
Real-Time Optimisation-Based Robust Control: Heat Exchanger

Comparative Analysis
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Abstract—This paper investigates a possibility to im-
prove the control performance of a laboratory-scale heat
exchanger by introducing the convex-lifting-based robust con-
troller into the closed-loop system. Robust model predictive
control (MPC) design serves as the relevant reference control
strategy. The improvements are expected in both, increased
performance of the control trajectories and, simultaneously,
reduced computational complexity. The performance is ana-
lyzed subject to the reference tracking implemented on the
laboratory plate heat exchanger. This plant has a nonlin-
ear and asymmetric behavior, affected by various uncertain
parameters. The case study investigates the robust MPC,
tunable convex-lifting-based robust control, and convex-lifting-
based robust control with approximated control law. This
paper also extends the convex-lifting-based robust control
with approximated control law to provide the robust stability
guarantees. The experimental case study evaluates and anal-
yses various apprehensible criteria, e.g., energy consumption,
carbon footprint, and computational demands.

I. INTRODUCTION

Almost every industrial production, regardless of the
type of particular industry, needs to facilitate some
form of energy and heat transfer. To facilitate this heat
transfer, heat exchanger devices are considered. The
well-balanced control of these devices, minimizing the
energy losses, maximizing the control performance, and
eliminating the wasting of energy resources belong to
the urgent tasks worth addressing. From the operation
viewpoint, heat exchangers have challenging properties:
the nonlinear and asymmetric behavior affected by var-
ious disturbances, e.g., piping transport delay, the im-
pact of fouling, variable heat losses, etc. Therefore, the
heat exchanger operation requires robust, tunable, and
optimization-based controller design methods.
Nowadays, the most widely-used controllers for the op-
eration of the heat exchangers are proportional-integral-
derivative (PID) controllers [1], [2]. When it comes to
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heat exchangers, robustness is an important feature of
the controller, due to all of the above-mentioned chal-
lenges.
In this work, we analyze the selected robust optimization-
based controllers. The first is the robust model predictive
controller (RMPC) as proposed in [7]. RMPC is often
applied for heat exchangers due to its ability to guarantee
safety and consider constraints, see [8], [9], [10]. Although
the approach introduced in [7] is not a recent state-
of-the-art method, it is a fundamental basis for many
later introduced methods based on the evaluation of the
linear matrix inequalities (LMI) see [11]. Moreover, its
computational complexity is the lowest when compared
to other LMI-based methods.
The convex-lifting-based methods are a less computa-
tionally demanding alternative to RMPC. As a con-
sequence, this class of controller design methods is
more suitable for industrial implementation. The convex-
lifting-based robust control was initially proposed in
[14]. In [15], the possibility to tune the convex-lifting-
based method was introduced. This strategy was also
applied for a heat exchanger in [16]. It was observed that
sudden switching between multiple linear control laws
as proposed in [15] causes input discontinuities, which
decrease the control performance of the method. The
convex-lifting-based control with approximated control
law was introduced in [17], to overcome this drawback.
The drawback of the approach proposed in [17] is that
for the approximated control law there was no robust
stability guarantee provided. This paper extends the
approximated method proposed in [17] in order to pro-
vide the robust stability guarantees. To the authors’
best knowledge, this paper offers the first laboratory
implementation of the method proposed in [17] on a
heat exchanger. To analyze the control performance and
to evaluate the computational complexity, the methods
proposed in [15] and [7], are also implemented considering
the same plant.
We investigate the benefits of the robust control methods
from the perspective of the closed-loop control perfor-
mance and the computational complexity. Technically,
the quality criteria investigated the control trajectories
evaluating the settling time and maximal overshoot. The
handling of control inputs was analyzed by the overall
energy consumption and carbon footprint of a heat ex-
changer operation. The complexity of the robust control
methods was analyzed by evaluating the computational
time necessary to evaluate the optimal control action.
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II. Robust Control Methods

The main purpose of this paper is to analyze the
control performance and computational complexity of
various robust control methods implemented for a plate
heat exchanger plant. We consider a discrete state-space
model of the controlled plant affected by parametric and
additive uncertainties

x(k + 1) = A(Γ)x(k) +B(Γ)u(k) + w(k), (1a)

y(k) = C x(k), (1b)

x(0) = x0, (1c)

[A(Γ), B(Γ)] ∈ convhull(A(v), B(v)), (1d)

where k represents the discrete-time instant, u(k) ∈
Rnu are control inputs, x(k) ∈ Rnx stands for the system
states and y(k) ∈ Rny are the outputs of the system,
and w(k) ⊂ W ∈ Rnx represents a bounded additive
disturbance. The matrices A(Γ) ∈ Rnx×nx , B(Γ) ∈
Rnx×nu , C(Γ) ∈ Rny×nx , respectively are state, input,
and output matrices of the system. The vector x0 are the
initial conditions of the system. The input and system
matrices are defined using a convex hull to formulate the
uncertain model of the system:

A(Γ) =

nv∑
v=1

ΓvA
(v), B(Γ) =

nv∑
v=1

ΓvB
(v), (2)

where Γv ≥ 0,
∑nv

v=1 Γv = 1 and v = 1, 2, . . . , nv

represents a v-th vertex of the polytopic uncertainty,
where nv is the quantity of the system vertices.

