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Homography-Based Adaptive Robot Visual Tracking
With Camera Parameter Convergence

Beixian Lai?, Yongping Pan', Zhiwen Li?, and Changyun Wen?

Abstract— Parametric uncertainties are ubiquitous in vision-
based robotic systems. However, existing adaptive visual servoing
methods can not simultaneously achieve six-degree-of-freedom
(6-DoF) robot pose control in the three-dimensional (3D) space
and accurate camera parameter estimation. This paper considers
robot manipulators with eye-to-hand monocular cameras under
unknown extrinsic parameters and proposes a passivity-based
kinematic control method called homography-based visual servo-
ing with composite learning (CL-HBVS) to achieve 6-DoF robot
pose tracking. The convergence of camera extrinsic parameters is
achieved by designing a composite learning mechanism without
the stringent condition of persistent excitation, which ensures
the exact estimation of the time-varying depth and mitigates
singularity in the estimated rotation matrix. The proposed method
eliminates the need to calibrate camera extrinsic parameters and
measure the depths of reference feature points. Experiments on
a 7-DoF robot manipulator have verified the effectiveness of the
proposed CL-HBVS method.

I. INTRODUCTION

Visual servoing, typically including position-based visual
servoing (PBVS) and image-based visual servoing (IBVS),
utilizes visual feedback to control robot motion [1]. PBVS
relies on known scene geometry to reconstruct the six-degree-
of-freedom (6-DoF) pose (i.e., position and orientation) from
two-dimensional (2D) images, which is then used for robot
control within the feedback loop. IBVS directly employs 2D
images in the feedback loop with no prior knowledge about
scenes but has several drawbacks, such as local minima and
image Jacobian singularity. Homography-based visual servoing
(HBVS) combines PBVS and IBVS to reconstruct a 6-DoF
pose using only a pair of images, which greatly alleviates the
drawbacks of both PBVS and IBVS [2].

Parametric uncertainties are common in vision-based robotic
systems, where the time-varying depth of feature points and
uncalibrated camera parameters are two typical types of para-
metric uncertainties [3]. Different adaptive control strategies
have been proposed to handle these parameter uncertainties [4]—
[9]. IBVS methods with passivity-based adaptive laws were
developed for robot manipulators in [4]-[6], but they solely
achieve pixel error convergence without considering 6-DoF
pose control. Note that in the above methods, the time-varying
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depth of image features can be expressed as a function of
unknown parameters such that it can be accurately estimated
if parameter estimates converge to their true values. Despite
considering the time-varying depth, depth error convergence
can not be achieved in these adaptive IBVS methods owing to
the requirement of a stringent condition known as persistent
excitation (PE) for parameter convergence. Adaptive HBVS
methods were developed for robot manipulators in [7]-[9], but
they require the reference extrinsic parameters of the camera
to be precisely known a priori. Besides, they often assume a
constant depth and rarely consider a time-varying depth.

This paper considers robotic manipulators under eye-to-hand
(ETH) monocular cameras with unknown extrinsic parameters
and proposes a passivity-based kinematic control solution
named composite learning HBVS (CL-HBVS) to achieve 6-
DoF pose tracking. First, the rotation matrix and depth ratio are
extracted from homography decomposition; second, a linearly
parameterized camera model is built by extracting extrinsic
parameters and representing the time-varying depth via these
parameters; third, an HBVS control law is proposed for 6-DoF
pose tracking; lastly, a composite learning law is developed
to estimate extrinsic parameters exactly, implying the exact
estimation of the time-varying depth, under a condition of
interval excitation (IE) that weakens PE [10]. Compared to
existing adaptive HBVS methods, the distinctive feature of the
proposed method is that it does not need to calibrate camera
extrinsic parameters and measure the depths of reference fea-
ture points. Compared with our existing results on composite
learning visual servoing [11]-[14], the current study has two
distinctive features: 1) It is developed for visual tracking rather
than visual regulation; 2) it is a kinematics-based design that
facilitates industrial applications but takes the inner tracking
error into consideration for performance enhancement.

