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Abstract— Trajectory tracking for underactuated systems has
been heavily studied for several decades. When the system state-
space is a Lie group, the group multiplication can be used to
define a global error. In this paper, we consider the spatial,
or right-invariant, group error in the design of a tracking
controller for left-invariant systems. This choice of error is
shown to exhibit synchrony; that is, the error kinematics depend
linearly on the control input difference. In particular, if the
actual system is driven by the desired control signal, then the
error is constant. This property is used to propose a simple
nonlinear tracking control scheme that is globally stable and
locally exponentially stable for a class of persistently exciting
trajectories for left-invariant systems on Lie-groups. We explore
the example system of a mobile robot and show that in this
particular case, the proposed control scheme is almost-globally
asymptotically stable.

I. INTRODUCTION

The proliferation of small autonomous systems in modern
society underscores the requirement for effective tracking
control algorithms for these systems. Importantly, the state-
space of many of these systems is not naturally described by
a vector space, but rather by a Lie group. This complicates
the application of classical linear control techniques and
necessitates the application of tools from geometric control
theory. Of particular interest are (left-)invariant systems on
Lie groups that model many of the systems of interest. The
study of invariant control systems on Lie groups dates back
to Brockett [2], [3], and Jurdjevic and Sussman [11], who
studied their controllability and reachability. In [4], Brock-
ett showed that underactuated drift-free nonlinear systems
(including left-invariant systems on Lie groups) cannot be
stabilised to a point by means of smooth, time-invariant
feedback. This paper motivated a major research activity
during the early 1990s into control and stabilisation of
nonholonomic systems [13]. Leonard and Krishnaprasad [16]
proposed time-varying control based on averaging trajecto-
ries. Morin and Samson [21] used transverse functions to
achieve local practical stability. For fully actuated systems,
Bullo and Murray [6] developed general PD type tracking
controllers for systems on Lie-groups. This was extended in
Maithripala et al. [17] and Cabecinhas et al. [7]. In [14], Lee
et al. used differential flatness to derive an almost-globally
stable tracking control for quadrotors posed on SE(3) with
drift due to gravity.

A key example of left-invariant underactuated kinematic
systems is the class of wheeled mobile vehicles. The kine-
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matics of the archetypal wheeled mobile robot, the unicycle,
can be posed as a left-invariant system with state X ∈
SE(2): the Lie group combining two-dimensional pose and
configuration [19]. Due to its simplicity and the underlying
nonholonomic structure, the unicycle model has received a
great deal of attention [12], [19], [23], [10], [21], [22], [25],
[18]. A consistent feature in the above references, even when
not explicitly stated, is the use of the left-invariant or body
error X−1d X (where X is the actual state and Xd is some
desired state to be tracked). Despite appearing algebraically
very similar, the right-invariant or spatial error XX−1d has
been eschewed historically (although it does receive some
treatment in [6]). There are reasons for this: Bullo and
Murray [5] point out that the spatial error introduces an
additional arbitrary coordinate frame which is absent from
the body error. Additionally, they point out that for rigid
bodies the spatial error couples the rotational and positional
error components, a property that is seen as undesirable.

In this paper, we analyse the spatial error for the control
design of underactuated left-invariant systems on matrix Lie
groups. We show that the spatial error dynamics exhibit
synchrony; that is, the spatial error dynamics are stationary
if the desired input is used to drive the real system. This is in
contrast to the body error dynamics, where using the same in-
put to drive the desired and real systems leads to a non-linear
drift term in the error dynamics that must be compensated or
dominated, a challenging design problem for underactuated
systems. Exploiting synchrony of the spatial error, we pro-
pose a simple Lyapunov function and show that projecting
the gradient of the Lyapunov function onto the actuated
directions naturally leads to a globally stable gradient-based
control design, even for underactuated systems. Moreover,
we show that this control design yields local exponential
stability of the system for a class of persistently exciting
bounded desired trajectories. We explore the example of the
mobile robot on SE(2) and prove almost-global asymptotic
stability of the proposed control scheme. We use this example
to provide physical insight into the difference between spatial
and body group errors, and we provide numerical simulations
that demonstrate the performance of the controller on an
example trajectory.

