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Abstract— Parametric uncertainties are ubiquitous in vision-
based robotic systems. However, existing adaptive visual servoing
methods can not simultaneously achieve six-degree-of-freedom
(6-DoF) robot pose control in the three-dimensional (3D) space
and accurate camera parameter estimation. This paper considers
robot manipulators with eye-to-hand monocular cameras under
unknown extrinsic parameters and proposes a passivity-based
kinematic control method called homography-based visual servo-
ing with composite learning (CL-HBVS) to achieve 6-DoF robot
pose tracking. The convergence of camera extrinsic parameters is
achieved by designing a composite learning mechanism without
the stringent condition of persistent excitation, which ensures
the exact estimation of the time-varying depth and mitigates
singularity in the estimated rotation matrix. The proposed method
eliminates the need to calibrate camera extrinsic parameters and
measure the depths of reference feature points. Experiments on
a 7-DoF robot manipulator have verified the effectiveness of the
proposed CL-HBVS method.

I. INTRODUCTION

Visual servoing, typically including position-based visual
servoing (PBVS) and image-based visual servoing (IBVS),
utilizes visual feedback to control robot motion [1]. PBVS
relies on known scene geometry to reconstruct the six-degree-
of-freedom (6-DoF) pose (i.e., position and orientation) from
two-dimensional (2D) images, which is then used for robot
control within the feedback loop. IBVS directly employs 2D
images in the feedback loop with no prior knowledge about
scenes but has several drawbacks, such as local minima and
image Jacobian singularity. Homography-based visual servoing
(HBVS) combines PBVS and IBVS to reconstruct a 6-DoF
pose using only a pair of images, which greatly alleviates the
drawbacks of both PBVS and IBVS [2].

Parametric uncertainties are common in vision-based robotic
systems, where the time-varying depth of feature points and
uncalibrated camera parameters are two typical types of para-
metric uncertainties [3]. Different adaptive control strategies
have been proposed to handle these parameter uncertainties [4]–
[9]. IBVS methods with passivity-based adaptive laws were
developed for robot manipulators in [4]–[6], but they solely
achieve pixel error convergence without considering 6-DoF
pose control. Note that in the above methods, the time-varying
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depth of image features can be expressed as a function of
unknown parameters such that it can be accurately estimated
if parameter estimates converge to their true values. Despite
considering the time-varying depth, depth error convergence
can not be achieved in these adaptive IBVS methods owing to
the requirement of a stringent condition known as persistent
excitation (PE) for parameter convergence. Adaptive HBVS
methods were developed for robot manipulators in [7]–[9], but
they require the reference extrinsic parameters of the camera
to be precisely known a priori. Besides, they often assume a
constant depth and rarely consider a time-varying depth.

This paper considers robotic manipulators under eye-to-hand
(ETH) monocular cameras with unknown extrinsic parameters
and proposes a passivity-based kinematic control solution
named composite learning HBVS (CL-HBVS) to achieve 6-
DoF pose tracking. First, the rotation matrix and depth ratio are
extracted from homography decomposition; second, a linearly
parameterized camera model is built by extracting extrinsic
parameters and representing the time-varying depth via these
parameters; third, an HBVS control law is proposed for 6-DoF
pose tracking; lastly, a composite learning law is developed
to estimate extrinsic parameters exactly, implying the exact
estimation of the time-varying depth, under a condition of
interval excitation (IE) that weakens PE [10]. Compared to
existing adaptive HBVS methods, the distinctive feature of the
proposed method is that it does not need to calibrate camera
extrinsic parameters and measure the depths of reference fea-
ture points. Compared with our existing results on composite
learning visual servoing [11]–[14], the current study has two
distinctive features: 1) It is developed for visual tracking rather
than visual regulation; 2) it is a kinematics-based design that
facilitates industrial applications but takes the inner tracking
error into consideration for performance enhancement.

Throughout this article, R, R+, Rn, and Rm×n are the
spaces of real numbers, positive real numbers, real n-vectors,
and real m × n-matrices, respectively, N is the set of nat-
ural numbers, max{·} is the maximum operator, arccos(x)
is the arc-cosine function, det(A) is the determinant of A,
∥x∥ is the Euclidean norm, ln(x) is the natural logarithm,
diag(x1, x2, · · · , xn) is a diagonal matrix with diagonal ele-
ments x1 to xn, and xi is the ith element of x with i = 1 to n,
where x ∈ R, x ∈ Rn, A ∈ Rn×n, and n, m, i ∈ N.