Throughout this article, R, R*, R, and R™*" are the
spaces of real numbers, positive real numbers, real n-vectors,
and real m X n-matrices, respectively, N is the set of nat-
ural numbers, max{-} is the maximum operator, arccos(x)
is the arc-cosine function, det(A) is the determinant of A,
||z|| is the Euclidean norm, In(z) is the natural logarithm,
diag(z1, 2, -+ ,x,) is a diagonal matrix with diagonal ele-
ments x1 to x,,, and x; is the 7th element of x with 7 = 1 to n,
wherezx €¢ R,z € R™, A € R™ " and n, m, 7 € N.

II. HOMOGRAPHY-BASED CAMERA MODEL

A. Camera Projection and Euclidean Reconstruction

A robot manipulator for visual servoing tasks under an ETH
monocular camera is depicted in Fig. 1. The setup comprises
three Cartesian spatial frames: A world frame { B}, a camera
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Fig. 1. A robot manipulator with an ETH monocular camera for HBVS.

frame {C'}, and an end-effector frame { E'}. It is assumed that:
1) The camera always captures a plane denoted as N, which
remains fixed in { £'}; 2) there exist N > 4 (€ N) non-collinear
feature points Q; (i = 1 to N) lying on N; 3) the origin of
{E?} corresponds to the location of Qy; 4) a fixed and constant
reference plane, denoted as N, contains [V reference feature
points Q,;; 5) a time-varying desired plane named X4 consists
of N desired feature points Qg;.

Let R(t), Ry, Rq(t) € R3*3 denote the current, reference
and desired orientations corresponding to X, X, and R4 in {C'},
respectively, and ¢(t), t., t4(t) € R?® denote their positions
in {C}, respectively. Then, let the Euclidean coordinates of
Qi, Qi and Qq; in {C} be °z;(t) = [z;(t), i (t), z:(t)]T €
R3, °@y; = [Tris Yris 2047 € R3 and @q; (1) = [2a; (), yai(t),
z4i(t)]T € R3, and their normalized coordinates be

xi(t) == x; /2, Tpi = “Tyif 20, Tai(t) 1= @i/ 2

respectively. From the Euclidean geometry in Fig. 1, one gets
the following relationships among x;, £4; and x,; [2]:

Qg H

—~—~
x; = (zri/2) (R+ (#/d)n]) @, )
ag; Hy
/_/H — ~
@i = (2e1/7ai) (Ra + (bai/de)n]) @y 2

in which a;(t) € R and aq;(t) € R are the current and
desired depth ratios, respectively, H(t) € R3*3 and Hq(t)
€ R3*3 are the current and desired Euclidean homography
matrices, respectively, R(t) := R(t)RT € R**3 and £(t) :=
t(t) — R(t)t, € R? are the current mismatch rotation matrix
and translation vector between N and N, respectively, ]:Zd(t)
:= Rq(t)RT € R®*3 and t4(t) := tq(t) — Ra(t)t, € R are
the desired mismatch rotation matrix and translation vector
between Ng and XN, respectively, n, € R3 is a constant unit
normal of X, in {C'}, and d, € RT is a constant distance
between {C} and X, along n,. Let the homogeneous pixel
coordinates of Q;, Q,; and Qg; in the image plane be p;(t) =
[Ui (t), ’Ui(t), 1]T € Rg, Dri = [’UJ”', Vris 1]T € R‘S and Pdi (t) =
[ua; (), vai(t), 1]T € R3, respectively. Using the perspective
projection model of pinhole cameras, one obtains [15]

p; = Kz, pri = Kz, pai = Kxg; 3)

where K € R3*? is an intrinsic parameter matrix. Combining
(3) with (1) and (2), one obtains

pi=a; KHK 'p,, )
G

Pai = aqi KHiK ' py; ®)
———

Ga

where G(t), Ga(t) € R3*3 denote the current and desired
projective homography matrices, respectively. The current
mismatch rotation matrix R and depth ratio «; can be obtained
from G by homography decomposition [14]. In addition, the
desired ones Rd and «ayg; can be obtained from Ggy.

