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Abstract— We consider the problem of optimally scheduling
transmissions for remote estimation of a discrete-time autore-
gressive Markov process that is driven by white Gaussian noise.
A sensor observes this process, and then decides to either encode
the current state of this process into a data packet and attempts
to transmit it to the estimator over an unreliable wireless
channel modeled as a Gilbert-Elliott channel [1] [2] [3], or
does not send any update. Each transmission attempt consumes
λ units of transmission power, and the remote estimator is
assumed to be linear. The channel state is revealed only via
the feedback (ACK/NACK) of a transmission, and hence the
channel state is not revealed if no transmission occurs. The
goal of the scheduler is to minimize the expected value of
an infinite-horizon cumulative discounted cost, in which the
instantaneous cost is composed of the following two quantities:
(i) squared estimation error, (ii) transmission power. We posed
this problem as a partially observable Markov decision process
(POMDP), in which the scheduler maintains a belief about the
current state of the channel, and makes decisions on the basis
of the current value of the error e(t) (defined in (6)), and
the belief state. To aid its analysis, we introduce an easier-to-
analyze “folded POMDP.” We then analyze this folded POMDP
and show that there is an optimal scheduling policy that has
threshold structure, i.e. for each value of the error e, there is
a threshold b?(e) such that when the error is equal to e, this
policy transmits only when the current belief state is greater
than b?(e).

Index Terms— Remote estimation, Gilbert-Elliott channel,
partially observable Markov decision process (POMDP),
threshold-type policy.

I. INTRODUCTION

A. Literature Overview

In distributed networked control systems (NCS), several
network nodes are connected through a communication
network, which enables them to exchange information and
collaborate to achieve a common goal [4], [5]. In such a
control architecture, decision-making is decentralized since
each node can communicate only with its neighbors, and
makes decisions based on its own local information. Such
systems have gained widespread interest in recent years due
to their ability to enable remote control and monitoring
of physical systems. They are used in various fields, in-
cluding industrial automation, robotics, and transportation
systems. Remote state estimation is one of the fundamental
problems in NCS. Such a system is comprised of a sensor
that observes an underlying process, encodes its observations
into data packets, and then transmits it over a communication
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channel to a remote estimator that has a different loca-
tion. We will be exclusively interested in the case where the
wireless medium is used for carrying out these transmissions.
Since wireless devices are typically battery-operated, and
transmissions consume energy, it is not efficient for the
sensor to continually transmit the observations. Hence, in
order to strike a balance between the communication cost
and estimation error, sensors typically employ scheduling
policies that make dynamic decisions regarding whether or
not to send a packet, based on the information available with
them.

In this work, we consider a remote estimator that attempts
to estimate the state of a Markovian source in real-time. [6]–
[10] consider the remote estimation problem for systems
in which the communication channels are ideal and packet
transmissions are always successful. [6] imposes constraints
on the number of transmissions, while [7] fixes the estimator
to be “Kalman-like” and then optimizes the scheduling
policy. It shows that the optimal scheduling decisions are
solely a function of the current value of the state estimation
error. [8] does not impose any conditions on the structure of
the scheduling policy or the estimator, and uses majorization
theoryin order to show that a threshold-type communication
policy at the sensor, and a Kalman-like estimator are jointly
optimal. [9] shows that the structure of optimal commu-
nication and estimation policies derived in [8] continue
to hold when additionally there are energy constraints on
the transmitter. [10] also derives jointly optimal scheduling
policy and estimator for the average cost problem by viewing
it as a limiting case of the discounted cost problem in
the limit the discount factor approaches unity. Policies that
transmit only when the current value of the estimation error
is greater than a threshold are also called event-triggered
communication policies, and are studied in [11]–[14] for
error-free communication channels.

Transmissions using the wireless medium are unreliable
due to factors such as environmental conditions, interference,
blockages. [15]–[17] study remote estimation over wireless
medium by modeling packet losses to be random and i.i.d.
across times and show the existence of an optimal policy that
has a threshold structure with respect to the estimation error.
A more realistic way to model the wireless fading channel
is to model it using a finite state Markov chain [18]. In
this work, we model the unreliable wireless channel as a
Gilbert-Elliott channel [1], which is a Markovian channel
in which the channel state can assume two values. At each
discrete time, the channel is either in a good state and packet
transmissions are successful, or it is in a bad state and any
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attempted transmission fails. The works [2], [19], [20] study
remote estimation over Markovian channels. [19] derives
transmission power control and remote estimation policies
that are jointly optimal. It assumes that the channel state
is instantaneously known to the sensor and estimator. The
problem is formulated as a partially observable Markov
decision problem (POMDP), with a belief over the common
information available with the sensor and the estimator, and it
is shown that the optimal transmission strategy has a thresh-
old structure with respect to the belief state. A model similar
to [19] is considered in [2] and [20], but with the difference
that the channel state is known perfectly to the sensor with
a delay of one unit. The optimality of a transmission policy
that is of threshold-type with respect to the error is shown.
However, obtaining a perfect knowledge of the channel state
is difficult due to the complexity involved in measuring the
characteristics of the communication channel.