II. PRELIMINARIES

Let G ⊂ Rd×d denote an m-dimensional matrix Lie group
and denote the identity element with I . The Lie algebra, g
of G, is identified with the tangent space of G at identity,
g ' TIG ⊂ Rd×d. As g is a finite-dimensional vector space,
there exists a linear isomorphism (·)∧ : Rm → g. Denote the
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inverse map by (·)∨ : g→ Rm. Given a linear map A : g→
g, let A∨ : Rm → Rm be the corresponding linear map on
Rm defined by A∨x = (A(x∧))∨. Similarly, given a linear
map C : Rm → Rm, let C∧ : g → g be the corresponding
linear map on g defined by C∧y = (C(y∨))∧. Given an
element X ∈ G, the adjoint operation AdX : g → g is
defined by AdX u = XuX−1. Given u ∈ g, the “little”
adjoint map adu : g→ g is given by adu v = uv − vu.

The Frobenius inner product is an inner product on Rd×d,
defined by

〈A,B〉F = tr(A>B).

Note that

〈A,BC〉F = 〈B>A,C〉F. (1)

By the bilinearity of the Frobenius inner product, it holds
that

〈v∧, w∧〉F = 〈v, Sw〉, (2)

where 〈·, ·〉 is the standard inner product on Rm and Sij =
〈e∧i , e∧j 〉F (where {ei} is the standard basis) is symmetric
positive definite.

Given an inner product space W and a subspace V ⊆W ,
let V ⊥ denote the orthogonal subspace, defined by

V ⊥ = {w ∈W : 〈v, w〉 = 0 ∀v ∈ V } .

Every vector w ∈W can be expressed as a sum w = u+ v,
with v ∈ V and u ∈ V ⊥ ([1]). The subspace projection
operator PV is defined by PV w = v.

A matrix function A : R → Rn×m is called persistently
exciting if there exist real numbers ε > 0 and T > 0 such
that ∫ t+T

t

A(τ)>A(τ)dτ ≥ εIm, (3)

for all t ∈ R.

III. PROBLEM DESCRIPTION

Let G ⊂ Rd×d be a m-dimensional matrix Lie group and
g be the associated Lie algebra. In this paper we consider the
problem of tracking an underactuated left-invariant system on
G. That is, a system of the form

Ẋ = XU = X(Bu)∧, (4)

where X ∈ G is the state, u ∈ R` is the input and B : R` →
Rd is some constant rank-deficient matrix.

We address the problem of tracking a desired trajectory
Xd(t) : R→ G. Such a trajectory satisfies

Ẋd = XdUd = Xd(Bud)
∧, (5)

for some ud(t) : R → R`. The problem is to find a control
u(t) : R→ R` so that the true system state X(t) converges
asymptotically to the desired system state Xd(t).

IV. LIE GROUP ERRORS

The standard approach to constructive nonlinear tra-
jectory tracking control does not directly try to control
X(t) → Xd(t). Rather, the approach taken is to define
an error E(X(t), Xd(t)) and study the problem of driving
E(X(t), Xd(t))→ E? where E? is some constant reference
such that when E = E? then X = Xd. On any Lie group G
there are two natural Lie group errors that can be used for
this role.
Body group error: The body (or left-invariant) group error

EL := X−1d X. (6)

Spatial group error: The spatial (or right-invariant) group
error

ER := XX−1d . (7)

Proposition 4.1: Let Xd(t) : R → G be a trajectory
satisfying (5) and let X(t) : R→ G be a trajectory satisfying
(4). The error dynamics of the body error (6) are given by

ĖL = −UdEL + ELU.
Proof: By straightforward computation,

ĖL = −X−1d ẊdX
−1
d X +X−1d Ẋ

= −UdEL + ELU

One notes here that in order to completely compensate for
the exogenous dynamics UdEL, one would have to apply an
input term of U = Ad−1EL Ud. This is not possible in general,
as if the system is underactuated, this term may not be an
admissable input (in other words, there may not be any u that
satisfies (Bu)∧ = Ad−1EL Ud). On the other hand, consider the
following proposition.

