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Abstract— This paper presents a novel adaptive itera-
tive learning control (ILC) framework for achieving high-
performance trajectory tracking in uncertain nonlinear systems
perturbed by external disturbances. The proposed scheme,
referred to as IL-MRAC, combines two components inspired
by indirect ILC and classical model reference adaptive control
(MRAC), respectively. The key idea behind the proposed scheme
is to first develop an input signal for a stabilized nominal
model of the plant in ILC-loop, then inject the signal into
the MRAC-Loop as the reference signal. This bypasses the
unrealistic identical initialization condition required by con-
ventional ILC methods and ingeniously transfers the problems
brought by the initial errors, model uncertainties, and external
disturbances to a powerful adaptive controller and handled
in the time domain. Meanwhile, by including the well-trained
inputs obtained in the iteration domain as reference signals,
the adaptive controller gains the ability to directly track the
desired trajectory. The convergence of the scheme is rigorously
proven, and numerical examples and high-fidelity simulations
demonstrate its effectiveness and superiority.

I. INTRODUCTION

Many industrial processes, such as manipulator tasks [1],
air traffic management systems [2], and high-speed trains [3],
involve repetitive tasks and are subject to external dis-
turbances and model uncertainties. For such systems, the
ultimate control goal is always to try to improve the transient
behavior as well as maintain good robustness with respect to
external disturbances and parameter uncertainties. Numerous
methods have emerged that address these issues separately.
For example, iterative learning control (ILC) take advantage
of repetitive control task to achieve perfect tracking [4], [5]
and adaptive control [6] and robust control [7] communities
primarily focus on the issue of parameter uncertainty and
unknown external disturbance. Next, we will provide a
more detailed review of the ILC methodology and a classic
adaptive approach to reveal the motivation behind this work.

ILC is essentially a feedforward control technology [8]
that aims to improve the transient performance of the con-
trolled system in repetitive tasks. However, its assumptions,
such as identical initial conditions [9], the invariant of
reference trajectories [10] and system parameters [11], may
not be satisfied in practice due to output noise and uncertain-
ties, which can degrade performance. To address this issue,
many studies have been conducted to relax the requirement
of strict repetitiveness in ILC. A common approach is to
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aim for bounded iterative convergence performance using
contraction mapping methods [12], assuming bounded un-
certainties between iterations. Alternatively, some adaptive
ILC schemes [13], [14] and rectifying mechanisms [15], [16]
have been proposed to solve this problem in the time domain.
While these methods do relax certain strict assumptions of
ILC to tolerate more uncertainty, they sacrifice either the
performance or simplicity of the algorithm.

On the other hand, adaptive methods are particularly
effective in dealing with non-repetitive uncertainties. Among
various existing solutions, one of the most well-known and
mature approaches is the model reference adaptive control
(MRAC) strategy [17], [18]. In MRAC [6], the desired
performance is specified by a user-defined reference model,
while the controller’s mission is to drive the plant’s output
to follow the output of the reference model. Designing a
reference model that generates the desired response for any
given trajectory is challenging even for control engineers.
Moreover, the reference model is essentially a command-
shaping filter that achieves a desired command follow-
ing [19]. This limitation means that the MRAC scheme can
only track the output of the reference model, rather than
directly tracking the reference signal itself.

As discussed above, a straightforward attempt is to com-
bine the ILC and MRAC [20]–[22] while retaining their
respective advantages. Although some effort has been made
toward this purpose, the majority of existing techniques are
under the direct ILC framework. This leads to online training,
which is infeasible in most practical applications. This paper
presents a new IL-MRAC framework that combines indirect
ILC and classical MRAC in a novel way to solve the
aforementioned difficulties to a large degree. To the best
of the authors’ knowledge, this is the first indirect ILC
scheme that guarantees stability in the presence of large
perturbations, preserves the high performance provided by
the ILC components, and endows the MRAC component
with the ability to directly track the desired signal.