B. Contributions

We address the problem of optimally scheduling transmis-
sions to a remote linear estimator when the transmitter does
not employ a probing mechanism to continually sense the
channel state, and hence gets to know the channel state only
via acknowledgments sent by the estimator when there is a
transmission attempt. If there is no transmission attempt, then
the current state is not known. The underlying process at the
sensor which is being estimated is an autoregressive (AR)
Markov process [20], [21], and our objective is to minimize
the infinite-horizon cumulative expected discounted cost. Our
main contributions are as follows:

1) We pose the problem faced by the sensor as a dy-
namic optimization problem that involves minimizing
an infinite-horizon cumulative expected value of a dis-
counted cost that consists of i) the squared estimation
error and, ii) the transmission power. We show that this
can be formulated as a POMDP [22] in which the state
comprises of (a) the “belief state,” i.e. the conditional
probability (conditioned on the information available
with the sensor) that the channel state is good, (b) the
current value of the error.

2) Since our POMDP involves a one-stage cost function
that is unbounded, it is not obvious that the value
iteration algorithm [23], [24] can be used to solve
the POMDP. We show that, under mild assumptions
(Assumption 1) on the AR process and the Markovian
transition probabilities of the channel (14), the value
iteration algorithm converges and yields an optimal
policy.

3) We then introduce a certain “folded POMDP,” that
is much easier to analyze since the error in this
folded POMDP is always positive, and show that it
is equivalent to the original POMDP, i.e. we can
recover an optimal policy for the original problem by
solving the folded POMDP. The concept of “folding
a Markov decision process (MDP)” was introduced in
[25]. However, since in our setup the channel state is

not known by the sensor we cannot use the results
of [25].

4) We then derive novel structural results for the original
POMDP by analyzing this folded POMDP. Specifi-
cally, we show that the optimal transmission strat-
egy exhibits a threshold structure with respect to the
belief state. Since POMDPs are PSPACE hard [26],
such a result reduces the policy search space. Though
there is an extensive literature on structural results for
POMDPs [22], we cannot use these as they mostly
restrict the state-space to be a simplex. Notably, [3]
considers the problem of age minimization, and derives
structural results for a POMDP in which the state-space
is the Cartesian product of a simplex with the natural
numbers.

Notation: Let N,R+ and R− denote the set of natural
numbers, non-negative and non-positive real numbers, re-
spectively, and let Z≥0 := {0} ∪ N. For a sigma-algebra
F , E(·|F) denotes the conditional expectation with respect
to F . N (µ, σ2) is the Gaussian distribution with mean µ and
variance σ2, and δx(·) is the delta function with unit mass at
x. Due to space limitations, we have moved proofs of some
results to the detailed technical report [27].

II. PROBLEM FORMULATION

Consider a networked system comprising of a sensor and a
remote estimator. The sensor observes an AR process {x(t)}
that evolves as follows, x(0) = 0 and,

x(t+ 1) = ax(t) + w(t), t = 0, 1, 2, . . . ,

where a, x(t) ∈ R, w(t) is an i.i.d. Gaussian noise process
that satisfies w(t) ∼ N (0, 1). Sensor encodes its obser-
vations into data packets and transmits these to a remote
estimator via an unreliable wireless channel. We denote the
state of the channel at time t by c(t) ∈ {0, 1}. c(t) = 0
denotes that the channel is in “bad state” and any trans-
missions are unsuccessful, while c(t) = 1 denotes that any
packet transmitted at t will be delivered to the estimator.
The channel has a memory, and hence we assume that
{c(t)}t∈Z≥0

is a Markov process with parameters,

p01 := P(c(t+ 1) = 1|c(t) = 0), (1)
p11 := P(c(t+ 1) = 1|c(t) = 1), (2)

where p01, p11 ∈ (0, 1). Let u(t) ∈ {0, 1} denote the
decision made by the sensor regarding whether (u(t) = 1) or
not (u(t) = 0) to attempt a packet transmission at time t. We
assume that each transmission attempt consumes λ units of
power/resource. Let y(t) denote the output of the channel,
i.e. the observation made by the estimator at time t. Let x̂(t)
denote the state of the estimator, or equivalently the point
estimate made by the estimator. It evolves as follows,

x̂(t) =

{
ax̂(t− 1) if y(t) = Ξ,

y(t) otherwise,
(3)

where y(t) = Ξ denotes that no packet was received by
the estimator, either because no transmission was carried
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out, or because the channel state was bad. Scheduler does
not observe the channel state c(t). However, if there is
a successful transmission at t, then the estimator sends
an acknowledgment to the sensor. Hence, if u(t) = 1,
then the channel state c(t) at t is known to the sensor
at time t + 1, or we say that upon transmitting a packet
the scheduler gets to “probe” the channel. Let z(t) be the
delayed channel state information delivered to the sensor
upon a transmission attempt made at t − 1. Note that no
channel information is delivered if no transmission attempt
is made. The scheduler has access to {z(s)}t−1s=0 and also
{u(s)}t−1s=0, {x(s)}ts=0 while making the decision at time t.
The goal of the scheduler is to choose {u(t)}t∈Z≥0

so as
to minimize the expected value of the cumulative errors,
as well as keep the cumulative transmission power utilized
at minimal level. Hence, the goal of the scheduler at the
sensor is to dynamically make the decisions {u(t)}t∈Z≥0

so
as solve,

min
φ

Eφ

( ∞∑
t=0

βt
(
(x(t)− x̂(t))2 + λu(t)

))
, (4)

where β ∈ (0, 1) is the discount factor, φ = {φt}t∈Z≥0
is

a measurable policy that for each time t maps the history
Ft := σ({x(s), u(s), z(s)}t−1s=0, x(t)) to decision u(t), and
Eφ denotes that the expectation is taken w.r.t. the measure
induced by the policy φ.