Proposition 4.2: Let Xd(t) ∈ G be a trajectory satisfying
(5) and let X(t) ∈ G be a trajectory satisfying (4). Define the
control difference ũ := u− ud ∈ R` and note that (Bũ)∧ =
U − Ud = Ũ ∈ g. Then the dynamics of ER (7) are given
by

ĖR = ER AdXd Ũ = ER AdXd(Bũ)∧. (8)
Proof: Taking the time derivative of (7):

ĖR = ẊX−1d −XX−1d ẊdX
−1
d

= XUX−1d −XX−1d XdUdX
−1
d

= XX−1d Xd(U − Ud)X−1d
= ER AdXd(Bũ)∧,

as required.

In this case, by setting U = Ud then Ũ = 0. It follows that
the feed-forward spatial error system is synchronous, that is,
ĖR = 0 when Ũ = 0. Studying the spatial error will lead
to simpler error dynamics due to the synchrony property.
However, the interpretation of the spatial error depends on
the reference frame choice and is more complex than the
body error. Although ER = I still guarantees that X =
Xd, analysing convergence is more complex. The following
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Lemma provides conditions under which the convergence of
ER(t) → I is equivalent to the convergence of X(t) →
Xd(t).

Lemma 4.3: Let Xd(t) : R→ G be a trajectory satisfying
(5) and let X(t) : R → G be a trajectory satisfying (4). If
Xd(t) and Xd(t)

−1 are bounded then ER(t) → Id if and
only if X(t)→ Xd(t).

Proof: First, assume that limt→∞ER(t) = I . Let ε >
0 be given. Let C be an upper bound for Xd(t), so that
‖Xd(t)‖ < C for all t. There exists a T > 0 such that
‖ER(t)− I‖ < ε

C for t > T , and

‖X(t)−Xd(t)‖ ≤ ‖X(t)Xd(t)
−1 − I‖‖Xd(t)‖

≤ ‖ER(t)− I‖C
< ε,

so X(t) → Xd(t). The converse statement is proved by a
similar argument.

V. CONSTRUCTIVE LYAPUNOV CONTROL ON G

The synchrony property of the spatial error is key in the
design of the tracking controller we propose here. Specif-
ically, we choose a candidate Lyapunov function L (ER).
Then the correction term is generated by projecting the
gradient of L (ER) onto the actuation directions of the
vehicle. Even if the vehicle is underactuated and the gradient
projects onto the nonholonomic constraint directions (leading
to a zero correction term), synchrony of the error ensures that
the Lyapunov function never increases. In such situations, ex-
citation of the reference trajectory ensures global asymptotic
stability of the error dynamics.

We approach the controller design constructively: that is,
we define a candidate Lyapunov function and use this to
derive a control law. Recalling the definition of S (2) and
defining E := ER, define

A(t) := B>Ad∨>Xd(t) S ∈ R`×d (9)

η(t) := P∨g (E(t)>E(t)− E(t)>) ∈ Rd, (10)

where P∨g should be interpreted as the operator mapping
A 7→ (Pg(A))

∨.
Theorem 5.1: Let Xd(t) : R → G denote the desired

system trajectory with bounded desired input ud : R → R`,
and let X(t) : R → G denote the true system state. Let
E = XX−1d denote the spatial error (7). Choose a gain
k > 0 and define the control input delta ũ : R→ R` by

ũ = −kA(t)η(t), (11)

where A(t) and η(t) are given by (9) and (10). Then, if A(t)
is persistently exciting (3), E(t) converges to the equilibrium
set

E0 = {E ∈ G : Pg(E>E − E>) = 0}.

Moreover, the identity is a locally uniformly exponentially
stable equilibrium, I ∈ E0.

Proof: We begin the proof of the first claim by defining
the candidate Lyapunov function

L (E) =
1

2
〈E − I, E − I〉F. (12)

Differentiating yields

L̇ (t) = 〈E − I, Ė〉F
= 〈E − I, EAdXd(Bũ)∧〉F
= 〈E>(E − I),AdXd(Bũ)∧〉F (13)

= 〈Pg(E>E − E>),AdXd(Bũ)∧〉F (14)

= 〈SPg(E>E − E>)∨,Ad∨Xd Bũ〉 (15)

= 〈B>Ad∨>Xd SPg(E>E − E>)∨, ũ〉, (16)
= 〈A(t)η(t), ũ〉,

where (13) and (16) follow from (1), (14) follows from the
fact that the right-hand side of the inner product lies in g,
so the inner product is unchanged if the left-hand side is
projected onto g, and (15) follows from (2).