The combination of ILC and MRAC is not a trivial task.
One of the key techniques we used for integration is to
replace the reference model in the MRAC algorithm with
the nominal model of the controlled process governed by a
stabilizing controller. By doing so, the scheme essentially
removes the need to design a reference model. The IL-
MRAC framework achieves high-performance tracking by it-
eratively modifying the input signals of the reference model,
and then using the well-trained input signals as reference
signals for the MRAC-loop. This approach offers several
advantages. First, the MRAC-loop accounts for the effect
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of model uncertainties, external disturbances, and unknown
initial states, eliminating the need to consider them in the
iteration domain. Second, it requires less effort and time
for MRAC to track its nominal model compared to tracking
a delicately designed reference model, as done in classic
MRAC. Finally, the iteration can be carried out in an offline
and numerical manner, reducing the training cost that may
be a significant concern in practical applications. In addition,
for systems that satisfy the principle of superposition, the
computational burden can be further reduced by combining
pre-trained input signals to obtain optimal reference signals.
Our theoretical analysis provides clear conditions that each
component (i.e. ILC-loop and MRAC-loop) needs to satisfy
to ensure the stability and robustness of the overall system.
As a result, each component can potentially be replaced by
a more advanced version, if available.

Notation: Rn and Rn×m denote the sets of n dimensional
real vectors and n × m real matrices respectively; R+ and
Z+ respectively denote the positive real constant and positive
integer, ∥A∥ denotes any matrix (or vector) norm of a
matrix (or vector) A; ∥A∥2 denotes 2-norm of a matrix
(or vector) A; the identity and zero matrices (vectors) of
compatible dimensions are denoted by I and 0, respectively;
b† represents the pseudo inverse of matrix b; Im

n represents
a set of selecting m elements from n elements, m ≤ n. Other
notations will be introduced as needed.

II. SYSTEM DESCRIPTION AND PROBLEM FORMULATION

Consider a class of high-order MIMO nonlinear dynamical
systems described by

ẋi(t) = xi+1(t), i = 1, . . . , p− 1

ẋp(t) = h(x,p, t) + b(z,p, t)
[
u+ f(x,p, t, ω)

] (1)

where xi(t) ∈ Rl×1, i = 1, . . . , p, and t ∈ [0, Tf ] with
Tf ∈ R+,x ≜

[
x⊤
1 ,x

⊤
2 , . . . ,x

⊤
p

]⊤ ∈ X ⊆ Rn×1 is the
measurable state vector of the system by using the notation
n ≜ pl. u ∈ Rm×1 is the control input vector of the
system. z ∈ Z ⊆ Rq×1 where Z is a subset of the state
space X with dimension q ≤ n. p ∈ P is an unknown
system parameter vector. P is the set of admissible system
parameters. h(x,p, t) represents the structured uncertainties
and f(x,p, t, ω) represents unstructured uncertainties. ω ∈ R
represents any aperiodic factor such as aperiodic exogenous
disturbances or system noise. b(z,p, t) ∈ Rl×m is the input
distribution matrix. In practical applications, the form of
system (1) can be widely seen in the industry, for example, in
the multi-joint manipulator system [1], x1 and x2 represent
the joint angle and velocity, respectively. Roughly speaking,
our control objective is to find a proper input u(t) for system
(1) to track a given trajectory xd(t). To proceed, we first
make the following assumptions:

Assumption 1: For all t ∈ [0, Tf ], z ∈ Z, p ∈ P, the
input matrix b(z,p, t) is a column full rank matrix with
l = m and can be expressed as b(z,p, t) = b0(z,p, t)λ
where b0(z,p, t) ∈ Rl×m is a known nominal matrix,
λ ≜ diag(λ1, . . . , λm) ∈ Rm×m is a diagonal matrix to
represent the uncertainty of input matrix b, and sign(λ) ≜

diag(sign(λ1), . . . , sign(λm)) ∈ Rm×m is known. Without
loss of generality, sign(λ) = I. ◁

Assumption 2: The unknown function vector h(x,p, t)
and f(x,p, t, ω) can be expressed as

h(x,p, t) = ax+ θ⊤
1 (p)ϕ1(x, t)

f(x,p, t, ω) = θ⊤
2 (p)ϕ2(x, t) + d(ω, t)

where a ∈ Rl×n, θ1 ∈ Rs1×l and θ2 ∈ Rs2×m are unknown
constant matrices, ϕ1 ∈ Rs1×1 and ϕ2 ∈ Rs2×1 are vectors
of known and bounded basis functions, d(ω, t) ∈ Rm×1 is
the bounded non-parametric external disturbances. ◁
Based on above assumptions, system (1) can be rewritten as:

ẋ = Ax+BΛ[u+Θ⊤
d Φ(x) + d(ω, t)] (2)

with Λ = λ ∈ Rm×m, Θd ∈ Rs×m, Φ(x) ∈ Rs×1 and

A =

[
0 | I

a

]
∈ Rn×n B =

[
0
b0

]
∈ Rn×m

where Θ⊤
d Φ(x) ≜ b†θ⊤

1 (p, t)ϕ1(x, t) + θ⊤
2 (p, t)ϕ2(x, t) is

the rearranged combination of parametric representations of
uncertainties.

