9],
we propose to use the sLSS returned by Algorithm 3 as
initial value for the Gradient-Based (GB) algorithm of [9,
Algorithm 7.1]. Note that [9] uses zero matrices as initial
values for the noise gain matrices, whereas Algorithm 3
returns a non-zero estimate of those matrices.

VII. NUMERICAL EXAMPLE

In this section, we illustrate Algorithm 3 on a numerical
example. All computations are carried out on an i7 2.11-GHz
Intel core processor with 32GB of RAM running MATLAB
R2023b. For data generation we use the following randomly
generatated sLSS (1) with Σ = {1, 2}

A1 =

0.1039 0.0255 0.5598
0.4338 0.0067 0.0078
0.3435 0.0412 0.0776

 , B1 =

1.6143
5.9383
7.3671

 ,
A2 =

0.1834 0.2456 0.0511
0.0572 0.2445 0.0642
0.1395 0.6413 0.5598

 , B2 =

6.0624
4.9800
3.1372

 ,
K1=[0.4942 0.2827 0.8098]

T
,

K2=[0.6215 0.1561 0.7780]
T

C =
[
0.1144 0.7623 0.0020

]
, D = 1, F = 1.

Training and validation data of length N and Nval,
respectively, are generated using the data generator sLSS
with white-noise input process u with uniform distribution
U(−1, 1), an i.i.d. process θ sucht that P(θ(t) = q) = 0.5,
q = 1, 2, and a Gaussian white noise v with variance σ2

v.
The corresponding Signal-to-Noise Ratio (SNR) are shown
in Table I and calculated as follows: SNR = 20 log10( ||y||2||v||2 ).

6361



We run the version of Algorithm 3 using the Least-Square
method from Remark 4, with (α, β) = (ᾱ, β̄),

α={(11, 1), (1, 1), (ε, 1)}, β={(2, ε, 1), (1, 2, 1), (1, 1, 1)},

and the GB refinement step from Remark 5. For the latter
we used the LPVcore toolbox [11]. The basis are chosen so
that it satisfied (1) of Assumption 2.

For validation, the true output minus the measurement
noise Fv(t), denoted by y(t), was compared with the output
ŷ(t) predicted by the estimated model in innovation form
using past inputs and outputs, as explained in Section IV-
C. The quality of the match is evaluated via Best Fit Ratio

criterion BFR = max

{
1−
√∑Nval

t=1 (y(t)−ŷ(t))2∑Nval
t=1 (y(t)−ȳ)2

, 0

}
× 100%,

where ȳ denotes the sample mean of the output in the
validation set.

TABLE I
BFR ON A NOISE-FREE VALIDATION DATA (Nval = 500)

Method
N = 5000 N = 10000

SNR = 6.1 dB, σv = 1.5
BFR[%] time[s] BFR[%] time[s]

GB + zero noise gain 83.13 197 82.42 361
Algorithm 3 85.67 2.60 90.86 2.03

Algorithm 3 + GB 90.5 256 91.71 323
SNR = 0.5 dB, σv = 3

GB + zero noise gain 63.25 188 66.11 316
Algorithm 3 76.97 1.94 87.29 1.90

Algorithm 3 + GB 84.17 236 88.03 376

The results are reported in Table I. We compare Algorithm
3 with using only the GB search algorithm from [9] where
the initial value of the noise gain is zero, while the other
matrices are initialized by the outcome of Algorithm 3. This
is then equivalent with combining the corelation analysis
(CRA) algorithm of [8] with GB. Algorithm 3 appears to
perform better than using only GB search, especially for
noisy data and a larger number of data points. Moreover,
Algorithm 3 is faster than GB search. If combined with GB
search, the performance of Algorithm 3 improves further, but
at the expense of computational time.

VIII. CONCLUSION

In this paper, we presented a characterization of min-
imality and uniqueness of LSSs in innovation form, and
we proposed a realization algorithm for computing minimal
LSS in innovation form. Using this realization algorithm,
we formulated a system identification algorithm proven to
be statistically consistent. The latter algorithm was evaluated
on a numerical example and demonstrated promising perfor-
mance, both in terms of runtime complexity and estimation
accuracy.

REFERENCES
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