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Abstract— This paper is concerned with data-driven reach-
ability analysis of discrete-time nonlinear systems without any
dynamical model. We use only a number of observations of
trajectories of the system to estimate the actual reachable set.
With the data set, using the Support Vector Data Description
(SVDD) technique, we propose a sample-based approximation
method to solve the reachability analysis problem, which can
be considered as a one-class classification problem. Under
the framework of scenario optimization, we then derive over-
approximations of the reachable set in a probabilistic sense with
Lipschitz continuity and other regularity conditions. Finally, we
demonstrate the proposed method on a numerical example.

I. INTRODUCTION

Real-world engineered systems are becoming more and
more complex with the rapid evolution of Cyber-Physical
Systems (CPS) technologies [1]. There is a need to check the
correctness of such systems with computer-based techniques,
taking into account the interplay between cyber and physical
components [2]. This is particularly important for safety-
critical applications. Many verification algorithms rely on
reachability analysis, which aims to check properties of the
system by computing the set of reachable states from a given
initial set of configurations under all possible inputs, see, e.g,
[3].

From a control-theoretic point of view, specifications of
a dynamical system can be often described as a set of the
state space and the properties of interest can be captured by
propagation of sets under the framework of the so-called set-
theoretic approach [4]. With this understanding, reachability
analysis of dynamical systems boils down to the computation
of set propagation. For special cases, set propagation can be
computed using optimization techniques such as linear pro-
gramming [5]–[7], linear matrix inequalities (LMI) [8], [9]
and sum-of-squares (SOS) programming [8]–[10]. In general,
it is numerically intractable to compute exact reachable sets
[11]. For this reason, many algorithms and toolboxes have
been developed to compute over-approximations of reachable
sets (see, e.g., [12]). However, all the aforementioned works
require an exact mathematical model of the system. In
practice, identifying a dynamical model can be a challenging
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task, due to disturbances, uncertainties and hybrid behaviors
arising from discrete actions in CPS [13], which restricts the
applicability of model-based approaches.

Modelling challenges in real-world systems have even-
tually motivated the research on data-driven reachability
analysis, which computes or estimates reachable sets by
only using a finite number of observations of trajectories.
With a finite set of data, an important issue is that the
accuracy of the computed set needs to be evaluated in order
to infer the actual reachable set. A general way of obtaining
over-approximations of reachable sets is to use the notions
of coverings and packings of compact sets [14]. Indeed,
when a covering of the reachable set is available, an over-
approximation can be immediately constructed by taking a
neighborhood of the covering with a proper covering radius.
Such an idea is adopted in [15], [16]. However, to generate a
covering with a small covering radius, the data set has to be
dense, which means that it takes a large amount of data.
In [17], interval-based approximations are also proposed
with a guarantee on probabilistic correctness. As interval
approximations can be conservative, ellipsoidal sets are used
in [18] and probabilistic convex constraints satisfaction is
derived based on chance-constrained results in the frame-
work of scenario optimization [19]–[21]. The probabilistic
guarantees in [17], [18] are all given in terms of ϵ-accurate
reachable sets, which means that further developments are
needed to achieve over-approximations. In addition, it has
been reported in [22], [23] that it is in general conservative
to use chance-constrained results as an intermediate step in
the derivation of objective value function performance in
scenario optimization. We show that the same reasoning is
also applicable in the derivation of over-approximations of
reachable sets since the sampled-based reachability analysis
problem can be considered as a scenario program. Convex
hulls are also considered in reachability anlaysis in [24]
and probabilistic guarantees are derived using random set
theory. While convex hulls allow to approximate complicated
reachable sets as the number of samples increases, the
method in [24] only provides asymptotic convergence results.

Data-driven reachability analysis is also closely related
with estimation of the support of a distribution or one-
class classification [25]–[27], in which generalization error
bounds are obtained in the framework of statistical learning
theory [28]. In principle, these bounds can be leveraged to
provide probabilistic over-approximations of reachable sets.
However, the results in these works can be conservative as
they are developed in a very general setting without taking
the structure of the underlying problem into account. It

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 7037



is well known in scenario optimization [19]–[21] that the
convexity property can be utilized to derive tight bounds for
random convex programs. In this paper, we use the Support
Vector Data Description (SVDD) technique [29] to formulate
the sampled-based reachability analysis problem. Inspired by
scenario optimization, we formulate the reachability analysis
problem as a convex optimization problem using the SVDD
technique, in order to make use of the convexity property.