Assumption 3: For system (2), the pair (A,BΛ) and the
pair (A0, B0) are controllable, where A0 and B0 are the
nominal parts of A and BΛ, respectively. ◁

Property 1: For system (2), there always exists a trivial
full-state feedback controller to render its nominal part into
the following form

ẋm = Amxm +Bmr (3)

where xm ∈ Rn, Am ∈ Rn×n is known and Hurwitz,
Bm = B ∈ Rn×m is a known and full column matrix, and
r(t) ∈ Rm is a piece-wise continuous and bounded command
vector. Furthermore, by introducing the iteration variable k
as the state argument, the identical initialization condition
of the dynamics of (3) holds naturally for all iterations, i.e.
xm(k, 0) = r(0), for all k ∈ Z+. ◁

Assumption 4: For a given differentiable and bounded
trajectory xd(t), there exists a unique bounded rd(t), ∀t ∈
[0, Tf ], such that ẋd = Amxd +Bmrd,xd(0) = xm(0). ◁

Consider a state feedback control law

u∗(t) = Kx,dx(t) +Kr,dr(t)−Θ⊤
d Φ(x) (4)

where Kx,d ∈ Rm×n and Kr,d ∈ Rm×m are gain matrices
to be specified. Substituting (4) in (2) yields

ẋ(t) = (A+BΛKx,d)x(t) +BΛKr,dr(t) +BΛd(ω, t) (5)

To match the closed-loop system (5) to the nominal model
(3), the following matching condition is needed:

Assumption 5: [23] There exist time-invariant matrices
gains Kx,d and Kr,d such that

A+BΛKx,d = Am , BΛKr,d = Bm. ◁
Remark 1: Note that, if Am and Bm have the same

structures as those of A and BΛ, respectively, or if BΛ is a
square and invertible matrix, then the existence of Kx,d and
Kr,d are ensured. ◁

Now, the control objective becomes to find a proper u(t)
to drive states of the nonlinear MIMO system (2) to track the
desired trajectory xd(t), while reducing the negative effects
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of model uncertainties, external disturbances, and unknown
system initial states. To this end, the IL-MRAC scheme with
the structure shown in Fig. 1 is adopted. In addition, a crucial
signal r(k, t) that updates with iteration will be utilized as
a bridge between ILC and MRAC. Before proceeding to the
control scheme, the following lemma regarding the Hurwitz
matrix is introduced.

Fig. 1. Schematic diagram of the IL-MRAC scheme.

Lemma 2.1: For any Hurwitz matrix Am and a symmetric
semi-positive definite matrix N , the eigenvalues of AmN are
less than or equal to 0. ◁

Proof: Suppose λ is an eigenvalue of AmN with eigen-
vector x ̸= 0, i.e. AmNx = λx. Then we have NAmNx =
λNx, and x⊤NAmNx = λx⊤Nx. The following proof will
be divided into two folds: First, while Nx ̸= 0, then for all
x ̸= 0, we have x⊤Nx ̸= 0, more specifically, x⊤Nx > 0
due to the non-negativity of matrix N . On the other hand, it
is not hard to check that NAmN is negative definite since
the following inequality holds for all x ̸= 0:

x⊤NAmNx = (Nx)⊤Am(Nx) = z⊤Amz < 0

where z = Nx represents the eigenvector of Am. Hence,
λ = x⊤NAmNx < 0 in this case. Second, while Nx = 0
with eigenvector x ̸= 0, we have AmNx = λx = 0, that’s
to say, λ = 0. Thus, we have λ ≤ 0 for all cases. □

III. IL-MRAC SCHEME DESIGN

In this section, the proposed IL-MRAC scheme is intro-
duced in detail. As elaborated in Fig. 1, the ILC-loop will be
updated first to enable the reference model to achieve perfect
tracking of the desired signal, then followed by the control
of the MRAC-loop to ensure that the actual system can track
the desired trajectory. Consider an ILC designed as

r(k + 1, t) = r(k, t) +
B⊤

m

∥BmB⊤
m∥

Ked(k + 1, t) (6)

where r(k, t) ∈ Rm denotes the output of ILC con-
troller at k-th iteration and time instant t. ed(k, t) =
[ed,1(k, t), ed,2(k, t), . . . , ed,n(k, t)] ≜ xd(t)−xm(k, t) rep-
resents the tracking error of the nominal model. K ∈ Rn×n

is a diagonal positive constant control gain matrix chosen
to be cI with c > 0, for simplicity. r(k, t) is updated as
the iteration increases until ∥ed(t)∥ ≤ ϵ with a prescribed
accuracy ϵ for all t ∈ [0, Tf ]. For convenience in the
following writing, we denote the trained r(k, t) as the r(t).