B. Linear Parameterization of Camera Models

Let °Ry, € R3*3 and °t, € R® denote a constant rotation
matrix and a translation vector, respectively, which describe the
transformation between the frames {C'} and {B}. Let Px;(q)
€ R* be a homogeneous Cartesian coordinate of the feature
point Q; in { B}, depending on the joint position g(t) € R”
based on the robot forward kinematics [16], where n € N is the
number of DoFs. Then, the perspective projection relationship
in (3) can be rewritten as follows [14], [17]:

p; = KD z;(q)/z(q) (©6)

in which D := [°Ry,,t,] € R3*? is an extrinsic parameter
matrix, and z;(q) € RT is the depth of Q; in {C'} given by

zi(q) = d5 °zi(q) @)

with d¥ being the 3rd row of D [6]. Multiplying each side of
(6) by z;(q) and substituting (7) into the result yield

pidSTb:I:i(q) — KDb:vi(q) =0. 8

The following key property based on (8) from [18] is useful
for the adaptive control design.

Property 1: Let 0 = [d117 dig, -+ ,dso, dgg]T € R de
a camera’s extrinsic parameter vector that is unknown but
constant, where d;; € R is the ijth element of D. If d34 € R™
is known, for any given ) € R3 and v € R*, ndl~v — KD~
can be linearly parameterized by

ndi~y — KDy = ®"(n,7)0 — y(n,v) )

with ®(n,v) := B(y)(kn” — K”) € R, y(n,5) :=
dsyva(Kk —m) € R?, k =1[0,0,1]7 € R3, and
v O 0
B(y):=1|0 v 0 | eR"*3 (10)
0 0 7[1:3]

where v[1.3] € R3 contains the first 3 elements of ~. Then,
substituting n = p; and v = b, into (9), one rewrites (8) into
a linearly parameterized camera model

y(pi7baci) = <I>T(pi, bwi)H, i=1to N. (11)
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III. COMPOSITE LEARNING VISUAL SERVOING

It is assumed that the point Q;, denoted by Q,, is the origin
of the end-effector frame {E'}. Therefore, Q1, Q1 and Qg
are replaced by Q., Q. and Qg., respectively. The control
objective can be described by

R—>Rd,a—>ad,p—>pd as t — oo. (12)

With the consideration that the plane X remains fixed in {E'},
the orientation of the robot end-effector is represented by R.
Consequently, the triplet (R, z, p) uniquely determines the
pose of the end-effector in the camera frame {C'}. When R=
Rd and o = ag, one obtains R = R4 and z = z4. Utilizing
zp = K°x, if p = pq, one obtains ‘@ = “x4, indicating that
the end-effector reaches its desired pose in {C'}.

A. Pose Error Definition

For control synthesis, definite a rotation error [2]
e, (t) == V(t) — 9q4(t) (13)

where 9(t), 94(t) € IR? are the angle-axis representations of
R and Ry, respectively, given by

I(t) == p(t)d(t), Ja(t) := pa(t)da(t)

in which ¢(t), ¢a(t) € R are the rotation angles around unit
axes p(t), pa(t) € R3, respectively, confined to

(14)

—m < ot) <m, —m < Palt) < .
The solutions for ¢ and p can be determined by

{ ¢(t) = arccos (é(tr(]%) - 1)), 15)

_ R-R”

[I“l’(t)] X T 2%&in (¢)
where [-] is a skew symmetry operator [14]. Likewise, with
R4 being obtained from homography decomposition, the
solutions for ¢4 and g4 can also be determined. Differentiating
e, with respect to time ¢ yields