III. POMDP FORMULATION

Note that while solving (4), the channel state is not
completely observed by the scheduler. Let b(t) := E(c(t)|Ft)
be its estimate of the current channel state at time t. This can
be updated recursively using the ACK/NACK as follows,

b(t+ 1) =


p11 if u(t) = 1, c(t) = 1,

p01 if u(t) = 1, c(t) = 0,

T (b(t)) if u(t) = 0,

(5)

where for x ∈ R, we define T (x) := xp11 + (1 − x)p01.
Let {e(t)}t∈Z≥0

be the “error process”1 which evolves as
follows, e(0) = 0, and for t ≥ 0,

e(t+ 1) =

{
ae(t) + w(t) if u(t)c(t) = 0,

w(t) if u(t)c(t) = 1.
(6)

For the purpose of solving (4), we pose it as the following
POMDP [21], [22],

min
φ

Eφ

( ∞∑
t=0

βt(d(e(t), b(t), y(t), u(t)))

)
, (7)

in which the system state at time t is given by
(e(t), b(t), y(t)), where e(t) ∈ R, b(t) ∈ [0, 1] and y(t) ∈
R ∪ {Ξ}, and b(t), e(t) evolve according to (5) and (6),
respectively. u(t) ∈ {0, 1}, and the instantaneous cost
incurred at time t is equal to d(e(t), b(t), y(t), u(t)), where

d(e, b, y, u) :=

{
e2 + λu if y = Ξ,

λ if y 6= Ξ.
(8)

1e(t) should not be confused with the estimation error

Policy φ chooses u(t) on the basis of the operational his-
tory {(e(s), b(s))}ts=0 ∪ {y(s)}t−1s=0. Next, we consider the
following simpler POMDP with a reduced state-space,

min
φ

Eφ

( ∞∑
t=0

βtd̃(e(t), b(t), u(t))

)
, (9)

where b(t) and e(t) evolve according to (5) and (6) respec-
tively, u(t) ∈ {0, 1}, and the instantaneous cost function d̃
is given by,

d̃(e, b, u) :=

{
a2e2 + 1 if u = 0,

(1− b)(a2e2 + 1) + λ if u = 1,
(10)

and φ chooses u(t) on the basis of {(e(s), b(s))}ts=0. [27]
shows that (9)-(10) is equivalent to (7)-(8), and hence a
policy that is optimal for (9) also solves (7). Henceforth,
we will focus exclusively on solving (9).

We now describe the controlled transition probabilities
associated with (9)-(10). Let p(e+, b+ | e, b;u) denote the
transition density function from the current state (e, b) to
the next state (e+, b+) under the application of the action u.
Consider the following two possibilities for u:

Case i) u = 0: Then the state at the next step (e+, b+)
has the following density,

p(e+, b+ | e, b; 0) =

exp(−(e+ − ae)2/2)δp11b+p01(1−b)(b+). (11)

Case ii) u = 1: The density function of the resulting joint
distribution of (e+, b+) is as follows,

p(e+, b+ | e, b; 1) = b exp(−e2+/2) δp11(b+)

+ (1− b) exp(−(e+ − ae)2/2) δp01(b+). (12)

A. Value Iteration

We now show that under mild assumptions on the system
parameters, value iteration algorithm can be used to solve (9).
Value iteration algorithm is popularly used in order to solve
MDPs. However, in order that we can use it to solve (9),
we need to verify whether our POMDP satisfies certain
conditions [24, p. 46]. This is done below.

Let J (β)(e, b;φ) be the β-discounted cost (9) incurred by
φ when the system starts in state (e, b) ∈ R× [0, 1],

J (β)(e, b;φ) := Eφ

( ∞∑
t=0

βtd̃(e(t), b(t), u(t))

)
. (13)

Assumption 1: The Markovian channel probabilities and
the system parameter a satisfy the following condition

a2(1− p01) < 1. (14)
Following result is shown in [27].

Lemma 3.1: Consider the POMDP (9), and let Assump-
tion 1 hold. The following properties hold:

P1. The one-stage cost function d̃(e, b, u) (10) is contin-
uous, non-negative, and inf-compact on (R × [0, 1] ×
{0, 1}).
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P2. The transition kernels {P (·, u, ·)}u∈{0,1} that describe
the transition probabilities which result when control
u is applied, are strongly continuous.

P3. There exists a policy φ for which J (β)(e, b;φ) < ∞
for each (e, b) ∈ R× [0, 1].

The above result allows us to use value iteration. This is
shown next. We begin by describing these iterations. Let
V

(β)
n denote the value function at stage n ∈ Z≥0 of the

value iterations [24]. We have the following for all (e, b) ∈
R× [0, 1],

V
(β)
n+1(e, b) = min

u∈{0,1}
Q

(β)
n+1(e, b;u), (15)

where,

Q
(β)
n+1(e, b; 0) := (a2e2 + 1) + βE

[
V (β)
n (ae+ w, T (b))

]
,

Q
(β)
n+1(e, b; 1) := (1− b)(a2e2 + 1) + λ+

βE
[
bV (β)
n (w, p11) + (1− b)V (β)

n (ae+ w, p01)
]
,

with,

V
(β)
0 (e, b) = 0. (16)

Let V (β)(e, b) denote the β-discounted cost function for the
POMDP (9) , i.e.,

V (β)(e, b) := min
φ
J (β)(e, b;φ), (17)

where J (β)(e, b;φ) is given by (13).
The following proposition introduces the optimality equa-

tion for V (β) and shows the convergence of value iteration
method to V (β). It follows from [24, Lemma 4.2.8, Theorem
4.2.3], and involves P1.-P3. derived in Lemma 3.1.