Then, the nominal model (3) and the actual plant (2) are
connected as MRAC-loop, as shown in Fig. 1. Taking r(t)
as the reference signal, we propose an adaptive controller as

u(t) = Kx(t)x(t) +Kr(t)r(t)−Θ⊤(t)Φ(x) (7)

K̇⊤
x = Γxxe

⊤
mPBsign(Λ), K̇⊤

r = Γrre
⊤
mPB sign(Λ) (8)

Θ̇ =−ΓΘΦe
⊤
mPB sign(Λ) (9)

where Kx(t) ∈ Rm×n, Kr(t) ∈ Rm×m, and Θ(t) ∈
Rs×m are estimates of Kx,d, Kr,d, and Θd defined in (4),
respectively. Γx,Γr,ΓΘ are positive-definite gain matrices
of compatible dimensions. P = P⊤ ∈ Rn×n is a positive-
definite matrix satisfying the Lyapunov equation

PAm +A⊤
mP = −Q (10)

for a given positive-definite Q ∈ Rn×n with λmin(Q) > 1.
In virtue of Property 1 and Assumption 5, the dynamic of
the tracking error em(t) ≜ xm(t)− x(t) is given by

ėm=Amem−BΛK̃xx−BΛK̃rr+BΛΘ̃⊤Φ−BΛd (11)

where K̃x(t) ≜ Kx,d(t) −Kx, K̃r(t) ≜ Kr,d(t) −Kr, and
Θ̃ ≜ Θd −Θ are estimation errors. Define the tracking error
e(t) = [e1(t), e2(t), . . . , en(t)] ≜ xd(t) − x(t) and ρ∗ ≜
rank(Bm). We now state the main results of this article.

Theorem 3.1: Consider the nonlinear MIMO system (1)
satisfying Assumptions 1–5. For all t ∈ [0, Tf ], the proposed
IL-MRAC scheme given in (6)-(10) guarantees that
(T1) ed(k, t) is bounded and limk→∞ ∥ed,i(k, t)∥ = 0, for
all i ∈ Iρ∗

n , k ≥ 1.
(T2) em(t) is bounded and limt→∞ ∥em(t)∥ = γ1(d).
(T3) e(t) is bounded and limt→∞ ∥ei(t)∥ = γ2(d), i ∈ Iρ∗

n .
(T4) All the internal signals r(k, t), xm(k, t), x(t) are
bounded for all k ≥ 1.
where γ1(·) and γ2(·) are some class-K functions.
Proof: The proof mainly contains three steps. First, we show
that, in ILC-loop, there is a composite energy function (CEF)
bounded over [0, Tf ] and monotonically decreasing as k →
∞, which leads to the statement in (T1). Second, the proof
of MRAC-loop is given to support (T2). Subsequently, the
conclusions in (T3) and (T4) can be easily obtained.

(T1): Given Assumption 3-4, the dynamic of the tracking
error of ed(k, t) follows:

ėd(k, t)= ẋd(t)−ẋm(k, t)=Amed(k, t)−Bmr̃(k, t) (12)

where r̃(k, t) ≜ r(k, t) − rd(t). Defining pseudo-inverse
B†

m ≜ (B⊤
mBm)−1B⊤

m, it holds

r̃(k, t) = (B⊤
mBm)−1B⊤

m[−ėd(k, t) +Amed(k, t)] (13)

The CEF is designed as

Ed(k, t) =

∫ t

0

r̃⊤(k, τ)r̃(k, τ)dτ (14)

Then, by virtue of (6), we have ∆Ed(k) ≜ Ed(k)−Ed(k−1)
admits the form of

∆Ed(k) =

∫ t

0

r̃⊤(k)r̃(k)− r̃⊤(k − 1)r̃(k − 1)dτ

=

∫ t

0

−
[
B⊤

mKed(k)

∥BmB⊤
m∥

− 2r̃(k)

]⊤
B⊤

mKed(k)

∥BmB⊤
m∥

dτ (15)
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where we have made use of the fact that r̃⊤(k)r̃(k − 1) is
a scalar, and take the advantages of (6). Time variable t is
omitted without affecting readability.