The rest of the paper is organized as follows. The next
section gives some preliminaries on reachability analysis and
the problem statement. Section III discusses the problem of
learning compact sets and presents results on probabilistic
over-approximations from the perspective of scenario op-
timization. In Section IV, based on the results in Section
III, over-approximations of reachable sets are derived under
some regularity conditions. Some simulation results are
provided Section V.

Notation. The non-negative real number set and the non-
negative integer set are denoted by R+ and Z+ respectively.
For any p ≥ 1, the ℓp norm of a vector x ∈ Rn is ∥x∥p
(∥x∥ is the ℓ2 norm by default). For any T ∈ Z+, let [T ]
denote the set {0, 1, · · · , T}. Given any x ∈ Rn and r ∈ R+,
Bn(x, r) and Sn(x, r) denote respectively the closed ball and
the hypersphere with the center x and the radius r in Rn.
For convenience, let Bn and Sn be the unit closed ball and
the unit hypersphere in Rn. Let µ(S) denote the Lebesgue
measure of S for any Lebesgue-measurable S ⊂ Rn.

II. PRELIMINARIES AND PROBLEM STATEMENT

We consider discrete-time nonlinear systems in the form
of

xxx(t+ 1) = f(xxx(t),uuu(t)), t ∈ Z+ (1)

where xxx(t) ∈ Rn is the state vector, uuu(t) ∈ Rm is the
input vector including uncertainties (or disturbances) and
references, and f : Rn × Rm → Rn is some continuous
function. The input is subject to

uuu(t) ∈ U, t ∈ Z+ (2)

where U ⊂ Rm is a compact set. Given an initial state x at
t = 0 and an input signal uuu : Z+ → Rm, let ξ(t;x,uuu) denote
the solution of (1). In this paper, we consider reachability
analysis of System (1) from an initial set X0 ⊂ Rn.

The reachable sets of System (1) from X0 can be defined
as, ∀t ∈ Z+,

Rt(X0) := {ξ(t;x,uuu) : x ∈ X0,uuu(ℓ) ∈ U,∀ℓ ∈ [t]}. (3)

with R0(X0) = X0. The reachable set over a horizon T is
defined as

R[T ](X0) := ∪t∈[T ]Rt(X0) (4)

Our goal is to compute or estimate reachable sets defined
above by only using a finite number of trajectories without
knowing the dynamical model. We make the following
assumptions.

Assumption 1. X0 ⊂ Rn and U ⊂ Rm are compact.

Assumption 2. Given the horizon T , there exist positive
constants Lx and Lu such that

∥f(x2, u2)−f(x1, u1)∥ ≤ Lx∥x2 − x1∥+ Lu∥u2 − u1∥
∀(x1, u1), (x2, u2) ∈ R[T ](X0)× U. (5)

III. LEARNING REGULAR COMPACT SETS

In this section, we consider identification of compact sets
that satisfy certain regularity conditions from data. Given a
compact set S ⊂ Rn, let ωN := {x1, x2 · · · , xN} a data
set sampled inside S, where N ∈ Z+ is the number of
data points. From the data set ωN , we attempt to compute
an estimation of S. The problem of estimating sets can be
considered as a one-class classification problem [25]–[27].

A. Support vector data description

We use the Support Vector Data Description (SVDD)
technique to solve this set estimation problem. Let Φ : S →
Rp be a feature map. In general, the objective of SVDD is
to find the smallest hypersphere that encloses the majority of
the data {Φ(x) : x ∈ ωN}. In this paper, we are interested
in over-approximations of the set S. From the perspective of
scenario optimization [19]–[21], we formulate the following
problem

(c(ωN ), γ(ωN )) := argmin
c,γ

γ (6a)

s.t. ∥Φ(x)− c∥ ≤ γ,∀x ∈ ωN . (6b)

The robust counterpart of (6) is the following problem

(c∗, γ∗) := argmin
c,γ

γ (7a)

s.t. ∥Φ(x)− c∥ ≤ γ,∀x ∈ S. (7b)

The solution of this robust optimization problem provides
the smallest hypersphere that encloses the set Φ(S).