II. HOMOGRAPHY-BASED CAMERA MODEL

A. Camera Projection and Euclidean Reconstruction

A robot manipulator for visual servoing tasks under an ETH
monocular camera is depicted in Fig. 1. The setup comprises
three Cartesian spatial frames: A world frame {B}, a camera
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Fig. 1. A robot manipulator with an ETH monocular camera for HBVS.

frame {C}, and an end-effector frame {E}. It is assumed that:
1) The camera always captures a plane denoted as ℵ, which
remains fixed in {E}; 2) there exist N ≥ 4 (∈ N) non-collinear
feature points Qi (i = 1 to N ) lying on ℵ; 3) the origin of
{E} corresponds to the location of Q1; 4) a fixed and constant
reference plane, denoted as ℵr, contains N reference feature
points Qri ; 5) a time-varying desired plane named ℵd consists
of N desired feature points Qdi .

Let R(t), Rr, Rd(t) ∈ R3×3 denote the current, reference
and desired orientations corresponding to ℵ, ℵr and ℵd in {C},
respectively, and t(t), tr, td(t) ∈ R3 denote their positions
in {C}, respectively. Then, let the Euclidean coordinates of
Qi, Qri and Qdi in {C} be cxi(t) = [xi(t), yi(t), zi(t)]T ∈
R3, cxri = [xri , yri , zri ]T ∈ R3 and cxdi(t) = [xdi(t), ydi(t),
zdi(t)]

T ∈ R3, and their normalized coordinates be

xi(t) :=
cxi/zi, xri :=

cxri/zri, xdi(t) :=
cxdi/zdi

respectively. From the Euclidean geometry in Fig. 1, one gets
the following relationships among xi, xdi and xri [2]:

xi =

αi︷ ︸︸ ︷
(zri/zi)

H︷ ︸︸ ︷
(R̃+ (t̃/dr)n

T
r )xri, (1)

xdi =

αdi︷ ︸︸ ︷
(zri/zdi)

Hd︷ ︸︸ ︷
(R̃d + (t̃di/dr)n

T
r )xri (2)

in which αi(t) ∈ R+ and αdi(t) ∈ R+ are the current and
desired depth ratios, respectively, H(t) ∈ R3×3 and Hd(t)
∈ R3×3 are the current and desired Euclidean homography
matrices, respectively, R̃(t) := R(t)RT

r ∈ R3×3 and t̃(t) :=
t(t)− R̃(t)tr ∈ R3 are the current mismatch rotation matrix
and translation vector between ℵ and ℵr, respectively, R̃d(t)
:= Rd(t)R

T
r ∈ R3×3 and t̃d(t) := td(t) − R̃d(t)tr ∈ R3 are

the desired mismatch rotation matrix and translation vector
between ℵd and ℵr, respectively, nr ∈ R3 is a constant unit
normal of ℵr in {C}, and dr ∈ R+ is a constant distance
between {C} and ℵr along nr. Let the homogeneous pixel
coordinates of Qi, Qri and Qdi in the image plane be pi(t) =
[ui(t), vi(t), 1]T ∈ R3, pri = [uri, vri, 1]T ∈ R3 and pdi(t) =
[udi(t), vdi(t), 1]T ∈ R3, respectively. Using the perspective
projection model of pinhole cameras, one obtains [15]

pi = Kxi, pri = Kxri, pdi = Kxdi (3)

where K ∈ R3×3 is an intrinsic parameter matrix. Combining
(3) with (1) and (2), one obtains

pi = αi KHK−1
︸ ︷︷ ︸

G

pri, (4)

pdi = αdi KHdK
−1

︸ ︷︷ ︸
Gd

pri (5)

where G(t), Gd(t) ∈ R3×3 denote the current and desired
projective homography matrices, respectively. The current
mismatch rotation matrix R̃ and depth ratio αi can be obtained
from G by homography decomposition [14]. In addition, the
desired ones R̃d and αdi can be obtained from Gd.