Substituting the control (11) yields

L̇ (t) = −k‖A(t)η(t)‖2. (17)

This shows that L is indeed non-increasing and thus that the
error dynamics are stable.

In order to characterise the equilibrium set of E, we will
appeal to Barbalat’s lemma [24]. Since L is non-increasing
then L (t) ≤ L (0) for all t and L (t) → c for some positive
constant c. Writing L (t) = 1

2‖E − I‖2F, this implies that E
is also bounded.

Taking the second derivative of L and using the Cauchy-
Schwarz inequality and submultiplicativity of matrix norms
one has

‖L̈ (t)‖ = 2k〈A(t)η(t), Ȧ(t)η(t) +A(t)η̇(t)〉
≤ 2k‖A(t)η(t)‖‖Ȧ(t)η(t) +A(t)η̇(t)‖
≤ 2k‖A(t)‖‖η(t)‖

(
‖Ȧ(t)‖‖η(t)‖+ ‖A(t)‖‖η̇(t)‖

)
.

Thus, in order to show that L̈ (t) is bounded, it
suffices to show that each of A(t), η(t), Ȧ(t) and
η̇(t) are bounded. The matrix A(t) and vector η(t)
are linear functions of a bounded variable and so
are bounded. We have d

dt AdXd(t) = AdXd(t) adUd(t), so
Ȧ(t) = B> ad∨>Ud(t) Ad∨>Xd(t) S, which is bounded if Ud(t) is
bounded. Additionally,

η̇ = Pg(Ė>E + E>Ė − Ė>)∨

= Pg((EAdXd Ũ)>E + E>(EAdXd Ũ)

− (EAdXd Ũ)>)∨

= Pg(Ũ>Ad>Xd E
>E + E>(EAdXd Ũ)

− Ũ>Ad>Xd E
>)∨

The terms Ũ(t) = (A(t)η(t))∧,AdXd(t) and E(t)
are all bounded, so η̇ is bounded. Thus, by Bar-
balat’s lemma [24], L̇ (t) → 0. This also implies that
ũ = A(t)η(t) approaches zero, and so Ė → 0 and
η̇(t) = d

dtPg(E(t)>E(t)− E(t)>)∨ → 0.
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Since A(t) is persistently exciting, it now follows that
η(t) := Pg(E(t)>E(t)−E(t)>)∨ → 0 by Lemma 9.1. Thus
E(t) approaches the equilibrium set E0.

To prove the second claim, let
√
S denote the principal

square root of S and define the local coordinates µ =√
S log(E)∨. Then

µ̇∧ =
√
S
∧

D log(E)Ė

=
√
S
∧

D log(E)EAdXd(Bũ)∧

Substituting (11) for ũ, linearising around identity and
using the approximation E ≈ I + (

√
S
−1
µ)∧, we find that

µ̇∧ ≈ −k
√
S
∧

AdXd B
∧(A(t)

√
S
−1
µ)∧

= −k(
√
S
−1
A(t)>A(t)

√
S
−1
µ)∧,

where we have ignored higher-order terms. Thus, the corre-
sponding linearised system in Rn is given by

µ̇ ≈ −k
√
S
−1
A(t)>A(t)

√
S
−1
µ. (18)

By assumption, A(t) is persistently exciting, so there exists
some lower bound ε > 0 such that∫ t+T

t

A(τ)>A(τ)dτ ≥ εI.

Then∫ t+T

t

k
√
S
−1
A(t)>A(t)

√
S
−1

dτ ≥ kεS−1I ≥ ‖λ‖kεI,

where λ is the smallest eigenvalue of S−1. Additionally, the
matrix k

√
S
−1
A(t)>A(t)

√
S
−1

is positive semi-definite and
symmetric, so by Proposition 9.2, the linearised system (18)
is uniformly exponentially stable.

VI. EXAMPLE: THE SPECIAL EUCLIDEAN GROUP SE(2)

The Special Euclidean Group SE(2) is a 3-dimensional
matrix Lie group

SE(2) =

{(
R p

01×2 1

)
: R ∈ SO(2), p ∈ R2

}
⊂ R3×3.