Proposition 3.1: Consider the POMDP (9) that satisfies
Assumption 1. Then,

a) Value iteration algorithm (15)-(16) converges to
V (β) (17), i.e. for each (e, b) ∈ R× [0, 1],

lim
n→∞

V (β)
n (e, b) = V (β)(e, b).

b) Value function V (β) (17) satisfies the following equa-
tion, for each (e, b) ∈ R× [0, 1],

V (β)(e, b) = min
u∈{0,1}

Q(β)(e, b;u), (18)

where,

Q(β)(e, b; 0) = (a2e2 + 1) + βE
[
V (β)(ae+ w, T (b))

]
,

Q(β)(e, b; 1) = (1− b)(a2e2 + 1) + λ

+ βE
[
bV (β)(w, p11) + (1− b)V (β)(ae+ w, p01)

]
.

c) There exists an optimal stationary deterministic policy
that implements the minimizer of the right-hand side
of (18) for each state (e, b) ∈ R× [0, 1].

B. Folding the POMDP

We now construct an equivalent “folded POMDP” with
a state-space R+ × [0, 1], such that it suffices to study
this POMDP in lieu of the original POMDP that has the
state-space R × [0, 1]. Specifically, the error of the folded
POMDP does not take negative values, in contrast to the
original POMDP in which the error takes both nonnegative
and negative values. Consequently, while analyzing the set
of optimal policies, it is convenient to work with the folded
POMDP rather than the original POMDP. The work [25]
introduces the concept of a folded MDP. More specifically,
for MDPs in which the state-space is R, it shows that under
certain conditions on the transition probability kernel and the
instantaneous cost function, one can construct an equivalent
MDP, called the folded MDP that has a state-space R+ and
is easier to study. However, the framework of [25] cannot
be used in order to study POMDPs. Hence, we now utilize
the structure of POMDP (9) to introduce the folded POMDP.
Before discussing this construction, we present a structural
property of the value function V (β) of the POMDP (9).

Proposition 3.2: The functions Q(β)(·, b), V (β)(·, b) for
the POMDP (9) are even, i.e., we have the following for
all (e, b) ∈ R× [0, 1], u ∈ {0, 1},

Q(β)(e, b;u) = Q(β)(|e|, b;u), V (β)(e, b) = V (β)(|e|, b).
Proof: Please see [27] for the proof.

In what follows, we will use φ̃, ũ, ẽ and b̃ to denote a policy,
control, “error” and “belief state,” respectively for the folded
POMDP.

Definition 3.1 (Folded POMDP): Given (9), its folded
version is a POMDP on the state-space R+ × [0, 1], control
space {0, 1}, and has the transition density function p̃ as
follows,

p̃
(
ẽ+, b̃+ | ẽ, b̃; ũ

)
= p

(
ẽ+, b̃+ | ẽ, b̃; ũ

)
+ p
(
−ẽ+, b̃+ | ẽ, b̃; ũ

)
, (19)

where ẽ, ẽ+ ∈ R+, b̃, b̃+ ∈ [0, 1] and ũ ∈ {0, 1}. The
instantaneous cost function d̃ (10), and the objective (9)
remain the same as that of the original one, with e(t), u(t)
replaced by ẽ(t), ũ(t) respectively.
For ease of notation we denote:

ψ(v) := exp(−v2/2), ψ̃(v, s) := ψ(v − s) + ψ(v + s).

We next show the equivalence of the POMDP (9) and its
folded version. We begin by discussing few properties of
the folded POMDP. Let J̃ (β)(ẽ, b̃; φ̃) and Ṽ (β)(ẽ, b̃) denote
the β-discounted cost and β-discounted value function given
the initial state (ẽ, b̃), respectively, of the folded POMDP.
These are analogous to (13) and (17), respectively, of the
POMDP (9). We can show that under Assumption 1, the
folded POMDP (R+ × [0, 1], {0, 1}, p̃, d) also satisfies the
properties P1.-P3. stated in Lemma 3.1. The proof is similar
to that of Lemma 3.1, which deals with the POMDP (9).
Thus, value iteration can be used to solve the folded POMDP
too. Let Ṽ (β)

n denote the iterates during stage n of the value
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iteration algorithm [24] when it is applied to solve the folded
POMDP. We have the following for all (ẽ, b̃) ∈ R+ × [0, 1],

Ṽ
(β)
n+1

(
ẽ, b̃
)

= min
ũ∈{0,1}

Q̃
(β)
n+1

(
ẽ, b̃; ũ

)
, (20)

where, Q̃(β)
n+1

(
ẽ, b̃; 0

)
is as follows,

Q̃
(β)
n+1

(
ẽ, b̃; 0

)
= (a2ẽ2 + 1) + β

×
∫
R+

p̃
(
ẽ+, T

(
b̃
)
| ẽ, b̃; 0

)
Ṽ (β)
n

(
ẽ+, T

(
b̃
))
dẽ+, (21)

= (a2ẽ2 + 1)

+β

∫
R+

ψ̃(ẽ+, aẽ)Ṽ
(β)
n

(
ẽ+, T

(
b̃
))
dẽ+, (22)

where (22) follows from (19) and the definition of transition
density in (11).