B. Linear Parameterization of Camera Models

Let cRb ∈ R3×3 and ctb ∈ R3 denote a constant rotation
matrix and a translation vector, respectively, which describe the
transformation between the frames {C} and {B}. Let bxi(q)
∈ R4 be a homogeneous Cartesian coordinate of the feature
point Qi in {B}, depending on the joint position q(t) ∈ Rn

based on the robot forward kinematics [16], where n ∈ N is the
number of DoFs. Then, the perspective projection relationship
in (3) can be rewritten as follows [14], [17]:

pi = KDbxi(q)/zi(q) (6)

in which D := [cRb,
ctb] ∈ R3×4 is an extrinsic parameter

matrix, and zi(q) ∈ R+ is the depth of Qi in {C} given by

zi(q) = dT
3
bxi(q) (7)

with dT
3 being the 3rd row of D [6]. Multiplying each side of

(6) by zi(q) and substituting (7) into the result yield

pid
T
3
bxi(q)−KDbxi(q) = 0. (8)

The following key property based on (8) from [18] is useful
for the adaptive control design.

Property 1: Let θ := [d11, d12, · · · , d32, d33]T ∈ R11 de
a camera’s extrinsic parameter vector that is unknown but
constant, where dij ∈ R is the ijth element of D. If d34 ∈ R+

is known, for any given η ∈ R3 and γ ∈ R4, ηdT
3 γ −KDγ

can be linearly parameterized by

ηdT
3 γ −KDγ = ΦT (η,γ)θ − y(η,γ) (9)

with Φ(η,γ) := B(γ)(kηT − KT ) ∈ R11×3, y(η,γ) :=
d34γ4(Kk − η) ∈ R3, k = [0, 0, 1]T ∈ R3, and

B(γ) :=



γ 0 0
0 γ 0
0 0 γ[1:3]


 ∈ R11×3 (10)

where γ[1:3] ∈ R3 contains the first 3 elements of γ. Then,
substituting η = pi and γ = bxi into (9), one rewrites (8) into
a linearly parameterized camera model

y(pi,
bxi) = ΦT (pi,

bxi)θ, i = 1 to N. (11)
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III. COMPOSITE LEARNING VISUAL SERVOING

It is assumed that the point Q1, denoted by Qe, is the origin
of the end-effector frame {E}. Therefore, Q1, Qr1 and Qd1

are replaced by Qe, Qre and Qde, respectively. The control
objective can be described by

R̃ → R̃d, α → αd,p → pd as t → ∞. (12)

With the consideration that the plane ℵ remains fixed in {E},
the orientation of the robot end-effector is represented by R.
Consequently, the triplet (R, z,p) uniquely determines the
pose of the end-effector in the camera frame {C}. When R̃ =
R̃d and α = αd, one obtains R = Rd and z = zd. Utilizing
zp = Kcx, if p = pd, one obtains cx = cxd, indicating that
the end-effector reaches its desired pose in {C}.

A. Pose Error Definition

For control synthesis, definite a rotation error [2]

eω(t) := ϑ(t)− ϑd(t) (13)

where ϑ(t), ϑd(t) ∈ R3 are the angle-axis representations of
R̃ and R̃d, respectively, given by

ϑ(t) := µ(t)ϕ(t), ϑd(t) := µd(t)ϕd(t) (14)

in which ϕ(t), ϕd(t) ∈ R are the rotation angles around unit
axes µ(t),µd(t) ∈ R3, respectively, confined to

−π < ϕ(t) < π, −π < ϕd(t) < π.

The solutions for ϕ and µ can be determined by
{

ϕ(t) = arccos ( 12 (tr(R̃)− 1)),

[µ(t)]× = R̃−R̃T

2 sin (ϕ)

(15)

where [·]× is a skew symmetry operator [14]. Likewise, with
R̃d being obtained from homography decomposition, the
solutions for ϕd and µd can also be determined. Differentiating
eω with respect to time t yields

ėω(t) = Lω(ϑ)
cRb

bω − ϑ̇d (16)

in which bω(t) ∈ R3 is an angular velocity of Qe in {B}, and
Lω(ϑ) ∈ R3×3 is a Jacobian-like matrix given by

Lω(ϑ) := I − ϕ

2
[µ]× +

(
1− sinc(ϕ)

sinc2(ϕ/2)

)
[µ]2×

with sinc(ϕ) := sin (ϕ)/ϕ and sinc(0) = 1.
To control the translation of the feature point Qe, define

current and desired extended translation vectors
{

pe(t) := [u(t), v(t),−ln(α(t))]T ,
ped(t) := [ud(t), vd(t),−ln(αd(t))]

T
(17)

respectively. Then, define an extended translation error

ev(t) := pe(t)− ped(t). (18)

Differentiating z(q) in (7) with respect to time t yields

ż(q) = dT
3
bv, (19)

where bv := bẋ(q) ∈ R4 is a linear velocity of Qe in {B}.
From (6), (7) and (19), the time derivative of ev becomes