In view of (13), ∆Ed(k, t) can be further simplified to

∆Ed(k, t)=

∫ t

0

−[
B⊤

med(k)

∥BmB⊤
m∥

K + 2(B⊤
mBm)−1B⊤

mėd(k)

− 2(B⊤
mBm)−1B⊤

mAmed(k)]
⊤ B⊤

m

∥BmB⊤
m∥

Ked(k)dτ (16)

Then the monotonic decrease of Ed(k, t) is conducted by
showing the negativity or non-positivity of each term in (16).

For the first component, it is obvious that

−
∫ t

0

[
B⊤

m

∥BmB⊤
m∥

Ked(k)]
⊤ · B⊤

m

∥BmB⊤
m∥

Ked(k)dτ ≤ 0 (17)

Then, by adopting the method of integration by parts, the
second part of (16) is treated as follows:

−2

∫ t

0

[(B⊤
mBm)−1B⊤

mėd(k)]
⊤ B⊤

m

∥BmB⊤
m∥

Ked(k)dτ

=−2

∫ t

0

ė⊤d (k)Med(k)dτ =−e⊤d (k, t)M(t)ed(k, t) (18)

whose sign now depends on the symmetric matrix M ≜
N

∥BmB⊤
m∥K with N ≜ Bm(B⊤

mBm)−1B⊤
m. We briefly prove

that the matrices M and N are semi-positive definite.
It’s trivial to see that B⊤

mBm ∈ Rm×m is a sym-
metric semi-positive definite matrix as x⊤B⊤

mBmx =
(Bmx)⊤Bmx ≥ 0,for all x ∈ Rn. Thus, together with
the fact that Bm is full column rank, the inverse of B⊤

mBm

remains symmetric and semi-positive definite, such that the
(B⊤

mBm)−1 = LL⊤ holds by applying Cholesky decom-
position, where L is a positive definite matrix. Therefore,
N = (BmL)(BmL)⊤ is a symmetric semi-positive definite
matrix due to the fact (BmL)⊤ is not full column rank, and
M is also semi-positive definite by its definition.

Finally, according to Property 1 and Lemma 2.1, for all
ed(k, t) ∈ Rn, the third part of (16) is analyzed as follows:

2

∫ t

0

[(B⊤
mBm)−1B⊤

mAmed(k)]
⊤ · B⊤

m

∥BmB⊤
m∥

Ked(k)dτ

= 2

∫ t

0

e⊤d (k)
A⊤

mN

∥BmB⊤
m∥

Ked(k)dτ ≤ 0 (19)

In view of (17), (18) and (19), the difference of Ed(k, t)
in (16) can be further reduced as follows

∆Ed ≤ −e⊤d (k)Med(k)−
∫ t

0
∥ B⊤

m

∥BmB⊤
m∥Ked(k)∥22dτ ≤ 0 (20)

From (20), it can be immediately obtained that

Ed(k, t) = Ed(0, t) +

k∑
j=1

∆Ed(j, t)

≤ Ed(0, t)−
k∑

j=1

[e⊤d (k, t)Med(k, t) +

∫ t

0

∥ B⊤
m

∥BmB⊤
m∥

Ked(k)∥22dτ ]

According to the definition of CEF (14) and Property 1, it
is easy to see that Ed(0, t) is bounded. In view of (20),
we can obtain that the r̃(k, t) is bounded as k → ∞, for
all t ∈ [0, Tf ]. By using (6) and the fact that rd(t) is a
bounded signal, it follows that as k → ∞, r(k, t) is also

bounded. This, in turn, implies that the state xm(t) of (3) is
also bounded. In addition, in view of the fact that the desired
trajectory xd(t) is bounded, we can conclude that ed(k, t) is
also bounded. Additionally, considering the structure of N ,
it includes a positive definite block of rank ρ∗, which results
in the error of certain states in (20) converging to zero as the
iterations progress, i.e. limk→∞ ∥ed,i(k, t)∥ = 0, ∀i ∈ Iρ∗

n .