The uniqueness of the solution of Problem (6) is guaran-
teed by the following lemma.

Lemma 1. For any N ∈ Z+ and ωN ⊂ S, Problem (6) has
a unique solution.

Proof: With the feature map Φ, Problem (6) can be
interpreted as the smallest bounding sphere problem and
there exist several proofs, see, e.g., Proposition 3.9 in [30].
To be self-contained, we present a proof from an elemen-
tary geometric argument. Suppose there exist two different
solutions (c1, γ) and (c2, γ) with c1 ̸= c2. Then, the set
Φ(ωN ) is enclosed by both Bp(c1, γ) and Bp(c2, γ2), which
means that Φ(ωN ) ⊆ Bp(c1, γ) ∩ Bp(c2, γ). Let γ′ be the
distance from c1+c2

2 to the boundary of Bp(c1, γ)∩Bp(c2, γ).
By definition, Bp(c1, γ) ∩ Bp(c2, γ) ⊂ Bp(

c1+c2
2 , γ′). Since

c1 ̸= c2, γ′ < γ. This means that Φ(ωN ) can be enclosed
by a smaller hypersphere Bp(

c1+c2
2 , γ′), which violates the

optimality. Thus, we conclude that c1 = c2. 2
For notational convenience, given any c ∈ Rp and γ ∈ R+,

let

S(c, γ) := {x ∈ Rn : ∥Φ(x)− c∥ ≤ γ}. (8)
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We then present an important result which provides the
connection between Problem (6) and Problem (7).

Lemma 2. Suppose the set S ⊂ Rn is compact and the
feature map Φ : S → Rp is continuous. For any N ∈ Z+

and ωN ⊂ S, let (c(ωN ), γ(ωN )) be the solution of Problem
(6). Then, there exists a set ω̄p+1 ⊂ S of p+1 elements such
that S ⊆ S(c(ω̄p+1), γ(ω̄p+1)).

Lemma 2 suggests that, to enclose the set Φ(S), we only
need to enclose p+1 points in Φ(S). This result serves as a
key tool in the derivation of over-approximations of the set
S in the sequel. With the results above, we also show that
the solution of the robust problem (7) is unique, as stated in
the following proposition.

Proposition 1. Consider Problem (7) with a compact set
S ⊂ Rn and a continuous map Φ : S → Rp. The solution
(c∗, γ∗) of Problem (7) is unique.

B. Probabilistic set over-approximations
We now discuss formal guarantees on the sampled solution

in (6). Let (S,B(S),PS) be a probability space where B(S)
is the Borel σ-algebra of S and PS : B(S) → [0, 1] is
a probability measure. The following Lipschitz continuity
condition is needed.

Assumption 3. The function Φ : S → Rp is Lipschitz
continuous with constant L, i.e., ∀x1, x2 ∈ S,

∥Φ(x2)− Φ(x1)∥ ≤ L∥x2 − x1∥. (9)

Following [31], we also impose a regularity condition on
the set S.

Assumption 4. For the probability space (S,B(S),PS),
there exists a r̄ ∈ R+ and δ ∈ R+ such that

∀x ∈ S, ∀r ≤ r̄,PS{Bn(x, r) ∩ S} ≥ δµ(Bn(x, r)) (10)

where µ(·) denotes the Lebesgue measure on Rn.

For any x ∈ Rn and r ∈ R+, it is shown in [32] that

µ(Bn(x, r)) =
πn/2

Γ(n2 + 1)
rn (11)

where Γ(·) is the gamma function defined as

Γ(z) :=
w ∞

0
tz−1e−tdt (12)

With the discussions above, we derive a probabilistic set
over-approximation for the set S from the solution in (6) as
stated in the following theorem.