In order to ensure offset free control, the system states
from (1) were augmented to include an integral action,
creating the augmented vector of the system states x̃.

x̃(k) =

[
x(k)∑k
j=0 e(j)

]
, (3)

where e(k) = r(k) − y(k) and r(k) ∈ Rny denotes the
reference. Considering the vector of augmented states
in (3), the state, input and output matrices Ã, B̃, C̃ are
defined as follows:

Ã =

[
A 0

−tsC I

]
, B̃ =

[
B
0

]
, C̃ =

[
C 0

]
, (4)

where ts is the sampling time of discrete-time system
in (1). The aim of considered robust control methods
is to compute the gain matrix K ∈ Rnu×nu+ny at each
sampling time:

u(k) = [KP(k) KI(k)] x̃(k), (5)

where KP(k) and KI(k), respectively are the propor-
tional and the integral parts of the control law.

A. Convex-lifting-based robust control

Another optimisation-based robust control method
was introduced in [15]. The robust controller design is
performed in 2 stages: the offline stage serves for the
construction of the robust controller, and the online stage
running during the real-time control provides the optimal

control input.
The offline stage produces the convex lifting Xlift, n,
multiple tunable robust positively invariant (RPI) sets
denoted by Zj , j = 1, . . . , n, see [19]. Each RPI set Zj

is a subset of RPI set Zj−1. For each RPI set, there is
assigned a gain matrix Kj .
During the online stage the computation of optimal
control inputs is ensured using either linear feedback
control—assuming none of the physical constraints are
active. Otherwise, using linear programming (LP)—if
some physical constraint are active. The technical details
are described in [20]. However, the approach proposed
in [20] was not tunable and the achieved control perfor-
mance was given in advance.
To overcome this obstacle, multiple tunable RPI sets
Z1 . . .Zn are constructed based on the MPC-like weight-
ing matrices (Qj , Rj) tuned by the user, where every j-
th pair of the weighting matrices is tuned to satisfy the
following criteria:

Vj(x̃(0)) ≤ −
∞∑
k=0

(
∥x̃(k)∥2Qj

+ ∥u(k)∥2Rj

)
, (6)

where V is the quadratic Lyapunov function

Vj(x̃) = x̃⊤Pj x̃, Pj = P⊤
j ≻ 0. (7)

The following SDPs were derived to optimize the
control performance ensured by the parametrized control
law [15]:

min
γj ,Xj ,Yj

γj (8a)

s.t.:


Xj ⋆ ⋆ ⋆

Ã(v)Xj + B̃(v)Yj Xj ⋆ ⋆

Q
1/2
j Xj 0 γjI ⋆

R
1/2
j Yj 0 0 γjI

 ⪰ 0, (8b)

where the variable γj > 0 ∈ R, Yj ∈ Rnu×nx represents
the auxiliary matrix. Xj denotes the weighted inverted
Lyapunov matrix Xj = X⊤

j ≻ 0 ∈ Rnx×nx . During the
offline stage, the SDP in (8) is solved and the associated
j-th convex-lifting-based controller gain is computed as
follows:

u(k) = Kj x̃(k) (9)

and the gain matrix is given by

Kj = Yj X
−1
j . (10)

In this paper, we consider an effective switching be-
tween 2 control laws K1,K2. The values of the gain
matrices depend on the tuning parameters defined by the
user, the MPC-like weighting matrices (Q1, R1), (Q2, R2)
corresponding to each RPI set. It was shown in [15],
that considering 2 RPI sets Z1 and Z2, represents a
well-balanced trade-off between the closed-loop control
performance on the plant side and the computational
complexity on the controller side. By tuning of the
weighting matrices (Qj , Rj) associated to jth RPI set,
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we enforce Z1 to be large-damped RPI set and Z2 to be
small-aggressive RPI set.
The large-damped RPI set Z1 is designed to have the
maximal largest volume, which leads to minimization of
the need to solve LP in the online stage. As a conse-
quence, it leads to a decreased convergence (damped)
rate of system states into the origin. The small-aggressive
RPI set Z2 is designed to have an increased convergence
rate of the system states to the origin. However, with
increased convergence, the volume of the RPI set is
decreased, i.e., Z2 ⊂ Z1. Technical details can be found
in [15]. Obviously, considering multiple RPI sets and
multiple linear control laws, sudden switching between
associated controller gains occurs as the states shift from
one RPI set to another. The sudden switching may lead
to a decreased control performance.