(T2): Consider another CEF for MRAC-loop as follows:

V
(
em, K̃x, K̃r, Θ̃

)
= e⊤mPem + trace

(
|Λ|K̃xΓ

−1
x K̃⊤

x

)
+ trace

(
|Λ|K̃rΓ

−1
r K̃⊤

r

)
+ trace

(
|Λ|Θ̃⊤Γ−1

Θ Θ̃
)

In view of (11), the time derivative of V along the solution
of the system is derived as

V̇ = −e⊤mQem + 2 trace
(
|Λ|Θ̃⊤Γ−1

Θ
˙̃Θ
)

+ 2e⊤mP
[
−BΛK̃xx−BΛK̃rr+BΛΘ̃⊤Φ−BΛd

]
+ 2 trace

(
|Λ|K̃xΓ

−1
x

˙̃K⊤
x

)
+ 2 trace

(
|Λ|K̃rΓ

−1
r

˙̃K⊤
r

)
where Q ∈ Rn×n is defined in (10). Utilizing the
property trace

(
CD⊤) = D⊤C and Λ = sign(Λ)|Λ|,

where C ∈ Rn, D ∈ Rn and sign(Λ) =
diag

(
sign(λ1), sign(λ2), . . . , sign(λm)

)
, we have

V̇ = −e⊤mQem − 2e⊤mPBΛd

+ 2 trace
(
|Λ|K̃x

[
−xe⊤mPB sign(Λ) + Γ−1

x
˙̃K⊤
x

])
+ 2 trace

(
|Λ|K̃r

[
−re⊤mPB sign(Λ) + Γ−1

r
˙̃K⊤
r

])
+ 2 trace

(
|Λ|Θ̃⊤[Φe⊤mPB sign(Λ) + Γ−1

Θ
˙̃Θ
])

By virtue of the adaptive laws (8)-(9), it follows that
em(t), K̃x(t), K̃r(t), and Θ̃(t) are bounded since

V̇ = −e⊤mQem − 2e⊤mPBΛd (21)

Thanks to Young’s inequality, it’s easy to obtain that

−2e⊤mPBΛd ≤ ∥em∥2 + λ2
max(P )∥BΛd∥2

Therefore, (21) can be further rewritten as

V̇ ≤ −(λmin(Q)− 1)∥em∥2 + λ2
max(P )∥BΛd∥2 (22)

In terms of the usual argument with Barbalat’s lemma, the
boundedness of em(t) can be guaranteed for t ∈ [0, Tf ] and

lim
t→∞

em(t) =
λmax(P )

(λmin(Q)− 1)
1
2

∥BΛd∥ ≜ γ1(d) (23)

where γ1(d) is a class-K function.

(T3): For clarity, here we emphasize the iteration number
k as the argument. According to the definition of e(k, t),
ed(k, t) and em(k, t), it’s easy to verify that e(k, t) =
ed(k, t) + em(k, t). Together with the results achieved in
(T1) and (T2), we have

lim
k→∞

∥e(k, t)∥ ≤ lim
k→∞

∥ed(k, t)∥+ lim
k→∞

∥em(t)∥

which is bounded for all t ∈ [0, Tf ]. Moreover, due to the
fact that limk→∞ ∥ed,i(k, t)∥ = 0, for all i ∈ Iρ∗

n , we have

lim
t→∞

lim
k→∞

∥ei(k, t)∥ ≤ lim
t→∞

∥(em(t))i∥

=
λmax(P )

(λmin(Q)− 1)
1
2

∥(BΛd)i∥ ≜ γ2(d)
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with a class-K function γ2(d), and (·)i represents the i-th
elements of the vector.

(T4): Considering that xd(t) is a given differentiable and
bounded trajectory, together with the results obtained in (T1)
and (T2), for all t ∈ [0, Tf ] and for all k ≥ 1, we can
conclude the boundedness of xm(k, t), x(t) and r(k, t) from
the definition of ed(t), em(t) and (6), respectively. □

Remark 2: Since the input matrix B is non-square, only
a subset of states is able to asymptotically converge to the
desired trajectory. Nevertheless, these states are typically the
ones of interest in practical applications. This is essentially
a limitation of the ILC technique. ◁

Remark 3: Although each iteration has a finite running
time Tf , in repetitive systems, the running time tends to
infinity as the iteration number increases. This ensures time
domain convergence of the controlled system. ◁

IV. NUMERICAL EXAMPLES

This section applies the IL-MRAC scheme introduced in
Section III to a double linkage pendulum system depicted
in Fig. 2. We first illustrate the superiority of the proposed
method over the conventional ILC and MRAC methods in
certain tracking tasks. Then, the computation efficiency in
terms of the low-cost ILC pre-train is demonstrated through
a linear superposition example.