Theorem 1. Consider the compact set S ⊂ Rn, the feature
map Φ : S → Rp and the probability space (S,B(S),PS).
Suppose Assumptions 3 & 4 hold. For any N ∈ Z+ with N ≥
p+ 1, let ωN be N independent and identically distributed
(i.i.d.) samples drawn according to the probability measure
PS and (c(ωN ), γ(ωN )) be given as in (6). For any ϵ ∈
[0,min{1/(p + 1), δπn/2r̄n

Γ(n
2 +1) }], with probability no smaller

than 1− Φ(ϵ; p+ 1, N),

S ⊂ S
(
c(ωN ),Ψ(γ(ωN ) + Lζ(ϵ;n, δ)), γ(ωN )

)
, (13)

where r̄ and δ are from Assumption 4, (c∗, γ∗) is defined as
in (7),

ζ(ϵ;n, δ) :=
n

√
Γ(n2 + 1)ϵ

δπ
n
2

, (14)

Ψ(γ1, γ2) := γ1 +

√
γ2
1 − γ2

2

2
, and (15)

Φ(ϵ; p+ 1, N) :=

p+1∑
i=1

(−1)i−1

(
p+ 1

i

)
(1− iϵ)

N
. (16)

C. Sublevel sets with shape conditions

In the rest of this section, we discuss sufficient conditions
to fulfill Assumption 4 when S is a sublevel set of some
function. Suppose that the set S can be expressed as a
sublevel set of a function v : Rn → R as

S := {x : v(x) ≤ 0} (17)

We assume that the function v(·) satisfies some smoothness
and boundedness conditions.

Assumption 5. The function v : Rn → R is differentiable
in S, and there exists Lv such that

v(x2) ≤ v(x1) + (∇v(x1))
⊤(x2 − x1) +

1

2
Lv∥x2 − x1∥2,

∀x1, x2 ∈ S (18)

In addition, there exists Dv such that

∥∇v(x)∥ ≤ Dv,∀x ∈ S. (19)

In addition, to ensure the regularity condition in Assump-
tion 4, we also need the following boundary condition.

Assumption 6. There exist positive constants αv and βv

such that {x ∈ S : v(x) > −αv, ∥∇v(x)∥ ≤ βv} = ∅.

Assumption 5 is a standard smoothness and boundedness
condition. Assumption 6 essentially means that for any point
x near the boundary of S, ∥∇v(x)∥ is strictly larger than
some positive constant, which is illustrated in Figure 1. With
this assumption, we exclude isolated points or regions. Under
these assumptions, we show that Assumption 4 is satisfied,
as stated in the following proposition.

v(x)

0

x

−αv

|∇v(x)| ≤ βv

Fig. 1. Illustration of the boundary condition: The segment between the
two red dashed lines denotes the set {x : |∇v(x)| ≤ βv}.
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Proposition 2. Consider a compact set S, expressed as in
(17) for some function v : Rn → R. Let (S,B(S),PS) be
the uniform probability space. Suppose Assumptions 5 & 6
hold. Let

r̄v :=min{
√

2αv

L
+

D2
v

L2
− Dv

L
,
2

L
βv}, (20)

δv :=min{ 1

µ(S)
,
2Γ(n2 + 1)

π1/2Γ(n+1
2 )

Θ(n)}, (21)

where µ(S) is the Lebesgue measure of S and

Θ(n) :=


2

22n

n−1
2∑

k=0

(−1)
n−1
2 −k

(
n
k

)
1

n−2k , n is odd;

1
22n

(
n
n
2

)
, n is even.

(22)

Then, it holds that, ∀x ∈ S, ∀r ≤ r̄v,

PS{Bn(x, r) ∩ S} ≥ δvµ(Bn(x, r)). (23)

where µ(Bn(x, r)) is the Lebesgue measure of Bn(x, r).

IV. DATA-DRIVEN REACHABILITY ANALYSIS

Based on the results in the previous section, we discuss
data-driven computation of reachable sets of System (1) with
the initial set X0 and the input set U . Suppose there exist
h : Rn → R and g : Rm → R such that

X0 := {x ∈ Rn : h(x) ≤ 0}, (24)
U := {u ∈ Rm : g(u) ≤ 0}. (25)

Similarly, we need a smoothness and boundedness condition
for the both functions.