éu(t) = Ly(9)°RyPw — Y4 (16)

in which Pw(#) € R? is an angular velocity of Q. in {B}, and
L, (9) € R**3 is a Jacobian-like matrix given by
) ( sinc(¢) ) >
L, :=1—-= + (1 - ———F—
(9) 5 1< 52 (6/2) ()%
with sinc(¢) := sin (¢)/¢ and sinc(0) = 1.
To control the translation of the feature point Q,, define
current and desired extended translation vectors

{peu) = [u(t), v(t), ~In(a(t)]", an
Pea(t) := [ua(t),va(t), ~In(aa(t))]"
respectively. Then, define an extended translation error
ev(t) := pe(t) — pea(t). (18)
Differentiating z(q) in (7) with respect to time ¢ yields
i(q) = d3 v, (19)

where Pv := P& (q) € R* is a linear velocity of Q. in {B}.
From (6), (7) and (19), the time derivative of e, becomes

ey = Ae(p)bv/Z(Q> — Ped (20)

in which A.(p) := KD — podl € R3*? is an extended
interaction matrix with po(t) := [u(t),v(¢),0]7 € R3.
Based on the robot forward kinematics [16], the velocities

by and Pw are calculated by

by = J,(9)4, "w = J.(9)d 1)

where J, (q) € R**" and J,,(q) € R3*" are the translational
and rotational Jacobian matrices, respectively, which can be
obtained from the robot’s forward kinematics. Inspired by [5],
multiplying each side of (20) by z(q) and substituting (19) and
(21) into the obtained result and (20), one obtains an overall
kinematic system for 6-DoF pose control as follows:

z(q)év + 22(q)ey
€,

94
with J,(p, g, ev,9) := [JL(p,q,ev), JL, (g, 9)]" € RO

being a Jacobian matrix that maps the joint velocity q to the
velocity pairs (z(q)pe + %z’(q)ev, ). Here, Jov(D, g, €y) =
Q(p,e.) T (q) € R¥™ with Q(p, e,) := Ac(p) + Le.d] €
R3*4 is the translational mapping component, and J,, (g, 9)
:= L, (9)°RyJ,,(q) € R3*" is the rotational mapping compo-
nent. To simplify notation, define two auxiliary variables u, :=
Jov(P, @, €v)G — 2(q)Pea € R? and uy, := Jp(q,9)g — Y4
€ R3. Then, it follows from [19] that (22) is passive concerning
input-output pairs (u, e,) and (u,, e,,) for the translational
and rotational components, respectively, and the corresponding
storage functions are V, = z(q)ele,/2 and V,, = ele, /2,
respectively. With the translational and rotational errors e,
and e,, the control objective (12) becomes

= Jp(p,q,ev,9)qg— [Z(q.)ped] 22)

e, —~0,e, -0 as t — oo. (23)

B. Homography-Base Visual Servoing

Let (Ped, Ped, Ped) and (Jq, 5 19(1) be desired extended
translational and rotational trajectories of the feature point Q.q,
respectively. Then, introduce nominal reference translational

and rotational trajectories as follows:
per = ped - AVevy '19r = ﬂd - Awew (24)

respectively, where pe;, 19r € R3 denote the reference transla-

tion and rotation velocAities, respectively, and A\, A, € R* are

certain constants. Let @ € R'" be an estimate of 6. Substituting

0 into J,(p,q,9,ey), Q(p, ey), Ry, and d3, one gets

Jp = Jp|9:é, Q = Q‘e:é7 CRb = CRb‘9:é7 Z = Z|9:é

with J,(p, ¢, 9, ev) € R®™, Q(p, e,) € R34, <Ry, € R3*3

and Z € R. Then, define estimation errors

jp = JAp—Jp7 Q:=0-Q, °Ry, :=°R,—CRy, 7:= 2—2.
Design an HBVS-based joint velocity control law