ėv = Ae(p)
bv/z(q)− ṗed (20)

in which Ae(p) := KD − p0d
T
3 ∈ R3×4 is an extended

interaction matrix with p0(t) := [u(t), v(t), 0]T ∈ R3.
Based on the robot forward kinematics [16], the velocities

bv and bω are calculated by
bv = Jv(q)q̇,

bω = Jω(q)q̇ (21)

where Jv(q) ∈ R4×n and Jω(q) ∈ R3×n are the translational
and rotational Jacobian matrices, respectively, which can be
obtained from the robot’s forward kinematics. Inspired by [5],
multiplying each side of (20) by z(q) and substituting (19) and
(21) into the obtained result and (20), one obtains an overall
kinematic system for 6-DoF pose control as follows:
[
z(q)ėv +

1
2 ż(q)ev

ėω

]
= Jp(p, q, ev,ϑ)q̇−

[
z(q)ṗed

ϑ̇d

]
(22)

with Jp(p, q, ev,ϑ) := [JT
pv(p, q, ev), J

T
pω(q,ϑ)]

T ∈ R6×n

being a Jacobian matrix that maps the joint velocity q̇ to the
velocity pairs (z(q)ṗe +

1
2 ż(q)ev, ϑ̇). Here, Jpv(p, q, ev) :=

Q(p, ev)Jv(q) ∈ R3×n with Q(p, ev) := Ae(p) +
1
2evd

T
3 ∈

R3×4 is the translational mapping component, and Jpω(q,ϑ)
:= Lω(ϑ)

cRbJω(q) ∈ R3×n is the rotational mapping compo-
nent. To simplify notation, define two auxiliary variables uv :=
Jpv(p, q, ev)q̇ − z(q)ṗed ∈ R3 and uω := Jpω(q,ϑ)q̇ − ϑ̇d

∈ R3. Then, it follows from [19] that (22) is passive concerning
input-output pairs (uv, ev) and (uω, eω) for the translational
and rotational components, respectively, and the corresponding
storage functions are Vv = z(q)eTv ev/2 and Vω = eTωeω/2,
respectively. With the translational and rotational errors eω
and ev, the control objective (12) becomes

eω → 0, ev → 0 as t → ∞. (23)

B. Homography-Base Visual Servoing
Let (ped, ṗed, p̈ed) and (ϑd, ϑ̇d, ϑ̈d) be desired extended

translational and rotational trajectories of the feature point Qed,
respectively. Then, introduce nominal reference translational
and rotational trajectories as follows:

ṗer := ṗed − λvev, ϑ̇r := ϑ̇d − λωeω (24)

respectively, where ṗer, ϑ̇r ∈ R3 denote the reference transla-
tion and rotation velocities, respectively, and λv, λω ∈ R+ are
certain constants. Let θ̂ ∈ R11 be an estimate of θ. Substituting
θ̂ into Jp(p, q,ϑ, ev), Q(p, ev), cRb, and d3, one gets

Ĵp := Jp|θ=θ̂, Q̂ := Q|θ=θ̂,
cR̂b := cRb|θ=θ̂, ẑ := z|θ=θ̂

with Ĵp(p, q,ϑ, ev) ∈ R6×n, Q̂(p, ev) ∈ R3×4, cR̂b ∈ R3×3

and ẑ ∈ R. Then, define estimation errors

J̃p := Ĵp−Jp, Q̃ := Q̂−Q, cR̃b := cR̂b−cRb, z̃ := ẑ−z.

Design an HBVS-based joint velocity control law

q̇c =Ĵ+
p (p, q,ϑ, ev)

[
ẑṗer

ϑ̇r

]
− JT

v (q)Q̂T (p, ev)Kpev

− JT
ω (q)cR̂T

bL
T
ω (ϑ)Kωeω (25)
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where Kp, Kω ∈ R3×3 are positive-definite diagonal matrices
of control gains, and Ĵ+

p (p, q,ϑ, ev) ∈ Rn×6 is the pseudo
inverse of Ĵp(p, q,ϑ, ev). It is observed from (25) that the
estimated matrices Ĵ+

p , Q̂ and cR̂b determine how the errors
ev, eω, and velocities ṗer and ϑ̇r are projected into the joint
space, which affects the performance of visual servoing. Then,
define a velocity tracking error in the joint space

ė(t) := q̇(t)− q̇c(t) (26)

and two auxiliary matrices Φyi := Φ(p0−ev/2,Jvi) ∈ R11×3

and Φri := B(γ)|γ=[JT
ωi,0]

T ∈ R11×3, where Jvi ∈ R4 and
Jωi ∈ R3 are the ith columns of Jv(q) and Jω(q), respectively.
Then, one has two linearly parameterized models.