Assumption 7. The functions h : Rn → R and g : Rm → R
are differentiable in X0 and U , and there exist Lh and Lg

such that

h(x2) ≤ h(x1) + (∇h(x1))
⊤(x2 − x1) +

1

2
Lh∥x2 − x1∥2,

∀x1, x2 ∈ X0, (26)

g(u2) ≤ g(u1) + (∇g(u1))
⊤(u2 − u1) +

1

2
Lg∥u2 − u1∥2,

∀u1, u2 ∈ U. (27)

In addition, there exist Dh and Dg such that

∥∇h(x)∥ ≤ Dh,∀x ∈ X0, (28)
∥∇g(u)∥ ≤ Dg,∀u ∈ U. (29)

This assumption is not restrictive in practice. When it
does not hold, we can replace X0 and U with their over-
approximations in the form of (24) and (25) respectively. We
also impose a similar boundary condition as in Assumption
6 on X0 and U .

Assumption 8. There exist positive constants αh, αg, βh and
βg such that

{x ∈ X0 : h(x) > −αh, ∥∇h(x)∥ ≤ βh} = ∅, (30)
{u ∈ U : g(u) > −αg, ∥∇g(u)∥ ≤ βg} = ∅. (31)

Let the horizon be T . Given a set of initial states
ωx
N := {x1, x2, · · · , xN} and a set of input signals ωu

N :=
{uuu1,uuu2, · · · ,uuuN} of horizon T , we define

ωN (t) := {ξ(t;xi,uuui) : i = 1, 2, · · · , N},∀t ∈ [T ]. (32)

with ωN (0) = ωx
N . Consider the uniform probability spaces

(X0,B(X0),PX0
) and (U,B(U),PU ), let the initial states

and inputs be sampled independently from the uniform
probability measures PX0 and PU . With a feature map
Φ : Rn → Rp, we again use the SVDD method to
approximate the reachable set RT (X0). Using the definition
in (8), the obtained reachable set can be expressed as
S (c(ωN (T )), γ(ωN (T ))). Following the arguments in the
previous section, we provide probabilistic guarantees on the
computed reachable set.

We first show a Lipschitz continuity result on the solution
of System (1), which is needed for the derivation of over-
approximations of RT (X0).

Lemma 3. Consider System (1) with the solution ξ(t;x,uuu)
for any initial state x at t = 0 and any input signal uuu : Z+ →
Rm. Suppose Assumption 2 holds. For any t ∈ [T − 1], it
holds that

∥ξ(t+ 1;x2,uuu2)− ξ(t+ 1;x1,uuu1)∥

≤Lt+1
x ∥x2 − x1∥+

t∑
ℓ=0

Lt−ℓ
x Lu∥uuu2(ℓ)− uuu1(ℓ)∥, (33)

∀x1, x2 ∈ X0,∀uuu1(ℓ),uuu2(ℓ) ∈ U,∀ℓ ∈ [T − 1].

Following the definitions in Proposition 2, we define:

r̄h :=min{
√

2αh

L
+

D2
h

L2
− Dh

L
,
2

L
βh}, (34)

δh :=min{ 1

µ(X0)
,
2Γ(n2 + 1)

π1/2Γ(n+1
2 )

Θ(n)}, (35)

r̄g :=min{
√

2αg

L
+

D2
g

L2
− Dg

L
,
2

L
βg}, (36)

δg :=min{ 1

µ(U)
,
2Γ(m2 + 1)

π1/2Γ(m+1
2 )

Θ(m)} (37)

where Θ(·) is given in (22) and µ(·) is the Lebesgue measure.
By slight abuse of notation, we use µ(·) to denote the
Lebesgue measure in both Rn and Rm.

With this result, we are able to derive probabilistic over-
approximations of the reachable set RT (X0), as stated in the
following theorem.