The double pendulum’s dynamics [19] are given by (24),
where m1, m2 are the masses of the linkages, L1, L2 are the
lengths, c1, c2 are unknown friction coefficients at the joints,
g is the gravitational acceleration, x1(t) =

[
θ1(t), θ2(t)

]⊤
,

x2(t) =
[
θ̇1(t), θ̇2(t)

]⊤
are the angular positions and veloc-

ity of the double pendulum, and u(t) =
[
u1(t), u2(t)

]⊤
are

the control variables denoting the motor torques at the joints.
All units of physical quantities conform to the fundamental
units of the International System of Units (SI).

The double pendulum system (24) is essentially nonlinear
and features model uncertainty and external disturbance as
well as unknown initial states. But, defining the x(t) =
[x1(t)

⊤, x2(t)
⊤]⊤, it can be easily recast into the form of

the dynamic system (1).

A. Velocity tracking example
In this example, the control goal is selected as driv-

ing the state x2(t) to track a step-like trajectory y(t) =
Gf (s)Rd(t) ∈ R2 with filter Gf (s) =

20
s2+9s+20 and

Rd(t) =


[0.05, 0.025]⊤, t < 5

[0.025, 0]⊤, 5 ≤ t < 10

[0.1, 0.075]⊤, t ≥ 10

The runtime duration for each iteration k is 20 seconds.
Here, the parameters of (24) are set to be m1 = m2 =

0.1775, L1 = L2 = 2, c1 = c2 = 0.2, g = 9.8. Initial states
of (24) are set as x(0) = [−0.05, 0, 0.05, 0]⊤.

The reference model is specified as

Am=


0 0 1 0
0 0 0 1
−4 0 −2 0
0 −4 0 −2

, Bm=


0 0
0 0
1 0
0 1

, xm(0)=


0
0
0
0

,

and it is trivial to obtain the expression of desired trajectory
xd(t) = [1sy(t)

⊤, y(t)⊤]⊤.
The tuning parameters of control scheme are taken as

K = diag{1, 1, 1, 1}, Q = diag{10, 10, 10, 10}, Γx =
diag{200, 200, 200, 200}, Γr = diag{50, 50}, ΓΘ =
diag{10, 10, 10, 10}, sign(Λ) = diag{1, 1}, and the initial
values of each entry of Kx(t), Kr(t) and Θ(t) are set to be
zero. The signal regressor Φ(x) is specified as follows:

Φ(x) = −


θ̇1
θ̇2

θ̇1 cos(θ2 − θ1)

θ̇2 cos(θ2 − θ1)

 · 360000

5041(9 cos2(θ1 − θ2)− 16)

The iteration history of the root mean square (RMS)
velocity tracking error ed(t) over a time period of 20s is
shown in Fig. 4. It is evident that the states of the nominal
model converge monotonically to the desired trajectories as
the iteration number increases. Hence, one can imagine that,
if the real plant features exactly the same system model and
initial conditions as the nominal one, then the behavior of a
conventional ILC will be as good as the proposed controller.
However, once such consistency is absent, the conventional
ILC becomes no longer implementable in this example. In
contrast, the success tracking achieved by our controller is
clearly depicted in Fig. 5. Furthermore, we compare the
performance between the proposed method and a classical
MRAC method there. Indeed, both methods can guarantee
the boundedness of trajectories and zero-convergence of the
steady-state tracking errors. But it is worth drawing the
reader’s attention to the green box in Fig. 5 which shows
that the proposed algorithm is capable of directly tracking
the desired trajectories.

B. Superiority validation example

Another important merit of the proposed controller is the
computational efficiency, in the sense that, in the proposed
framework, the ILC-loop learning can be completely done
offline, as the subject to be trained is merely a numerical
nominal model. This property allows us to pre-train and store
a large amount of good reference signals r(t) for different
trajectories xd(t). Nevertheless, if the desired trajectory en-
countered by the real application is still a brand-new one, the
proposed IL-MRAC is capable of finding a suitable reference
signal by directly combining the existing ones because the
system we considered essentially satisfies the superposition
principle. We will show how this can be done next.