qc =J (p.q,9,ey) { g ] - J(@)Q" (p.ev)Kpey

— I (@)*RILL (9)K e, (25)
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where K, K,, € R3*3 are positive-definite diagonal matrices
of control gains, and j;r (p,q,9,e,) € R"¥S is the pseudo
inverse of jp(p, q,9,e,). It is observed from (25) that the
estimated matrices J}f s Q and CRb determine how the errors
ey, e, and velocities p., and ﬂr are projected into the joint
space, which affects the performance of visual servoing. Then,
define a velocity tracking error in the joint space

e(t) :==q(t) — ge(t)
and two auxiliary matrices ®y; := ®(py—e, /2, Jy;) € R**3
and ®,; := B(Y)|y—pgr gr € R™"*?, where J,; € R* and
J.; € R3 are the ith columns of J, (q) and J,,(q), respectively.
Then, one has two linearly parameterized models.

Property 2: 1f ds4 is known, then for any given 71, one gets
a linearly parameterized model

I (@)QT (p,ev)m + JX (@) Rna = Y (D, q,m1,12)0
27

with Yl (pv q,M1, 772) = [(I)ran - (I)ylnl’ (I)r2772 - (I)y2771’ cee
(I)rn'r]2 - (I)ynnl] S Rllxn-

Property 3: If dsy is known, then for any given 17 € R?, one
gets a linearly parameterized model

0 =Y (q,m)0 + y2(n) (28)

with y2(n) := daam € R, Ya(q,n) = B("z(q))kn" €
R >3, and B(-) defined in (10).
Replace the tuple (2, 6, ) in (28) by (2(q), 0, Per) yields

(2 - z(q))per = szT(q7pe1r)0~ (29)

where () := 0(t) — 6 € R is a parameter estimation error.
By using (27), (25) can be rewritten into

(26)

ZPer

qc = j;_(paq/ﬂ’ev) l: 9,

:| - }qT(paq,nl,nQ)é (30)

with 1 = Kpe, and 1o = LT K,e,. Applying (24), (26)
and (30) to (22), yields the closed-loop overall kinematics
zé, + 1ie,
€y

} e JYTO— e+ Y78

77 Aper zper )\VzeV
—J, ;fbr]+[ 0 }_[Awew] (31)

Panda Robot

1]

Planar AprilTag

L

RealSense D435i

1

Robot Control Box

:

Fig. 2. An experimental environment for monocular ETH robots, where the
end-effector is identified by an attached planar AprilTag.

C. Composite Learning Adaptation

We define IE and PE to facilitate analysis as follows [10].
Definition 1: A bounded signal ® (t) € R'*3 is of IE if 3
Ti,Ca,0 € RY such that [ & B(OPT ()¢ > ol
Definition 2: A bounded signal ® (t) € R'1*3 is of PE if 3
Ca,0 € RT such that [ ®(¢)@T(()d¢ > o1,V > 0.
Define a generalized prediction error

£(t) == U (t)0 — T ()0 € R
in which ¥, € R'1*11 i5 given by

[l e(0RT(Od, t< T
vl = { fffigd ()T (Q)d¢, t>T.

Note that one has V.0 = ftt—cd ®(¢)y(¢)d¢. Using eigende-
composition, one obtains ¥, = USUT with ¥ := diag(A1, Az,
.. A11), where \; € R (i = 1 to 11) is the ith eigenvalue of W,
and U € R is orthogonal, i.e., UUT = I. Note that ¥,
is symmetric and positive-semidefinite, and each eigenvalue
A; is non-negative. Define a regularized inversion of W:

Uh=Un,U" e R

(32)