Theorem 2. Consider System (1) with the solution ξ(t;x,uuu)
for any initial state x at t = 0 and any input signal uuu :
Z+ → Rm, the initial state set X0 and the input set U .
Suppose Assumptions 1, 2, 7 & 8 hold and the feature map
Φ : Rn → Rp is Lipschitz continuous with constant L in
RT (X0). Given N ∈ Z+ with N ≥ max{p+1, ln( 1p )/ ln(1−
(min{ϵ̄x, ϵ̄u})T+1)}, let ωx

N and ωu
N be N independent and

identically distributed (i.i.d.) initial states and input signals
drawn according to the uniform probability measures PX0

and PU respectively. We define ωN (t) as in (32) for any
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t ∈ [T ]. Then, for any ϵ ∈ [0,min{1/(p + 1), ϵx, ϵu}], with
probability no smaller than 1− Φ(ϵT+1; p+ 1, N),

RT (X0) ⊂ (38)

S
(
c(ωN (T )),Ψ(γ(ωN (T )) + Lη(T, ϵ)), γ(ωN (T ))

)
where ϵx :=

δhπ
n/2r̄nh

Γ(n
2 +1) , ϵu :=

δgπ
m/2r̄mg

Γ(m
2 +1) , Ψ(·, ·) is given in

(15) and

η(t, ϵ) :=Lt
x

n

√
Γ(n2 + 1)ϵ

δhπ
n
2

+

t−1∑
ℓ=0

Lℓ
xLu

m

√
Γ(m2 + 1)ϵ

δgπ
m
2

,∀t ≥ 1, (39)

with η(0, ϵ) := n

√
Γ(n

2 +1)ϵ

δhπ
n
2

.

The result in Theorem 2 can be adapted to approximate
the reachable set over horizon T , defined as R[T ] in (4), by
using the trajectory data over horizon T .

Corollary 1. Suppose the conditions in Theorem 2 hold.
Then, for any ϵ ∈ [0,min{1/(p+1), ϵx, ϵu}], with probability
no smaller than 1− Φ(ϵT+1; p+ 1, N),

R[T ](X0) ⊂ (40)

S
(
c(ωN ([T ])),Ψ(γ(ωN ([T ])) + Lη[T ](ϵ)), γ(ωN ([T ]))

)
where

η[T ](ϵ) := max
t∈[T ]

η(t, ϵ), ωN ([T ]) :=
⋃

t∈[T ]

ωN (t). (41)

V. SIMULATION

We consider the following disturbed nonlinear system
(called the LaSalle system [33]):

xxx1(t+ 1) = − xxx2(t)

1 + xxx21(t)
,

xxx2(t+ 1) =
0.9xxx1(t)

1 + xxx22(t)
+ uuu(t), t ∈ Z+

where uuu(t) ∈ R is a disturbance varying in the set U =
[−0.1, 0.1]. The nominal system of this example is globally
asymptotically stable at the origin. It can also be verified that
X = {x ∈ R2 : ∥x∥∞ ≤ 1} is a robust invariant set of the
disturbed system, i.e., for any x ∈ X and u ∈ U , x+ ∈ X .
We consider the reachability analysis problem with the initial
set X0 = {x ∈ R2 : ∥x∥ ≤ 1}. Note that X0 and U can be
expressed as sublevel sets of the functions h(x) = ∥x∥2 − 1
and g(u) = u2 − 0.01 respectively. We simulate N = 10000
trajectories over a horizon of 10 and the initial conditions
are generated randomly and uniformly in the unit box X0.

We first take a feature map of monomials with the maximal
degree being 5, given by T (x) = (x[1], x[2], · · · , x[5])⊤,

where x[d] ∈ R(
n+d−1

d ) denote the d-lift of x which consists
of all possible monomials of degree d, indexed by all the
possible exponents α of degree d, x

[d]
α =

√
α!xα where

α = (α1, · · · , αn) with
∑n

i=1 αi = d and α! denotes the
multinomial coefficient α! := d!

α1!···αn!
. By calculation, the

dimension of the feature map is p = 21. For comparison, we
also take 21 radial basis functions (RBF) in the form of

T (x) =

 ∥x− s1∥2 log(∥x− s1∥)
...

∥x− s21∥2 log(∥x− s21∥)


where si is randomly selected with the uniform distribution
on X . By solving Problem (6), the results are given in Figure
2. For the case with mononials, four support points (which
are the points that define the solution of Problem (6)) are
detected; for the RBF case, there are 3 support points. By
computing the constants in Assumptions 2, 7 & 8, over-
approximations can be also computed using Theorem 2.