While for ũ = 1 we get,

Q̃
(β)
n+1

(
ẽ, b̃; 1

)
= (1− b)(a2ẽ2 + 1) + λ+

+β

[
b̃

∫
R+

p̃
(
ẽ+, p11 | ẽ, b̃; 1

)
Ṽ (β)
n (ẽ+, p11) dẽ+

+(1− b̃)
∫
R+

p̃
(
ẽ+, p01 | ẽ, b̃; 1

)
Ṽ (β)
n (ẽ+, p01) dẽ+

]
= (1− b)(a2ẽ2 + 1) + λ

+βb̃

∫
R+

2ψ(ẽ+)Ṽ (β)
n (ẽ+, p11) dẽ+

+β(1− b̃)
∫
R+

ψ̃(ẽ+, aẽ)Ṽ
(β)
n (ẽ+, p01) dẽ+, (23)

where (23) follows from (12) and (19). Initialization is as
follows, for each (ẽ, b̃) ∈ R+ × [0, 1],

Ṽ
(β)
0

(
ẽ, b̃
)

= 0. (24)

We have the following properties for the folded
POMDP, analogous to the results for the original POMDP
shown in Proposition 3.1. These follow from [24, Theorem
4.2.3],

a) The value iteration algorithm with iterates Ṽ (β)
n con-

verges to Ṽ (β), i.e. for each (ẽ, b̃) ∈ R+ × [0, 1],

lim
n→∞

Ṽ (β)
n

(
ẽ, b̃
)

= Ṽ (β)
(
ẽ, b̃
)
. (25)

b) The value function Ṽ (β) satisfies the following opti-
mality equation, for each (ẽ, b̃) ∈ R+ × [0, 1],

Ṽ (β)
(
ẽ, b̃
)

= min
ũ∈{0,1}

Q̃(β)
(
ẽ, b̃; ũ

)
, (26)

where,

Q̃(β)
(
ẽ, b̃; 0

)
= (a2ẽ2 + 1) + β

×
∫
R+

p̃
(
ẽ+, T

(
b̃
)
| ẽ, b̃; 0

)
Ṽ (β)

(
ẽ+, T

(
b̃
))
dẽ+,

and,

Q̃(β)
(
ẽ, b̃; 1

)
= (1− b)(a2ẽ2 + 1) + λ

+β

[
b̃

∫
R+

p̃
(
ẽ+, p11 | ẽ, b̃; 1

)
Ṽ (β)
n (ẽ+, p11) dẽ+

+(1− b̃)
∫
R+

p̃
(
ẽ+, p01 | ẽ, b̃; 1

)
Ṽ (β)
n (ẽ+, p01) dẽ+

]
c) There exists an optimal stationary deterministic policy

that implements the minimizer of the right-hand side
of (26) for each state (ẽ, b̃) ∈ R+ × [0, 1].

The following is proved in [27], and shows the equivalence
of the folded POMDP and the original one (9).

Proposition 3.3: The functions Q̃(β), Ṽ (β) corresponding
to the folded POMDP match with Q(β), V (β) of the original
POMDP on R+ × [0, 1], i.e., for all (e, b) ∈ R × [0, 1] and
u ∈ {0, 1}, we have,

Q(β)(e, b;u) = Q̃(β)(|e|, b;u), V (β)(e, b) = Ṽ (β)(|e|, b).
IV. STRUCTURAL RESULTS

Definition 4.1 (Threshold-type Policy): We say that a
scheduling policy for the folded POMDP φ̃ : R+ × [0, 1] 7→
{0, 1} is of threshold type if for each ẽ ∈ R+, there exists
a threshold b?(ẽ) such that it transmits in state (ẽ, b̃) ∈
R+ × [0, 1] only if b̃ ≥ b?(ẽ). Similarly, a policy for (9) has
a threshold structure if it transmits in state (e, b) ∈ R× [0, 1]
only when b ≥ b?(e).
The following is commonly assumed about the Gilbert-Elliott
channels [3], [28], and we will require this while analyzing
properties of the optimal policy.

Assumption 2: The Markovian channel parame-
ters (1), (2) satisfy p11 ≥ p01.

We now show that the optimal policy of the folded
POMDP has a threshold-type structure.

Theorem 4.1: Consider the folded POMDP (R+ ×
[0, 1], {0, 1}, p̃, d). Its value function Ṽ (β) satisfies the fol-
lowing properties:
(A) For each b̃, the function Ṽ (β)

(
·, b̃
)

is non-decreasing
(with regards to ẽ).

(B) For each ẽ, the function Ṽ (β)(ẽ, ·) is non-increasing
(with respect to b̃).

(C) For beliefs x, y, z, b̃ such that x ≥ y and z = b̃x +
(1− b̃)y, we have,

(1− b̃)λ+ b̃Ṽ (β)(ẽ, x)

+ (1− b̃)Ṽ (β)(ẽ, y) ≥ Ṽ (β)(ẽ, z). (27)

(D) For each ẽ ∈ R+, there exists a threshold b̃?(ẽ) such
that it is optimal to transmit only when b̃ ≥ b̃?(ẽ).
Thus, the optimal strategy corresponding to Ṽ (β) ex-
hibits a threshold structure.