Property 2: If d34 is known, then for any given η1, one gets
a linearly parameterized model

JT
v (q)Q̂T (p, ev)η1 + JT

ω (q)cR̂T
b η2 = Y T

1 (p, q,η1,η2)θ̂
(27)

with Y1(p, q,η1,η2) := [Φr1η2−Φy1η1, Φr2η2−Φy2η1, . . .,
Φrnη2 − Φynη1] ∈ R11×n.

Property 3: If d34 is known, then for any given η ∈ R3, one
gets a linearly parameterized model

ẑη = Y T
2 (q,η)θ̂ + y2(η) (28)

with y2(η) := d34η ∈ R3, Y2(q,η) := B(bx(q))kηT ∈
R11×3, and B(·) defined in (10).

Replace the tuple (ẑ, θ̂, η) in (28) by (z(q), θ, ṗer) yields

(ẑ − z(q))ṗer = Y T
2 (q, ṗer)θ̃ (29)

where θ̃(t) := θ̂(t)− θ ∈ R11 is a parameter estimation error.
By using (27), (25) can be rewritten into

q̇c = Ĵ+
p (p, q,ϑ, ev)

[
ẑṗer

ϑ̇r

]
− Y T

1 (p, q,η1,η2)θ̂ (30)

with η1 = Kpev and η2 = LT
ωKωeω. Applying (24), (26)

and (30) to (22), yields the closed-loop overall kinematics
[
zėv +

1
2 żev

ėω

]
= Ĵpė− ĴpY

T
1 θ̂ − J̃pė+ J̃pY

T
1 θ̂

−J̃pĴ
+
p

[
ẑṗer

ϑ̇r

]
+

[
z̃ṗer

0

]
−
[
λvzev
λωeω

]
. (31)

Panda Robot

Planar AprilTag

Robot Control Box

RealSense D435i

Fig. 2. An experimental environment for monocular ETH robots, where the
end-effector is identified by an attached planar AprilTag.

C. Composite Learning Adaptation

We define IE and PE to facilitate analysis as follows [10].
Definition 1: A bounded signal Φ (t) ∈ R11×3 is of IE if ∃

Te, ζd, σ ∈ R+ such that
∫ Te

Te−ζd
Φ(ζ)ΦT (ζ)dζ ≥ σI .

Definition 2: A bounded signal Φ (t) ∈ R11×3 is of PE if ∃
ζd, σ ∈ R+ such that

∫ t

t−ζd
Φ(ζ)ΦT (ζ)dζ ≥ σI ,∀t ≥ 0.

Define a generalized prediction error

ξ(t) := Ψe(t)θ̂ −Ψe(t)θ ∈ R11 (32)

in which Ψe ∈ R11×11 is given by

Ψe(t) :=

{ ∫ t

t−ζd
Φ(ζ)ΦT (ζ)dζ, t < Te∫ Te

Te−ζd
Φ(ζ)ΦT (ζ)dζ, t ≥ Te

.

Note that one has Ψeθ =
∫ t

t−ζd
Φ(ζ)y(ζ)dζ. Using eigende-

composition, one obtains Ψe = UΣUT with Σ := diag(λ1, λ2,
. . ., λ11), where λi ∈ R (i = 1 to 11) is the ith eigenvalue of Ψ,
and U ∈ R11×11 is orthogonal, i.e., UUT = I . Note that Ψe

is symmetric and positive-semidefinite, and each eigenvalue
λi is non-negative. Define a regularized inversion of Ψe:

Ψ+
ϱ := UΣϱU

T ∈ R11×11 (33)

with Σϱ := diag(λϱ1, λϱ2, . . . , λϱ11) ∈ R11×11, where λϱi :=
1/max{λi, ϱ} ∈ R+ (i = 1 to 11) is the ith eigenvalue of
Ψ+

ϱ , and ϱ ∈ R+ is a small threshold. Then, one concludes
that: 1) If Ψe ∈ R11×11 is positive-semidefinite, Ψ+

ϱ in (33) is
positive-definite; 2) 0 ≤ Ψ+

ϱ Ψe ≤ I , Ψ+
ϱ Ψe = I iff Ψe ≥ ϱI ,

and Ψ+
ϱ Ψe = 0 iff Ψe = 0 [14]. Now, design a regularized

composite learning law as follows:
˙̂
θ = Γ

(
Y1(p, q,η1,η2)q̇ − Y2(q,η)Kpev − κΨ+

ϱ ξ
)

(34)

with η = ṗer, where Γ ∈ R11×11 is a positive-definite matrix
of learning rates, and κ ∈ R+ is a weighting factor. We give
the following reasonable assumption from [5].