The associated Lie algebra se(2) is defined by the set

se(2) =

{(
Ω1× v
01×2 0

)
: Ω ∈ R, v ∈ R2

}
,

where

1× :=

(
0 −1
1 0

)
.

The algebra se(2) is isomorphic to R3 and we define the
wedge map (·)∧ : R3 → se(2) to beΩ

vx
vy

∧ =

0 −Ω vx
Ω 0 vy
0 0 0

 .

It follows that, for any u∧1 , u
∧
2 ∈ se(2), one has

〈u∧1 , u∧2 〉F = 〈u1, Su2〉,

Fig. 1. Mobile robot model

where S = diag(2, 1, 1).
Let Pse(2) : R3×3 → se(2) denote the se(2) projection

operator. Then, for any M1 ∈ R2×2, m2,m3 ∈ R2, and
m4 ∈ R, one has

Pse(2)

(
M1 m2

m>3 m4

)
=

(
M1−M>1

2 m2

0 0

)
.

To provide intuition and motivate a physical example with
underactuation, consider the standard mobile robot (Fig. 1)
with position p = (px, py) ∈ R2 , heading angle θ ∈
S1 ' [−π, π), and forward and angular inputs v,Ω ∈ R,
respectively. The system states of a mobile robot evolve
according to the kinematics

ṗx = v cos(θ) (19a)
ṗy = v sin(θ) (19b)

θ̇ = Ω. (19c)

The system state of a mobile robot can be represented in
the matrix Lie group SE(2) by

X =

(
R(θ) p
01×2 1

)
(20)

Using this representation, the system dynamics may be
expressed as left-invariant dynamics on the group,

Ẋ = XU, U =

(
Ω1× ve1
01×2 0

)
∈ se(2). (21)

Additionally, by defining

B =

1 0
0 1
0 0

 and u =

(
Ω
v

)
, (22)

one has U = (Bu)∧ and

Ẋ = X(Bu)∧.

A. Interpretation of Lie group errors

In SE(2), the Lie group errors (6) and (7) can be computed
to be given by

EL =

(
R>d R R>d (x− xd)
01×2 1

)
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Fig. 2. Visualisation of the body, or left-invariant, error for correlated
motion; that is where both vehicles have the same inputs. The vehicle motion
from poses X(t0) and Xd(t0) to poses X(t1) and Xd(t1) is generated
by the same input, dotted black arrows. The relative body transformation
between Xd and X in both cases involves an anti-clockwise rotation of 45
degrees. However, at t0 the translation is (-2, 0) while at t1 the translation
is (-1, -2.6) demonstrating that the error is not preserved.

ER =

(
RR>d x−RR>d xd
01×2 1

)
(23)

Clearly, if either error is identity (E = I3 ∈ SE(2)) then
X = Xd. However, the physical transformations encoded
by the errors are quite different as seen in Figures 2 and
3. For the body transformation the rotation and translation
are decoupled since the rotation is undertaken around the
body reference. Conversely, in the spatial transformation,
the rotation is undertaken around the origin of the reference
frame and moves the frame.

The body error has been the natural choice for tracking
control design for several reasons. It is the group error
formulation taught in most text books and corresponds to
the coordinate change formula that most roboticists use
to understand rigid body transformations. It is also the
natural error to encode a rigid body transformation from
the perspective of the robot itself. In contrast, the spatial
error representation is less commonly used in mainstream
robotics and depends on the reference frame. As such, it is
not intrinsic to the motion of the vehicles and the justification
for considering the spatial group error comes from studying
the error dynamics.

Consider applying the reference input U = Ud as a feed-
forward compensation. Then the body group error evolves
according to Ė = ELUd−UdEL. The evolution of the error
term is visualised in Figure 2 and it is clear that the system
is not synchronous, that is, the error is not preserved under
feed-forward control. In the context of control design, this
non-zero term Ė = ELUd − UdEL in the error dynamics
presents as a drift term that must be compensated by the
control action. If the system were fully actuated, then the
exogenous dynamics component UdE can be compensated
by setting

U = AdE−1
L
Ud + E−1L ∆,

where ∆ is the additional input that drives EL → I3. For ex-
ample, see [8], [14]. However, if the system is underactuated,
as with the mobile robot, the term AdE−1

L
Ud may not lie in

Fig. 3. Visualisation of the spatial (or right-invariant) error for correlated
motion. The vehicle motion from poses X(t0) and Xd(t0) to poses X(t1)
and Xd(t1) is generated by the same input, dotted black arrows. The
same spatial transformation applies in both cases, X(t0) and X(t1) are
rotated around the reference origin by 45 degrees and then translated (in
the reference frame) in the (1,−1) direction.

the actuated directions. In this case, the exogenous dynamics
cannot be directly compensated and the control must be used
to dominate the effects of the drift in the Lyapunov analysis.
There are various well established control algorithms that
take this approach in the literature, such as [12] or [15].