(33)

with EQ = diag()\gl, /\QQ, ey )\911) € Rllxll, where )\gi =
1/max{)\;, 0} € RT (i =1 to 11) is the ith eigenvalue of
\Ilg, and o € RT is a small threshold. Then, one concludes
that: 1) If U, € R**!! s positive-semidefinite, ¥ in (33) is
positive-definite; 2) 0 < \IJ;)"\IIe <], \I/gife =Jiff U, > ol,
and \Ilg\lle = 0 iff U, = 0 [14]. Now, design a regularized
composite learning law as follows:

0 =T (Yi(p,q,m1.m2)d — Ya(g,m)Kpe, — kTSE) (34)

with 17 = Pe,, where I' € R > 11 is a positive-definite matrix
of learning rates, and x € R™ is a weighting factor. We give
the following reasonable assumption from [5].

Assumption 1: The low-level joint controller of the robotic
system guarantees € € Ly N L so that there exists a constant
I € RY to satisty [} &7 (7)e(r)dr < Iy, V¢ > 0.

z (m)

y (m) 0.1

0.3 x (m)

Fig. 3. The desired trajectory of the feature point Qp in the Euclidean space,
where the notation “1" to “4" (marked in green dot) denote the waypoints at
instants ¢ = 0, 30, 60 and 100 s, respectively.
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Fig. 4. Control results of the proposed CL-HBVS in experiments. (a) Pixel tracking trajectories in the u- and v-axes of the image plane. (b) Pixel errors ey 1
and ey in the u- and v-axes of the image plane, respectively. (c) Absolute value of the depth ratio error ey 3. (d) Norm of the rotation error ew (e) Parameter
errors 0 (i =1 to 6). (f) Parameter errors 6; (¢ = 7 to 11). (g) Estimated, current, and desired depths 2, z, and z4. (h) Control torque T € R7.

Consider an articulated robot system with an ETH monocu-
lar camera, as depicted in Fig. 1, where a plane R is attached
to the end-effector frame { E'}, containing at least 4 feature
points. Only the feature point Q. in the world frame { B} is
known, which is applied to calculate its Cartesian coordinate
bx(q). If the kinematic system described by (22) is driven
by the CL-HBVS control law (25) with (34), then the closed-
loop system is stable in the following sense: 1) All signals
involved are bounded and the tracking errors e (¢) and e, (t)
asymptotically converge to 0 on ¢ > 0; 2) if IE exists, both
the tracking errors e, (t), e, (t) and the parameter estimation
error 6(t) asymptotically converge to 0 on ¢ > T, implying
exact depth estimation as 2(¢) — z(q(t)). The proof is similar
to [5], so it is omitted here. Note that even if ds34 is unknown a
priori, (34) still works as discussed in [14].

IV. EXPERIMENTAL STUDIES

Experiments on the vision-based robotic system are carried
out as illustrated in Fig. 2, where the environment includes a
7-DoF collaborative robot named Franka Emika Panda, and
a fixed Intel RealSense camera D435i to capture images at a
resolution of 640 x 480 pixels, which provides visual signals
at a rate of 30 frames per second. An AprilTag [20] with four
visual markers positioned at its corners is affixed to the end-
effector. During experiments, pixel positions p,; (¢ = 1 to 4)
of each reference feature points Q,; are (189, 241), (268, 241),

(266, 163) and (185, 163), and the initial robot joint position

is g(0) = [0, —0.5236, —1.8326, —2.4435, —0.2618, 2.0071,
—1.5708]% rad. The camera’s intrinsic parameter matrix is
608 0 327
K=1]0 608 232
0 0 1

Since the camera’s extrinsic parameter D is unavailable in
practice, the following calibrated one from ViSP [21]:

. —0.1184 0.9902 —0.0735 0.1382
D, = | 0.0427 —0.0689 —0.9967 0.6554
—0.9920 -0.1212 —-0.0341 1.8341

is chosen as a reference. Also, as d34 is unknown, a reference
one d34r = 1.8341 obtained from D is used for calculating
y(pi, Px;) in (11) and yo(n) in (28).