B. Approximated convex-lifting-based robust control

The main objective of the approximation is to provide
smoother switching between the control laws. Sudden
switching arises when the states of the system shift
from the outer large-damped set Z1 to the inner small-
aggressive set Z2. This switching may have a negative
impact on control performance when applied to certain
types of processes. The approach was proposed in [17].
In this approach, a linear interpolation is considered,
if the system states are present in the set difference
of the large-damped RPI set and small-aggressive RPI
set, i.e., x ∈ Z1 ∧ x ̸∈ Z2. The approximation is
based on the Euclidean distance of the states from the
origin d(k) during the real-time control. To perform the
linear interpolation, minimal possible dmin and maximal
possible distance dmax of the states from the origin, is
computed.
The maximal admissible distance dmax is determined by
the radius r1 of the minimum-volume outer approxima-
tion of RPI set Z1, see Figure 1. Here, the value of
the radius r1 is determined by a ball with the smallest
possible volume, so that the ball still includes RPI set
Z1.
The value of the distance dmin from origin presented in
large-damped RPI set Z1 is determined by the radius r2
of the ball with maximal volume inner approximation
that can be inscribed into RPI set Z2, see Figure 1. This
class of approximation is referred to as the Chebyshev
ball construction, e.g., see [21, p. 418].
The interpolated values are the proportional and inte-

gral parts of the gain matrix
Kapprox(k) = [KP,approx(k),KI,approx(k)], both parts of
the gain matrix are interpolated at each sample time k.
The interpolated value replace the controller K1 in the
original control law in (9). Assuming that, the system
states x(k) belong to the large-damped set Z2, the gain
matrix Kapprox(k) is interpolated based on the values of
K1, K2 in (9) and the distance d(k) as follows:

KP,approx(k) = KP,2 + (d(k)− r2)
KP,1 −KP,2

r1 − r2
, (11a)

Fig. 1. Illustrative figure of the RPI sets: RPI set Z1 (bright blue),
RPI set Z2 (bright green), the approximation of RPI set Z1 (dark
blue), the approximation of RPI set Z2 (dark green) [17].

KI,approx(k) = KI,2 + (d(k)− r2)
KI,1 −KI,2

r1 − r2
, (11b)

where KP,1, KP,2 and KI,1, KI,2 stand for the
proportional and integral part of the controllers
K1 and K2, respectively. The interpolated values
KP,approx(k),KI,approx(k) are computed at each sampling
time based on the following rules:

u(k) = Kapprox x̃(k), if x̃ ∈ Z1, (12a)

u(k) = K2 x̃(k), if x̃ ∈ Z2. (12b)

where the distance d(k) varies in each sampling instant.
As the approximation of the controller gain is performed
using linear algebra, the associated control input is guar-
anteed to exist at each control step.

C. Stability Analysis of Approximated convex-lifting-
based robust control

In [17], the closed-loop system stability of approxi-
mated convex-lifting-based robust control is guaranteed,
only if the influence of parametric disturbance is con-
sidered in the uncertain system in (1). In that case, the
closed-loop stability can be proven in the same manner as
it is proven in [12]. The additive disturbance w in (1a)
can be converted into the parametric uncertainty and
vice versa, see [22]. In this paper, we propose a more
straightforward way to directly enforce robust stability
when the interpolated gain matrix is considered in the
control law. Following the quadratic Lyapunov function
defined in (7), suppose that V (x̃) satisfies the following
inequality:

Vj(x̃(k + 1))− Vj(x̃(k)) ≤ 0. (13)

Let us consider a pair of the gain matrices Kj and
Kj−1, which satisfy the robust stability and the robust
constraints in its RPI set. Then considering (13), it can
be shown that the following condition holds:

X−1
j − Ω

(v)⊤
j−1 X−1

j Ω
(v)
j−1 ≻ 0, (14)
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where Ω
(v)
j−1 = [A(v) + B(v)Kj−1], j = 1 . . . n, v =

1 . . . nv, see [23]. The satisfaction of (14) ensures robust
stability for a convex combination of Kj and Kj−1.
Note, the interpolation defined in (11) leads to a linear
combination of two gain matrices. Then any value of
gain matrix Kapprox computed according to (14) assures
robust stability, if the following condition holds:

X−1
1 − Ωapprox(k)

(v)⊤X−1
1 Ω

(v)
approx(k) ≻ 0, (15)

where Ω
(v)
approx(k) = (A(v) + B(v)Kapprox(k)), j = 1 . . . n,

v = 1 . . . nv. Therefore, the satisfaction of (15) is verified
forKapprox(k) in each control step. If the condition (15) is
not satisfied, then the last valid gain matrix Kapprox(m)
is implemented, where m denotes the control step when
the valid control gain was evaluated. As the consequence,
only the valid gain matrixKapprox is implemented in each
control step.

III. Heat Exchanger Plant

The robust control methods presented in Section II
were implemented on the laboratory liquid-liquid plate
heat exchanger, manufactured by Armfield, see [24]. This
device is illustrated.

The plate heat exchanger can be considered to cool
or heat the liquid, in this case water. The cold liquid
is stored in two tanks at the temperature T0 = 20◦ C.
The hot liquid is stored and heated to temperature
Thot = 70◦ C inside a retention tank. The temperature
of the hot liquid Thot is sustained at constant tem-
perature by an auxiliary PID controller. Both hot and
cold liquids are pumped by two peristaltic pumps. The
control output was the outlet temperature of the cold
medium T . The control input represents the volumetric
flow rate of the hot medium q. The main objective of
the designed controllers was to heat or cool the cold
liquid, ensuring reference tracking to the required value
of output temperature Tref .
As the heat exchanger plants has a nonlinear, asymmetric
behaviour affected by uncertain parameters, the param-
eters of this device were identified as uncertain discrete-
time state space model in (1). Further technical details
regarding the model of the plant are in [25].

IV. Results and Discussion

In this case study, three robust control methods are
analysed: (i) convex-lifting-based robust control (Sec-
tion II-A), (ii) convex-lifting-based robust control with
approximated control law (Section II-C), and (iii) robust
MPC [7]. An extensive laboratory analysis is performed
for each robust control method. The investigated per-
formance criteria were focused on the evaluation of the
closed-loop control performance of the reference tracking
problem and the computational complexity.

A. Setup of laboratory experiments

The designed robust control methods were
implemented using MATLAB/Simulink R2020b,

installed on a PC with CPU i5 2.7GHz and 8GB RAM.
YALMIP toolbox [26] was considered for the formulation
and parsing of the optimization problems. The SDP
was handled by the toolbox MUP [27], solver MOSEK
v8 [28], and LPs by solver Gurobi [29]. The offline stage
of the convex-lifting-based control is realized using the
Multi-Parametric Toolbox [30]. Communication between
the plant and the PC was secured using a Wifi-based
eLab Manager toolbox [31]. Sampling time was set to
ts = 5 s.

The weighting matrices Q̃, R̃ were systematically
tuned for RMPC design purposes to obtain:

Q̃ =

[
7× 10−1 0

0 5× 10−5

]
, R̃ = 30, (16)

to ensure the required control performance of refer-
ence tracking problem. Two convex-lifting-based robust
control design methods were implemented for the heat
exchanger. The first method leads to switching between
two control laws (Section II-A) and the other introduces
the approximated control law (Section II-C). The ro-
bust controllers are designed by tuning the two pairs of
weighting matrices:

Q1 =

[
0.1 0
0 0.1

]
, R1 = 1, (17a)

Q2 =

[
0.9 0
0 0.9

]
, R2 = 1. (17b)

These two pairs of weighting matrices for convex-lifting-
based methods were systematically tuned to ensure re-
quired level of control performance.

B. Control performance analysis

The main objective of the designed robust control
methods was to compute the optimal value of control
input ensuring the offset-free reference tracking in the
presence of uncertain parameters. All of the designed
methods computed the optimal control action at each
sampling time, however, the computational complexity
differed with each method. Therefore, this paper inves-
tigates the control performance of these methods as well
as their computational complexity.
The control performance of the implemented methods
depends mainly on the tuning of the weighting matrices
in (16) and (17). The weighting matrices were experimen-
tally tuned until satisfactory control performance was
achieved. The trajectories of the control output are de-
picted in Figure IV-B and the corresponding trajectories
of the control input, i.e., the flow rate of the hot medium,
are shown in Figure 2.
As can be observed in Figure IV-B, all of the robust
control methods assured offset-free control, but all of
the methods exerted a different control performance.
The difference between RMPC and convex-lifting-based
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Fig. 2. The control trajectories generated using convex-lifting-
based robust control (green), convex-lifting-based robust control
with approximated control law (purple), and robust MPC (blue),
and reference (dashed black).