On the other hand, consider the choice of the spatial or
right-invariant error ER := XX−1d .

Setting U = Ud, then Ũ = 0. It follows that the feed-
forward system is synchronous, that is, ĖR = 0. This is
visualised in Figure 3. Note that since the error ĖR = 0 then
ER(t1) = ER(t0). It is also clear from Figure 3 that constant
spatial error does not correspond to a “constant local dis-
tance” between the desired trajectory and vehicle trajectory.
Studying the spatial error leads to simpler error dynamics
but introduces a more complex interpretation of the meaning
of the error, and in particular, introduces dependence on the
reference frame choice.

B. Mobile robot control input and Lyapunov analysis

For this example system, the control input (11) can be
expressed in components as

Ω̃ = −2k sin(θE)− kp>d 1×R>EpE (24a)

ṽ = −ke>1 R>d R>EpE . (24b)

The term A(t) = B>Ad∨>Xd(t) S is given in components
by

A(t) =

(
2 pd(t)

>1×

0 e>1 Rd(t)
>

)
. (25)

We have the following stability result for the mobile robot.
Proposition 6.1: Let Xd(t) : R → SE(2) denote a

desired system trajectory of (21) with bounded input ud(t),
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and let X(t) : R → SE(2) denote the true system state.
Let E = XX−1d denote the error (23). Let the input ũ
be given by (24). If the term (25) is persistently exciting,
then the system Ė is almost globally asymptotically stable
to (θE , pE) = (0, 0).

Proof: By Theorem 5.1, it follows that
E(t) converges to the equilibrium set E0 ={
E ∈ SE(2) : Pse(2)(E

>E − E>)∨ = 0
}

. Using
(23), the expression Pse(2)(E

>E − E>)∨ can be
expressed in components as (sin θE , R

>
EpE), so the

equilibrium set
{
Pse(2)(E

>E − E>)∨ = 0
}

is given by{
(θE , pE) : sin θE = 0, R>EpE = 0

}
. In other words, the set

is given by the two points

E0 = {(θE , pE) = (0, 0), (θE , pE) = (π, 0)} .

The point (θE , pE) = (0, 0) is shown to be locally ex-
ponentially stable by Theorem 5.1. To see that the point
(π, 0) is an unstable equilibrium point, it suffices to show
that every neighbourhood of (π, 0) contains a point q with
L (q) < L (π, 0). Every neighborhood of (π, 0) contains
a point (π − ε, 0) for small enough ε > 0. In general,
L (θ, p) = 2(1− cos(θ))+ 1

2‖p‖2, so L (π, 0) = 4. At a point
(π− ε, 0), L (π− ε, 0) = 2(1− cos(π− ε)) = 2(1 + ε) < 4.
As an intermediate corollary of (17), L̇ is shown to be non-
positive, so the equilibrium (π, 0) is unstable. As a result,
the system Ė is almost globally asymptotically stable to
(θE , pE) = (0, 0).

VII. SIMULATION

In order to empirically verify that the example controller
works, the system is implemented in simulation for an
elliptical trajectory. In general, an elliptical trajectory has
the form

pd(t) =

(
a cos(ht)
b sin(ht)

)
, (26)

implying that Ωd(t) = h, θd(t) = ht.

A. Excitation of elliptical trajectories

For an elliptical trajectory of the form (26), direct com-
putation shows that∫ t+ 2π

h

t

S>Ad∨Xd(τ)BB
>Ad∨>Xd(τ) Sdτ

=


8π
h 0 0

0 (b2+1)π
h 0

0 0 (a2+1)π
h


≥ εI,

where ε is any positive number satisfying ε ≤ π
h min{8, a2+

1, b2 + 1}. Therefore, the ellipse is persistently exciting and
can be stabilised with the proposed controller.
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Fig. 4. Results with ellipse origin at (0, 0). (a) Desired (black) and actual
position trajectories for the proposed controller and classic controller from
literature. (b) Lyapunov function vs time for the proposed controller. (c)
Heading error vs time for the proposed controller and another controller
from literature. (d) Position error vs time for the proposed controller and
another controller from literature.