Proof: We will prove (A)-(D) for the iterates
Ṽ

(β)
n (ẽ, b̃), n ∈ Z≥0 in (20). We will show this via induction.

The result would then follow from (25), since we have
limn→∞ Ṽ

(β)
n (ẽ, b̃) = Ṽ (β)(ẽ, b̃).

Since Ṽ (β)
0

(
ẽ, b̃
)
≡ 0 (24), (A)-(D) hold for n = 0. Next,

assume that (A)-(C) hold for k = 1, 2, . . . , n. The proof is
divided into four steps. We will firstly show that the threshold
property (D) holds for k = n + 1, and then show (A)-(C)
also hold for k = n+ 1.
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Step I: (D) holds for step n + 1: We have Ṽ (β)
n+1

(
ẽ, b̃
)

=

minũ∈{0,1} Q̃
(β)
n+1

(
ẽ, b̃; ũ

)
. Firstly, note that Q̃(β)

n+1

(
ẽ, b̃; 1

)
is

a linear function of b̃ by the definition of Q̃(β)
n+1 in (23).

We will now show that Q̃(β)
n+1

(
ẽ, b̃; 0

)
is concave in b̃. Note

that Ṽ (β)
n

(
ẽ, b̃
)

is concave with respect to b̃ [29], so that for
α ∈ [0, 1] and beliefs b̃1, b̃2 ∈ [0, 1], we have,∫

R+

ψ̃(ẽ+, aẽ)
[
αṼ (β)

n

(
ẽ+, T

(
b̃1
))

+(1− α)Ṽ (β)
n

(
ẽ+, T

(
b̃2
))]

dẽ+

≥
∫
R+

ψ̃(ẽ+, aẽ)Ṽ
(β)
n

(
ẽ+, T

(
αb̃1 + (1− α)b̃2

))
dẽ+

=

∫
R+

ψ̃(ẽ+, aẽ)Ṽ
(β)
n

(
ẽ+, αT

(
b̃1
)

+ (1− α)T
(
b̃2
))
dẽ+,

where the last equality follows from simple algebraic manip-
ulations. Concavity of Q̃(β)

n+1(ẽ, ·; 0) then follows from (22).
Since λ ≥ 0, from (22) and (23) we have that

Q̃
(β)
n+1(ẽ, 0; 1) ≥ Q̃

(β)
n+1(ẽ, 0; 0). Now, consider the following

two possible cases depending on the relationship between
Q̃

(β)
n+1(ẽ, 1; 1) and Q̃(β)

n+1(ẽ, 1; 0):
Case i) Q̃

(β)
n+1(ẽ, 1; 1) < Q̃

(β)
n+1(ẽ, 1; 0): Then by the

concavity of Q̃(β)
n

(
ẽ, b̃; 0

)
and linearity of Q̃(β)

n+1

(
ẽ, b̃; 1

)
in b̃,

there exists a unique point where the curves of Q̃(β)
n+1(ẽ, 1; 1)

and Q̃
(β)
n+1(ẽ, 1; 0) intersect. This intersection point corre-

sponds to the threshold, b̃?(ẽ), i.e. during the n+1-th step of
the iteration, it is optimal to transmit for belief values greater
than this value.

Case ii) Q̃(β)
n+1(ẽ, 1; 1) ≥ Q̃(β)

n+1(ẽ, 1; 0): We will show that
for error value equal to ẽ, it is optimal to not transmit for
any value of b̃. Specifically, we will prove that the curve
of Q̃(β)

n (ẽ, ·; 1) always lies above the curve of Q̃(β)
n (ẽ, ·; 0),

i.e. Q̃(β)
n+1

(
ẽ, b̃; 1

)
≥ Q̃

(β)
n+1

(
ẽ, b̃; 0

)
for all b̃ ∈ [0, 1]. Upon

substituting (22), (23) into Q̃
(β)
n+1(ẽ, 1; 1) ≥ Q̃

(β)
n+1(ẽ, 1; 0),

we obtain,

λ+ β

∫
R+

2ψ(ẽ+)Ṽ (β)
n (ẽ+, p11) dẽ+

≥ (a2ẽ2 + 1) + β

∫
R+

ψ̃(ẽ+, aẽ)Ṽ
(β)
n (ẽ+, p11) dẽ+. (28)

Thus, we have

Q̃(β)
(
ẽ, b̃; 1

)
− Q̃(β)

(
ẽ, b̃; 0

)
= λ+ βb̃

∫
R+

2ψ(ẽ+)Ṽ (β)
n (ẽ+, p11) dẽ+

+ β(1− b̃)
∫
R+

ψ̃(ẽ+, aẽ)Ṽ
(β)
n (ẽ+, p01) dẽ+ − b̃(a2ẽ2 + 1)

− β
∫
R+

ψ̃(ẽ+, aẽ)Ṽ
(β)
n

(
ẽ+, T

(
b̃
))
dẽ+

≥ 0,

where the first equality follows from the definition of
Q̃

(β)
n (22) and (23), while the last inequality follows from

(28) and the induction hypothesis regarding property (C).