An initial estimate of D is set as ( ) = [0.2263, 0.9567,
0.1830, 1.0000, —0.1830, 0.2263, —0.9567, 0.1000, —0.9567,
0.1830, 0.2263]7, which ensures a suitable initial discrepancy
with D, better showing the evolution of the parameter estimate
6. We design a desired trajectory with 100 s shown in Fig. 3,
which consists of three sub-tasks: 1) Tracking the red trajectory
att € [0, 30) s; 2) tracking the blue trajectory at ¢ € [30,60) s;
3) tracking the black trajectory at ¢ € [60,100] s.

The proposed CL-HBVS (25) with (34) is implemented
with K, = diag(4 x 107°,4 x 107°,0.2), K, = 0.2, =
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Fig. 5. Prediction errors €, by ViSP and the proposed CL-HBVS.

TABLE I
ESTIMATED, CURRENT AND DESIRED DEPTH VALUES 2, z, AND 24
DURING EXPERIMENTS

Time (s) 31 42 53 64 75 86 95 100
2 (m) 148 151 153 151 147 140 146 140
z (m) 149 152 154 152 148 141 147 142
zq (m) 150 153 154 151 146 140 145 143

el

W(%) 488 487 488 488 488 488 488 488

041, Ay =Xy = 2,k = 15,0 =3, and T, = 7q = 25.
Experiments are run on a host PC under Linux OS Ubuntu
20.04 with ROS Noetic Ninjemys. The ViSP and the Franka
Control Interface provided via libfranka are integrated into
the ROS. To evaluate the effectiveness of depth tracking and
estimation by the proposed method, we use the pose estimation
algorithm embedded in ViSP to get exact information, where
z is calculated by the known geometric information of the
AprilTag, and 2 is obtained by (7). Finally, define a model
prediction error €,(t) := y(p,°z) — ®T (p, bx)6, where 0
is obtained by (34) (v = 15) and 0= ér for the proposed
CL-HBVS and ViSP, respectively, and 6, € R'! s the first 11
elements of the calibrated matrix Dr.

Experiment results are demonstrated in Fig. 4. One observes
that the current pixel p = [u, v, 1] of the feature point Q,
accurately tracks its desired position pq = [ug,vq, 1]7 with a
steady-state error of about 0.4 pixel [see Figs. 4(a) and (b)],
the current depth z converges to the desired depth z4 with an
error of about 0.02 m [see Fig. 4 (c)], and the norm of the
rotation error ||e,, || is about 0.1 rad on average [see Fig. 4(d)].
Besides, the convergence of 6 with an error of 0.1 is achieved
at about 25 s [see Fig. 4 (e)-(f)], which indicates an accurate
depth estimation [see Fig. 4 (g)]. Table I gives the depth values
Z, z and zq at some instants, where both the depth estimation
error Z and the depth tracking error e, := 2z — zq € R are less
than 2 cm. In addition, the control torque T € R” [see Fig. 4
(h)] is shown to verify that the control input of the low-level
joint controller is reasonable. What’s more, the prediction error
€, obtained by the proposed CL-HBVS is smaller than that
by ViSP [see Fig. 5], indicating that 6 by the CL-HBVS is
closer to the true value @ compared to the calibrated one 6,. To
assess the performance of 6, the percentage estimation error
6]//|6:]| (%) with less than 5 % is also shown in Table L.

V. CONCLUSIONS

This paper has presented a passivity-based kinematic control
method named CL-HBVS for robots with ETH monocular

cameras to achieve 6-DoF pose tracking in the 3D space under
unknown camera extrinsic parameters. Parameter convergence
is achieved under the weakened IE condition, which leads to
the exact estimation of the time-varying depth and prevents
singularity in the estimated rotation matrix. Experiments based
on a 7-DoF robot manipulator have validated the effectiveness
of the proposed method in estimating the extrinsic parameters
and time-varying depth and controlling 6-DoF robot pose.
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