B. Results

The specific trajectory to be tracked is given by:

pd(t) =

(
3 cos( 2π

5 t)
5 sin( 2π

5 t)

)
.

The corresponding inputs vd,Ωd can be recovered by

vd(t) = ‖ṗd‖ =

√
9 cos2(

2π

5
t) + 25 sin2(

2π

5
t),

Ωd(t) =
2π

5
.

The simulation is run in two configurations: firstly, with
the origin of the ellipse at (0, 0), and then with the origin at
(3, 3). In both cases, the initial system state is perturbed
to p(0) = pd(0) + (3.0,−2.0), θ(0) = θd(0) + π

2 , so
that the initial relative error is the same. The simulation
is repeated for the controller proposed in [12] in order to
obtain comparative results. The simulation results are shown
in Figure 4 for the choice of a (0, 0) origin and in Figure 5
for the choice of a (3, 3) origin.

C. Discussion

The simple simulations provided (Figure 4, Figure 5) ver-
ify the proposed control design. In both cases, the Lyapunov
function is globally non-increasing and is linear in loga-
rithmic coordinates, showing the local exponential stability.
When the ellipse is centered on (0, 0) (Figure 4), we note
that the performance of the proposed controller is similar to
a classic controller reported in the literature ([12]), although
this is dependent on gain tuning. It is interesting to note
that although the spatial error may appear unconventional
(Figure 3), the convergence of the trajectory appears quite
natural when the ellipse is centered on (0, 0). Comparing
Figure 4 to the results with an ellipse centered on (3, 3)
(Figure 5), the effect of the dependence of the spatial error
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Fig. 5. Results with ellipse origin at (3, 3). (a) Desired (black) and actual
position trajectories for the proposed controller and classic controller from
literature. (b) Lyapunov function vs time for the proposed controller. (c)
Heading error vs time for the proposed controller and another controller
from literature. (d) Position error vs time for the proposed controller and
another controller from literature.

on the inertial frame becomes evident. Here, our proposed
controller takes a longer time to converge in both heading
and position, and follows a noticeably different trajectory
(although the performance is still comparable with the other
controller). In contrast, the classic controller from literature,
which uses a body error, follows the exact same trajectory.
For our proposed controller, the fact that the trajectory
depends on the choice of origin with respect to which the
error is computed opens an interesting research direction
in how to choose a good origin for a particular trajectory
tracking problem.

VIII. CONCLUSION

The choice of error for systems on Lie groups is not
merely a matter of taste, but results in qualitatively different
error systems. The properties of the emergent error dynamics
are closely tied to the physical meaning of the error choice.
We demonstrated that the choice of a spatial error leads to
a simple gradient-based controller design. We have shown
that this control scheme yields a locally exponentially stable
controller for a class of persistently exciting trajectories. We
then used the example of the mobile robot to provide physical
interpretations of the body and spatial, or left- and right-
invariant errors for a rigid body with an SE(2) symmetry.
We have proved the almost-global asymptotic convergence
of the proposed control scheme for the mobile robot with
persistently exciting trajectories. Finally, we have verified
the effectiveness of this control in simulation.
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IX. APPENDIX

Lemma 9.1: Let A : R≥0 → Rn×m and C : R≥0 → Rm
be bounded functions. If A(t)C(t) → 0 and Ċ(t) → 0 as
t→∞, and A(t) is persistently exciting, then C(t)→ 0.