Step II: (A) holds for step n+ 1: Consider errors ẽ, ẽ′ ∈
R+ satisfying ẽ′ > ẽ. We will show that Ṽ (β)

n+1

(
ẽ′, b̃

)
≥

Ṽ
(β)
n+1

(
ẽ, b̃
)
. From (20), it suffices to show that for each

value of control ũ ∈ {0, 1} chosen for the state ẽ′, there
exists a control ũ′ ∈ {0, 1} under which the following
holds, Q̃(β)

n+1

(
ẽ′, b̃; ũ

)
≥ Q̃

(β)
n+1

(
ẽ, b̃; ũ′

)
. We consider these

two cases below separately.
Case i) ũ = 0: We have,

Q̃
(β)
n+1(ẽ′, b̃; 0)

=(a2ẽ′2 + 1) + β

∫
R+

ψ(ẽ+, aẽ
′)Ṽ (β)

n

(
ẽ+, T

(
b̃
))
dẽ+

≥(a2ẽ2 + 1) + β

∫
R+

ψ(ẽ+, aẽ)Ṽ
(β)
n

(
ẽ+, T

(
b̃
))
dẽ+

=Q̃
(β)
n+1

(
ẽ, b̃; 0

)
,

where the first equality follows from the definition of Q̃(β)
n+1

in (22), while the first inequality follows from [27].
Case ii) ũ = 1: From (23) we have,

Q̃
(β)
n+1

(
ẽ′, b̃; 1

)
≥ (1− b̃)(a2ẽ2 + 1) + λ

+ βb̃

∫
R+

2ψ(ẽ+)Ṽ (β)
n (ẽ+, p11) dẽ+

+ β(1− b̃)
∫
R+

ψ(ẽ+, aẽ)Ṽ
(β)
n (ẽ+, p01) dẽ+

= Q̃
(β)
n+1

(
ẽ, b̃; 1

)
,

where the inequality follows from [27].
Step III: (B) holds for step n + 1: Consider belief

values b̃, b̃′ ∈ [0, 1] satisfying b̃′ ≤ b̃. We will show that
Ṽ

(β)
n+1

(
ẽ, b̃′

)
≥ Ṽ

(β)
n+1

(
ẽ, b̃
)
. To prove this, we will prove

that for each value of control ũ, we have Q̃(β)
n+1

(
ẽ, b̃′; ũ

)
≥

Q̃(β)
(
ẽ, b̃; ũ

)
. Since p11 ≥ p01, we have T

(
b̃′
)
≤ T

(
b̃
)
.

Consider the following two cases.
Case i) ũ = 0: We have,

Q̃
(β)
n+1

(
ẽ, b̃′; 0

)
= (a2ẽ2 + 1) + β

∫
R+

ψ̃(ẽ+, aẽ)Ṽ
(β)
n

(
ẽ+, T

(
b̃′
))
dẽ+

≥ (a2ẽ2 + 1) + β

∫
R+

ψ̃(ẽ+, aẽ)Ṽ
(β)
n

(
ẽ+, T

(
b̃
))
dẽ+

= Q̃
(β)
n+1

(
ẽ, b̃; 0

)
,

where the first equality follows from (22), while the inequal-
ity follows since (B) holds for n by induction hypothesis.

Case ii) ũ = 1: We have,

Q̃
(β)
n+1

(
ẽ, b̃′; 1

)
= (1− b̃′)(a2ẽ2 + 1) + λ

+β

∫
R+

ψ̃(ẽ+, aẽ)Ṽ
(β)
n (ẽ+, p01) dẽ+

+βb̃′
∫
R+

(
2ψ(ẽ+)Ṽ (β)

n (ẽ+, p11)

− ψ̃(ẽ+, aẽ)Ṽ
(β)
n (ẽ+, p01)

)
dẽ+

≥ (1− b̃)(a2ẽ2 + 1) + λ+
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β

∫
R+

ψ̃(ẽ+, aẽ)Ṽ
(β)
n (ẽ+, p01) dẽ+

+βb̃

∫
R+

(
2ψ(ẽ+)Ṽ (β)

n (ẽ+, p11)

− ψ̃(ẽ+, aẽ)Ṽ
(β)
n (ẽ+, p01)

)
dẽ+

= Q
(β)
n+1

(
ẽ, b̃; 1

)
,

where the first equality follows from the
definition of Q̃

(β)
n+1 by (23). From [27] we have,∫

R+

(
2ψ(ẽ+)Ṽ (β)

n (ẽ+, p11)− ψ̃(ẽ+, aẽ)Ṽ
(β)
n (ẽ+, p01)

)
dẽ+

≤ 0. Then, the last inequality follows since b̃′ ≤ b̃.
Step IV: (C) holds for n+1: Now, since x ≥ y, it follows

from the threshold structure of policy which is optimal at
stage n + 1, proved in Step I, that if the optimal action
for state (ẽ, x) is to transmit, then the optimal action for
state (ẽ, y) is also to transmit. Consider the following three
possibilities:

Case i) No transmission for both (ẽ, x) and (ẽ, y): From
(22) we have,

(1− b̃)λ+ b̃Q̃
(β)
n+1(ẽ, x; 0) + (1− b̃)Q̃(β)

n+1(ẽ, y; 0)

≥ (a2ẽ2 + 1) + β

∫
R+

ψ̃(ẽ+, aẽ)Ṽ
(β)
n (ẽ+, T (z)) dẽ+

= Q̃
(β)
n+1(ẽ, z; 0)

≥ Ṽ (β)
n+1(ẽ, z),

where the first inequality follows from the induction hypoth-
esis on property (C), while the last inequality follows from
(20).