Assume we have obtained three ‘ideal’ reference sig-
nals r1(t), r2(t), r3(t) for three different desired trajectories
xd,1(t) = 0.3 sin(0.8t), xd,2(t) = 0.3 sin(1.2t), xd,3(t) =
0.5 sin(4t), respectively. Now, the plant (24) needs to track
a new trajectory specified as follows

xd(t) = 0.1xd,1(t) + 0.2xd,2(t) + 0.3xd,3(t)

We use two strategies to approach this challenge: 1) direct
training of the model in ILC-loop to track the desired
trajectory directly and gain a new reference signal r(t);
2) without any training, we calculate the reference signal
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Fig. 2. Schematic of the double pendulum.
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Fig. 3. Simulation results. A sin-type trajectory tracking in high-fidelity Simulator. The red region of (a) denotes high-speed airflow, while the blue
region denotes low-speed airflow; the red line of (b) represents tracking error, while the blue line represents the generated torque by the controller; (c) is
the final tracking performance.
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Fig. 4. Iterative evolution of the velocity tracking error ed(t).
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Fig. 5. Time evolution of state x(t).

r′(t) = 0.1r1(t) + 0.2r2(t) + 0.3r3(t).
Next, substitute r(t) and r′(t) into the MRAC-loop. As de-

picted in Fig. 6, the complete overlapping of two trajectories
indicates that, even the system to be controlled is nonlinear,
we can dramatically save the time and computation cost in
ILC-loop training by utilizing the existing data.

V. HIGH-FIDELITY SIMULATOR STUDY

In this section, a high-fidelity fluid simulation platform
based on a recently proposed GPU-optimized lattice Boltz-
mann solver [24], [25] is used to simulate an attitude tracking
problem of a 2D jet-controlled robot operating in a non-
quiescent fluid field. This high-fidelity simulation platform
is capable of generating vortex and turbulence flows that
closely resemble the phenomena in the real-world. Therefore,

it can be used to validate the feasibility of the proposed
scheme in practical applications.

The air density in the simulator is set to 1.225 kg/m3,
and the viscosity is 1.81 × 10−5kg/(ms), consistent with
standard atmospheric pressure. The simulator’s space size
is 2m × 1m, and the grid resolution is 500 × 250. Each
grid corresponds to 4mm × 4mm in reality. The controlled
object’s weight and length are 1 kg and 0.2 m, respectively.
Additionally, the controlled object is placed inside a pipe, and
a uniform flow of 0.4 m/s from top to bottom is considered
to simulate the airflow experienced during flight. As the
current solver has high requirements for both CPU and
GPU performance, we conducted all experiments using an
Intel Xeon Gold 6226R and Nvidia RTX 3090. The square
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Fig. 6. Training results of IL-MRAC scheme under different methods.

appearance was chosen instead of a streamlined form to
amplify the effect of turbulence flow and make the control
task more challenging. The results of the 2D jet-controlled
robot are shown in Fig. 3. Fig. 3 (a) presents a series of
snapshots depicting sin-type trajectory tracking results. It can
be seen that the vortices at the nozzle and top of the square
object are strong and complex. This presents a significant
challenge for the IL-MRAC controller to track the desired
trajectories. However, as shown in Fig. 3 (b) and (c), the error
and the output of the controller possess a reasonably similar
behavior, and the tracking error remains within a small
bound, which indicates the proposed scheme demonstrates
a strong ability to cope with a nonlinear and complex
task. The video of experimental results can be viewed at
https://www.youtube.com/watch?v=8e2DULTvmFU.

VI. CONCLUSION

An indirect ILC-embedded MRAC scheme has been de-
veloped for a certain class of nonlinear uncertain MIMO sys-
tems under the effect of external disturbances and unknown
initial states. By decoupling the ILC-loop and MRAC-loop in
the iterative and time directions, the proposed method distin-
guishes itself from existing indirect-type ILC algorithms. In
addition, via reusing the nominal model and reference signal,
the presented framework circumvents their limitations (i.i.c.
assumption and reference model design) while preserving
their advantages (direct tracking and good adaptation ability).
The effectiveness and superiority of the proposed algorithm
have been demonstrated through numerical examples and
high-fidelity experiments. It should be noted that the ILC
and MRAC techniques utilized in the framework can be
substituted with more advanced versions from related fields,
provided that stability conditions listed in our paper are
satisfied. For the purposes of elucidating the core concepts of
the framework, two classic ILC and MRAC techniques are
selected. This novel framework has the potential to broaden
the application range of ILC and MRAC.
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