Fig. 2. Reachable set computation for the LaSalle system: The red and
blue curves denote the approximations using monomials and radial basis
functions.

VI. CONCLUSIONS

We have proposed a data-driven reachable set computation
method for Lipschitz nonlinear systems. Our method does
not require any mathemetical model of the system. We use
the SVDD technique to formulate the reachability anlaysis
problem as a robust convex program, which allows to use the
convexity property to analyze the probabilistic correctness
of our method. We have found that, unlike the statistical
learning literature where the covering number of a compact
set is often used to derive generalization error bounds, for
the reachable set computation problem in this paper, we only
need to consider the covering of a few critical points. A
numerical example is taken to illustrate the proposed method.

APPENDIX

Proof of Proposition 2
Consider any x̄ ∈ S, by definition, v(x̄) ≤ 0. From

Assumption 5, for any x ∈ S,

v(x) ≤ v(x̄) + (∇v(x̄))⊤(x− x̄) +
1

2
Lv∥x− x̄∥2. (42)

Case I: We first consider the case when v(x̄) ≤ −αv . Note
that ∥∇v(x̄)∥ ≤ Dv . By some manipulations, it can be
verified that the right-hand side of (42) is smaller than or

equal to 0 when ∥x− x̄∥ ≤
√

2αv

L +
D2

v

L2 − Dv

L . Thus,

Bn(x̄,

√
2αv

L
+

D2
v

L2
− Dv

L
) ⊂ S.
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This means that, for any r ≤
√

2αv

L +
D2

v

L2 − Dv

L ,

PS{Bn(x̄, r) ∩ S} ≥ 1

µ(S)
µ(Bn(x̄, r)).

Case II: We then consider the case when v(x̄) > −αv . From
Assumption 6, ∥∇v(x̄)∥ > βv . To ensure that the right-hand
side of (42) is nonpositive, we consider the points in the
set Tx̄ := {x ∈ Rn : (∇v(x̄))⊤(x − x̄) + 1

2Lv∥x − x̄∥2 ≤
0}. In addition, we consider the ball Bn(x̄,

2∥∇v(x̄))∥
L ). The

Lebesgue measure of Tx̄∩Bn(x̄,
2∥∇v(x̄))∥

L ) can be expressed
as
w π/2

0
Vn−1

(
∥∇v(x̄))∥

L
sin(2θ)

)
2∥∇v(x̄))∥

L
sin(2θ)dθ

where Vn−1

(
∥∇v(x̄))∥

L sin(2θ)
)

denote the volume of the hy-

persphere with radius ∥∇v(x̄))∥
L sin(2θ) in Rn−1 (an explicit

expression can be found in [32]). By some manipulations,

µ

(
Tx̄ ∩ Bn(x̄,

2∥∇v(x̄))∥
L

)

)
=
2π(n−1)/2

Γ(n+1
2 )

(
∥∇v(x̄))∥

L
)n

w π/2

0
(sin(2θ))ndθ

=
2n+1π(n−1)/2

Γ(n+1
2 )

(
∥∇v(x̄))∥

L
)nΘ(n)

Note that

µ

(
Bn(x̄,

2∥∇v(x̄))∥
L

)

)
=

πn/2

Γ(n2 + 1)
(
2∥∇v(x̄))∥

L
)n.

Hence,

µ
(
Tx̄ ∩ Bn(x̄,

2∥∇v(x̄))∥
L )

)
µ
(
Bn(x̄,

2∥∇v(x̄))∥
L )

) =
2Γ(n2 + 1)

π1/2Γ(n+1
2 )

Θ(n).

This, together with the fact that ∥∇v(x̄))∥ > βv , implies that
for any r ≤ 2βv

L ,

µ (Tx̄ ∩ Bn(x̄, r))

µ (Bn(x̄, r))
≥

2Γ(n2 + 1)

π1/2Γ(n+1
2 )

Θ(n).

Combining Case I and Case II yields the result. 2
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