Assumption 1: The low-level joint controller of the robotic
system guarantees ė ∈ L2 ∩ L∞ so that there exists a constant
lm ∈ R+ to satisfy

∫ t

0
ėT (τ)ė(τ)dτ ≤ lm,∀t ≥ 0.
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Fig. 2. An simulation environment for monocular ETH robots. A planar AprilTag
is mounted at the end-effector that is defined by AprilTag.
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图 1-3 ETH机器人关节速度控制中，特征点 𝒬e 的期望轨迹图。(a)特征点 𝒬e 在坐标系
{𝐵}下的期望轨迹图，图中绿色实心圆点 1、2、3、4分别表示在时刻 𝑡=0、30、70
和 100 s时的轨迹点 (b)特征点 𝒬e 的期望扩展像素和轴角轨迹图，从上到下分别
为期望像素 𝒑d，深度比率 𝛼d和轴角向量 𝝑d

表 1-1 ETH机器人关节速度仿真中，所有特征点 𝒬𝑖 (𝑖 = 1 ∼ 4)的像素坐标 𝒑(0)、𝒑r 和
𝒑d(0)

特征点 𝒬1 𝒬2 𝒬3 𝒬4

𝒑(0) (107,329) (140,316) (126,284) (92,295)
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1.7.1 关节速度仿真研究
本节通过机器人仿真器 CoppeliaSim Edu[22] 建立 Panda机器人视觉伺服系统

的仿真环境，如图 1-2所示。平面视觉特征物体 AprilTag[23] 固定在 Panda机器人
末端执行器上。视觉传感器用于模拟英特尔公司的 RealSense系列相机 D435i，采
样频率为 30 Hz/s。该相机固定在环境中，且相对于机器人基坐标系 {𝐵}有固定的
位姿变换关系。仿真环境中的 Panda机器人的动力学参数由 [13]的辨识参数确定。
本节仿真中设计的轨迹跟踪任务如图 1-3所示，该轨迹跟踪任务由以下三个子任务
构成：

(1) 在时间 𝑡 ∈ [0, 30) s上跟踪红色实线轨迹，方向从 1 → 2；
(2) 在时间 𝑡 ∈ [30, 70) s上跟踪蓝色虚线轨迹，方向从 2 → 3；
(3) 在时间 𝑡 ∈ [70, 100] s上跟踪黑色点划线轨迹，方向从 3 → 4。
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Fig. 3. The desired trajectory of the point Qe in Euclidean space, where the
notation “1” to “4” (marked in green dot) denote the trajectory point at instant
time t = 0, 30, 70 and 100 s.

is known in advance. Note that only this feature’s Cartesian
position is known and other features’ Cartesian position in {E}
remain unknown. The other scheme is that the virtual parallax
method can be used to follow the proposed method and keep one
of the 8 feature point locate at the origin of {E} [see Sec. II-A].
In any case, the control law (33) and the composite learning
adaptive (44) are also calculable and thus the end-effector pose
is under control.

Remark 7: Composite learning benefits from the combination
of dynamic regressor extension and online data memory to
achieve parameter convergence in adaptive control without
the strict PE condition [26], where unknown parameters are
estimated by the integration of pose tracking and generalized
prediction errors such that only the much weaker IE condition is
required to ensure parameter convergence. Composite learning
has been applied to several real-world robot control problems
[27], [28], [35]–[40]. As detailed in [4], [40], the time-varying
depth convergence because of composite learning helps to
reconstruct the planar scenes online.

TABLE I
INITIAL PIXEL COORDINATES OF FEATURE POINTS Qi (i = 1 ∼ 4) FOR

SIMULATIONS

Feature Points Q1 Q2 Q3 Q4

p(0) (107,329) (140,316) (126,284) (92,295)
pr (326,319) (365,317) (362,278) (324,281)

pd(0) (184,142) (266,142) (263,57) (178,57)

1 The non-homogeneous pixel coordinates are p(0) = (u(0), v(0)), pr =
(ur, vr) and pd(0) = (ud(0), vd(0)).

TABLE II
ESTIMATED ẑ, CURRENT z AND DESIRED zd DEPTHS AT SEVERL INSTANTS

IN SIMULATIONS.