Proof: Let T > 0 be such that the per-
sistent excitation condition holds. We first show that
limt→∞ C(t)>

∫ t+T
t

A(τ)>A(τ)C(τ)dτ = 0. Let L =
supt‖C(t)‖ and M = supt‖A(t)‖. Given ε > 0, let T ′ > 0
be large enough such that ‖A(t)C(t)‖ < ε

LMT for t > T ′.
Then for t > T ′, it holds that

‖C(t)>
∫ t+T

t

A(τ)>A(τ)C(τ)dτ‖

≤ ‖C(τ)>‖
∫ t+T

t

‖A(τ)>‖‖A(τ)C(τ)‖dτ

< L

∫ t+T

t

M
ε

LMT
= ε,

so C(t)>
∫ t+T
t

A(τ)>A(τ)C(τ)dτ → 0. On the other hand,
by noting that for τ ∈ [t, t+T ], C(τ) = C(t) +

∫ τ
t
Ċ(s)ds,

it also holds that

C(t)>
∫ t+T

t

A(τ)>A(τ)C(τ)dτ

= C(t)>
(∫ t+T

t

A(τ)>A(τ)dτ

)
C(t)

+ C(t)>
∫ t+T

t

A(τ)>A(τ)

∫ τ

t

Ċ(s)dsdτ.

The term C(t)>
∫ t+T
t

A(τ)>A(τ)
∫ τ
t
Ċ(s)dsdτ can also be

shown to approach 0 as t→∞: let L and M be defined as
before and given ε > 0, let T ′ > 0 be large enough such
that ‖Ċ(t)‖ < 2ε

LM2T 2 for t > T ′. Then for t > T ′, it holds
that

‖C(t)>
∫ t+T

t

A(τ)>A(τ)

∫ τ

t

Ċ(s)dsdτ‖

< L

∫ t+T

t

M2

∫ τ

t

2ε

LM2T 2
dsdτ

= LM2 2ε

LM2T 2

∫ t+T

t

(τ − t)dτ

= ε,

so
∫ t+T
t

A(τ)>A(τ)
∫ τ
t
Ċ(s)dsdτ → 0. Thus, the remain-

ing term of the integral, C(t)>
(∫ t+T

t
A(τ)>A(τ)dτ

)
C(t),

must also approach zero as t → ∞. But because A(t) is
exciting, the integral

∫ t+T
t

A(τ)>A(τ)dτ is lower bounded
by αI , for some α > 0, for all t. So

0 ≤ α‖C(t)‖2 ≤ C(t)>
(∫ t+T

t

A(τ)>A(τ)dτ

)
C(t)

for all t and hence C(t)→ 0.
Proposition 9.2: Consider the linear time-varying system

ẋ = −A(t)x, with A(t) ∈ Rn×n symmetric and positive

semi-definite. Assume that there exist a T > 0 and ε > 0
such that for all t, ∫ t+T

t

A(τ)dτ ≥ εI. (27)

Then ẋ = −A(t)x is uniformly exponentially stable at x =
0.

Proof: We aim to show that the assumed conditions
of symmetric positive semi-definite A(t) and (27) imply
the conditions required of [20] (Theorem 1). This proof
reproduces an argument used in [26] (Proposition 4.6). By
the Cauchy-Schwarz inequality, the fact that

∫ t+T
t

A(τ)dτ
is lower-bounded implies that for any unit vector y ∈ Rn,
the integral

∫ t+T
t
‖A(τ)y‖dτ is also lower bounded, as∫ t+T

t

‖A(τ)y‖dτ =

∫ t+T

t

‖y‖‖A(τ)y‖dτ

≥
∫ t+T

t

y>A(τ)ydτ

= y>
∫ t+T

t

A(τ)dτy

≥ y>(εI)y

= ε.

Given t ≥ t0 > 0, define N = b t−t0T c and consider
subdividing the interval [t0, t] into N intervals of length T
and a remainder [t0 +NT, t]:

[t0, t] = [t0, t0 + T ] ∪ [t0 + T, t0 + 2T ] ∪ ...
[t0 + (N − 1)T, t0 +NT ] ∪ [t0 +NT, t].

Then∫ t

t0

‖A(τ)y‖dτ =

N∑
i=1

∫ t0+iT

t0+(i−1)T
‖A(τ)y‖dτ

+

∫ t

t0+NT

‖A(τ)y‖dτ

≥ Nε =
ε

T

⌊
t− t0
T

⌋
T

≥ ε

T
((t− t0)− T ) =

ε

T
(t− t0)− ε.

This is the condition required by [20] (Theorem 1) and so the
system (27) is uniformly asymptotically stable. Then by [9]
(Theorem III.2.1), the system is also uniformly exponentially
stable.
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