methods is that RMPC was focused on the optimization
of the worst-case system behavior. In this case, the uncer-
tain vertex models were considered mainly to guarantee
robust stability. On the contrary, the convex-lifting-based
methods considered nominal system behavior in their
design, see [15]. Nevertheless, the comparability of the
methods is consistent, as the methods share the operat-
ing conditions and the same goal, which is to control the
uncertain system and satisfy constraints on the control
inputs and outputs.
From the perspective of the convex-lifting-based meth-
ods, in the offline stage, both used the same technique
for construction of the convex lifting Xlift and RPI sets
Z1, Z2.

The difference is in the online stage, when the method
with approximated control law (Section II-C) computes
the linear control law at each sampling time based on the
interpolation (11), while the method without interpola-
tion (Section II-A) applies the control laws computed in
the offline stage.

The control perfromance was judged with respect to
the evaluated criteria, which are summarized in Table I.
Particularly, settling time tset, maximal overshoot σmax,

the energy consumption E and carbon footprint mCO2

were analysed. The performance criteria in Table I were
computed considering a time interval starting at time
35 s, when the reference step change occurred, and fin-
ishing at time 300 s.
Settling time tset is computed as the time when the
control output settles within 2%-neighborhood of the
setpoint value Tref . Energy consumption E was evaluated
as the overall energy exerted to heat the hot medium
during the control time frame.
The energy consumption E served for evaluation of the
carbon footprint mCO2

. The detailed description of the
computation of carbon footprint mCO2 for the controlled
plant can be found in [32].

TABLE I

Control performance criteria.

Method tset[s] σmax[%] E[kJ] mCO2 [g]
RMPC [7] 105 3.22 273 0.35
Section II-A 94 4.81 233 0.30
Section II-C 79 0.69 222 0.28

TABLE II

Computational complexity criteria.

Method V I
RPI [×103] V II

RPI [×103] tRT [ms]
RMPC [7] 31.4 1.9 160
Section II-A 7.8 6.8 1
Section II-C 7.8 6.8 50

The computational complexity of the methods was
analyzed. Table II summarizes the computational com-
plexity of the designed methods. Firstly, the average time
to compute the optimal value of the control input during
the real-time control tRT was evaluated.
The convex-lifting-based robust control without the ap-
proximation reduced the computational by 99.4% when
compared to RMPC. This is caused by the fact that
RMPC solves complex SDP optimization problems in
each control step. In contrast to RMPC, convex-lifting-
based robust control strategies solve either linear state
feedback control law or LP.
In Table II, the values of V I

RPI and V II
RPI represent

the volume of the RPI sets Z1, Z2 for convex-lifting-
based methods. Both convex-lifting-based methods use
the same RPI sets, therefore their volume is the same.
In case of RMPC, parameters VRPI(1) and VRPI(2) rep-
resent the RPI set constructed for the current system
measurement at the beginning and at the end of the
closed-loop control, i.e., in time instants t = 35 and
t = 300. As can be seen in Table II, RMPC is much
more conservative, i.e., corresponding RPI set is larger,
compared to RPI set generated for convex-lifting-based
robust control method. On the other hand, the RMPC
approach recomputes the RPI set at each time instant.
As the consequence, its volume is shrinking and at the
end of the control is smaller than the volume of RPI sets
constructed for convex lifting.

6539



The convex-lifting-based robust control with approx-
imated control law evaluates KP,approx(k) in (11) at
each sampling time. It leads to the increased time tRT.
However, the increased computational complexity of the
convex-lifting-based method with approximated control
law is compensated by the significantly increased control
performance of this method.

V. CONCLUSIONS

In this paper, we have applied multiple optimisation-
based robust control methods for a laboratory-scaled
plant. Moreover, this paper extended one of the
optimisation-based methods towards providing robust
stability guarantees. Using a laboratory case study, the
heat exchanger, it has been demonstrated in (Figures IV-
B, 2) that the implementation of the convex-lifting-
based methods reduced almost all of the evaluated con-
trol performance criteria, except for the overshoot, see
Tables I, II. The settling time was decreased by ap-
proximately 25% and the maximal overshoot by 18%.
From the environmental viewpoint, the convex-lifting-
based method outperformed RMPC also in the energy
consumption E and the corresponding carbon footprint
mCO2

were reduced by 19%. The convex-lifting-based
method with approximated control law (Section II-C)
also outperformed the method, where the sudden switch-
ing of control law occurs (Section II-A), in each investi-
gated control performance criterion (Tables I, II).
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