Time (s) 31 42 53 64 75 86 95 100

ẑ (m) 0.85 0.90 0.91 0.86 0.80 0.75 0.80 0.79

z (m) 0.85 0.89 0.90 0.86 0.80 0.75 0.80 0.78

zd (m) 0.85 0.90 0.91 0.85 0.80 0.74 0.80 0.78

IV. SIMULATION STUDIES
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As depicted in Fig. 2, the simulaitons for vision-based robotic
system are implemented in CoppeliaSim Edu [41], which
includes a 7-DoF collaborative robot named Panda (from Franka
Emika Inc.) with the dynamic parameters identified in [42],
a monocular ETH vision sensor, and a planar AprilTag [43]
attached to the end-effector of the Panda robot. The AprilTag
represents the end-effector, with four visual features located
at the four corners of the AprilTag. The camera fixed in the
environment is utilized to capture 640 × 480 pixel resolution
images for visual signals at 30 frames per second (FPS). In
simulations, the initial robot joint position is set as q(0) = [0,
−0.5236, −1.8326, −2.4435, −0.2618, 2.0071, −1.5708]T rad,
the camera’s extrinsic parameter matrix is

D =




0 1 0 −0.1000
0.2588 0 −0.9659 0.3656
−0.9659 0 −0.2588 1.3403


 ,

and the camera’s intrinsic parameter matrix is

K =



608 0 327
0 608 232
0 0 1


 .

Fig. 3. The desired trajectory of the feature point Qe in the Euclidean space,
where the notation “1" to “4" (marked in green dot) denote the waypoints at
instants t = 0, 30, 60 and 100 s, respectively.
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ẑ
,
z
,
z d

(m
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Fig. 4. Control results of the proposed CL-HBVS in experiments. (a) Pixel tracking trajectories in the u- and v-axes of the image plane. (b) Pixel errors ev1
and ev2 in the u- and v-axes of the image plane, respectively. (c) Absolute value of the depth ratio error ev3. (d) Norm of the rotation error eω . (e) Parameter
errors θ̃i (i =1 to 6). (f) Parameter errors θ̃i (i = 7 to 11). (g) Estimated, current, and desired depths ẑ, z, and zd. (h) Control torque τ ∈ R7.

Consider an articulated robot system with an ETH monocu-
lar camera, as depicted in Fig. 1, where a plane ℵ is attached
to the end-effector frame {E}, containing at least 4 feature
points. Only the feature point Qe in the world frame {B} is
known, which is applied to calculate its Cartesian coordinate
bx(q). If the kinematic system described by (22) is driven
by the CL-HBVS control law (25) with (34), then the closed-
loop system is stable in the following sense: 1) All signals
involved are bounded and the tracking errors ev(t) and eω(t)
asymptotically converge to 0 on t ≥ 0; 2) if IE exists, both
the tracking errors ev(t), eω(t) and the parameter estimation
error θ̃(t) asymptotically converge to 0 on t ≥ Te, implying
exact depth estimation as ẑ(t) → z(q(t)). The proof is similar
to [5], so it is omitted here. Note that even if d34 is unknown a
priori, (34) still works as discussed in [14].

IV. EXPERIMENTAL STUDIES

Experiments on the vision-based robotic system are carried
out as illustrated in Fig. 2, where the environment includes a
7-DoF collaborative robot named Franka Emika Panda, and
a fixed Intel RealSense camera D435i to capture images at a
resolution of 640× 480 pixels, which provides visual signals
at a rate of 30 frames per second. An AprilTag [20] with four
visual markers positioned at its corners is affixed to the end-
effector. During experiments, pixel positions pri (i = 1 to 4)
of each reference feature points Qri are (189, 241), (268, 241),

(266, 163) and (185, 163), and the initial robot joint position
is q(0) = [0, −0.5236, −1.8326, −2.4435, −0.2618, 2.0071,
−1.5708]T rad. The camera’s intrinsic parameter matrix is

K =



608 0 327
0 608 232
0 0 1


 .