Case ii) Transmission for both the states (ẽ, x) and (ẽ, y):
From (23) we have,

(1− b̃)λ+ b̃Q̃
(β)
n+1(ẽ, x; 1) + (1− b̃)Q(β)

n+1(ẽ, y; 1)

= (1− b̃)λ+ Q̃
(β)
n+1(ẽ, z; 1)

≥ Q̃(β)
n+1(ẽ, z; 1)

≥ Ṽ (β)
n+1(ẽ, z),

where the equality follows from some simple algebraic
manipulations and by the definition of Q̃

(β)
n+1 with z =

b̃x+ (1− b̃)y, and the last inequality follows from (20).
Case iii) Transmission for state (ẽ, x), and no transmission

for state (ẽ, y): From (22) and (23) we have,

(1− b̃)λ+ b̃Q̃
(β)
n+1(ẽ, x; 1) + (1− b̃)Q̃(β)

n+1(ẽ, y; 0)

≥λ+ (b̃(1− x) + (1− b̃))(a2ẽ2 + 1)

+b̃β

[
x

∫
R+

2ψ(ẽ+)Ṽ (β)
n (ẽ+, p11) dẽ+

+(1− x)

∫
R+

ψ̃(ẽ+, aẽ)Ṽ
(β)
n (ẽ+, p01) dẽ+

]

+(1− b̃)β

[
y

∫
R+

ψ̃(ẽ+, aẽ)Ṽ
(β)
n (ẽ+, p11) dẽ+

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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)

Optimal Policy
i.i.d. policy

Fig. 1. Performance comparison as the transmission probability p of i.i.d.
policy is varied.

+(1− y)

∫
R+

ψ̃(ẽ+, aẽ)Ṽ
(β)
n (ẽ+, p01) dẽ+

]
≥λ+ (b̃(1− x) + (1− b̃)(1− y))(a2ẽ2 + 1)

+β

[
z

∫
R+

2ψ(ẽ+)Ṽ (β)
n (ẽ+, p11) dẽ+

+(1− z)
∫
R+

ψ̃(ẽ+, aẽ)Ṽ
(β)
n (ẽ+, p01)

]
dẽ+

=Q̃
(β)
n+1(ẽ, z; 1)

≥Ṽ (β)
n+1(ẽ, z),

where the first inequality holds since it was shown in Step I
that Ṽ (β)

n is concave in b, the second inequality is shown to
be true in [27], while the last inequality follows from (20).
As is shown below, the original POMDP (9) also admits an
optimal policy that has threshold structure. The following
result is an immediate consequence of Proposition 3.3 and
Theorem 4.1.

Corollary 1.1: The original POMDP (9) admits an opti-
mal policy that has a threshold structure.

V. NUMERICAL RESULTS

Throughout, we use β = .99, transmission price λ = 0.65
units, truncate the space in which e(t) resides to [−L,L] and
discretize it with quantization width of .1, and similarly b(t)
is taken to be in {T k(p01)}Kk=1 ∪ {T k(p11)}Kk=1.

We consider an AR process with a = 0.7, i.i.d Gaussian
noise, w ∼ N (0, 1), and channel parameters are set to
p01 = 0.4, p11 = 0.7. Value iteration (15)-(16) is used to get
performance of optimal policy. We take L = 0.5 and K = 3.
We compare the performance of our optimal policy with a
policy that chooses {u(t)} by transmitting at each time t with
a probability p, independent of other times. Fig. 1 compares
the performance as the transmission probability p is varied.
Next, we plot their performance by varying a, p01, p11. Note
that the average transmission energy used by an optimal
policy depends upon the underlying system parameters, in
order to make a fair comparison we set the transmission
probability for the i.i.d. policy equal to the average energy
consumption of optimal policy. Fig. 2 compares the policies
as a, p01, p11 are varied. Optimal policy is seen to outperform
the naive policy.
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Fig. 2. Performance comparison as system parameters are varied: (a) p01 =
0.4, a = 0.7 while p11 is varied; (b) p01 is varied while p11 = 0.7 and
a = 0.7; (c) p01 = 0.4 and p11 = 0.7 are fixed while a is varied.

VI. CONCLUSION

We consider a remote estimation problem in which the
sensor observes an AR Markov process, and has to dynam-
ically decide when to transmit updates to the estimator over
a Gilbert-Elliott channel, so as to minimize a cumulative
expected discounted cost that consists of estimation error
and transmission power consumed. The sensor does not
completely observe the channel, i.e. it obtains a delayed
knowledge of the channel state only upon a transmission
attempt. Even though this problem can be posed as a
POMDP, its analysis is hard. We construct a simpler folded
POMDP that is equivalent to the original one and derive
structural results, namely that there is an optimal policy that
transmits only when the belief state is greater than a certain
(error-dependent) threshold. This work can be extended in
multiple directions. Firstly, a simple linear estimator is used,
we would like to design an estimator and scheduler that are
jointly optimal. Secondly, since the state space is infinite, we
would like to obtain an efficient algorithm to yield a good
approximation to the optimal policy.
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