Since the camera’s extrinsic parameter D is unavailable in
practice, the following calibrated one from ViSP [21]:

D̂r =



−0.1184 0.9902 −0.0735 0.1382
0.0427 −0.0689 −0.9967 0.6554
−0.9920 −0.1212 −0.0341 1.8341




is chosen as a reference. Also, as d34 is unknown, a reference
one d̂34r = 1.8341 obtained from D̂r is used for calculating
y(pi,

bxi) in (11) and y2(η) in (28).
An initial estimate of D is set as θ̂(0) = [0.2263, 0.9567,

0.1830, 1.0000, −0.1830, 0.2263, −0.9567, 0.1000, −0.9567,
0.1830, 0.2263]T , which ensures a suitable initial discrepancy
with D, better showing the evolution of the parameter estimate
θ̂. We design a desired trajectory with 100 s shown in Fig. 3,
which consists of three sub-tasks: 1) Tracking the red trajectory
at t ∈ [0, 30) s; 2) tracking the blue trajectory at t ∈ [30,60) s;
3) tracking the black trajectory at t ∈ [60,100] s.

The proposed CL-HBVS (25) with (34) is implemented
with Kp = diag(4 × 10−5, 4 × 10−5, 0.2), Kω = 0.2I , Γ =
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Fig. 5. Prediction errors ϵp by ViSP and the proposed CL-HBVS.

TABLE I
ESTIMATED, CURRENT AND DESIRED DEPTH VALUES ẑ, z, AND zd

DURING EXPERIMENTS

Time (s) 31 42 53 64 75 86 95 100

ẑ (m) 1.48 1.51 1.53 1.51 1.47 1.40 1.46 1.40
z (m) 1.49 1.52 1.54 1.52 1.48 1.41 1.47 1.42
zd (m) 1.50 1.53 1.54 1.51 1.46 1.40 1.45 1.43
∥θ̃∥
∥θ∥ (%) 4.88 4.87 4.88 4.88 4.88 4.88 4.88 4.88

0.4I , λv = λω = 2, κ = 15, ϱ = 3, and Te = τd = 25.
Experiments are run on a host PC under Linux OS Ubuntu
20.04 with ROS Noetic Ninjemys. The ViSP and the Franka
Control Interface provided via libfranka are integrated into
the ROS. To evaluate the effectiveness of depth tracking and
estimation by the proposed method, we use the pose estimation
algorithm embedded in ViSP to get exact information, where
z is calculated by the known geometric information of the
AprilTag, and ẑ is obtained by (7). Finally, define a model
prediction error ϵp(t) := y(p, bx) − ΦT (p, bx)θ̂, where θ̂
is obtained by (34) (κ = 15) and θ̂ = θ̂r for the proposed
CL-HBVS and ViSP, respectively, and θ̂r ∈ R11 is the first 11
elements of the calibrated matrix D̂r.

Experiment results are demonstrated in Fig. 4. One observes
that the current pixel p = [u, v, 1]T of the feature point Qe

accurately tracks its desired position pd = [ud, vd, 1]
T with a

steady-state error of about 0.4 pixel [see Figs. 4(a) and (b)],
the current depth z converges to the desired depth zd with an
error of about 0.02 m [see Fig. 4 (c)], and the norm of the
rotation error ∥eω∥ is about 0.1 rad on average [see Fig. 4(d)].
Besides, the convergence of θ̃ with an error of 0.1 is achieved
at about 25 s [see Fig. 4 (e)-(f)], which indicates an accurate
depth estimation [see Fig. 4 (g)]. Table I gives the depth values
ẑ, z and zd at some instants, where both the depth estimation
error z̃ and the depth tracking error ez := z − zd ∈ R are less
than 2 cm. In addition, the control torque τ ∈ R7 [see Fig. 4
(h)] is shown to verify that the control input of the low-level
joint controller is reasonable. What’s more, the prediction error
ϵp obtained by the proposed CL-HBVS is smaller than that
by ViSP [see Fig. 5], indicating that θ̂ by the CL-HBVS is
closer to the true value θ compared to the calibrated one θ̂r. To
assess the performance of θ̃, the percentage estimation error
∥θ̃∥/∥θr∥ (%) with less than 5 % is also shown in Table I.

V. CONCLUSIONS

This paper has presented a passivity-based kinematic control
method named CL-HBVS for robots with ETH monocular

cameras to achieve 6-DoF pose tracking in the 3D space under
unknown camera extrinsic parameters. Parameter convergence
is achieved under the weakened IE condition, which leads to
the exact estimation of the time-varying depth and prevents
singularity in the estimated rotation matrix. Experiments based
on a 7-DoF robot manipulator have validated the effectiveness
of the proposed method in estimating the extrinsic parameters
and time-varying depth and controlling 6-DoF robot pose.
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