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Abstract— Low-propulsion vessels can take advantage of
powerful ocean currents to navigate towards a destination.
Recent results demonstrated that vessels can reach their desti-
nation with high probability despite forecast errors. However,
these results do not consider the critical aspect of safety of
such vessels: because their propulsion is much smaller than
the magnitude of surrounding currents, they might end up in
currents that inevitably push them into unsafe areas such as
shallow waters, garbage patches, and shipping lanes. In this
work, we first investigate the risk of stranding for passively
floating vessels in the Northeast Pacific. We find that at least
5.04% would strand within 90 days. Next, we encode the
unsafe sets as hard constraints into Hamilton-Jacobi Multi-
Time Reachability to synthesize a feedback policy that is
equivalent to re-planning at each time step at low computational
cost. While applying this policy guarantees safe operation when
the currents are known, in realistic situations only imperfect
forecasts are available. Hence, we demonstrate the safety of our
approach empirically with large-scale realistic simulations of a
vessel navigating in high-risk regions in the Northeast Pacific.
We find that applying our policy closed-loop with daily re-
planning as new forecasts become available reduces stranding
below 1% despite forecast errors often exceeding the maximal
propulsion. Our method significantly improves safety over the
baselines and still achieves a timely arrival of the vessel at the
destination.

I. INTRODUCTION

Autonomous systems are increasingly deployed for long-
term tasks where energy-efficient operation is critical. For
systems operating in the oceans or in the air, this leads to a
growing interest in utilizing the dynamics of the surrounding
flows as a means of propulsion. Stratospheric balloons and
airships utilize wind fields [1], [2], while ocean gliders and
active drifters exploit ocean currents [3]–[7].

Our recent work [5], [8] has demonstrated that a vessel
with just 0.1m s−1 propulsion can reliably navigate to a
target region by hitchhiking on ocean currents of up to
2.0m s−1. This work has further been extended to the
application of floating farms, which maximize the growth
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Fig. 1: Our method for safe navigation with imperfect dynamics
is based on re-planning on two timescales: 1) compute the safe
Time-to-Reach value function D∗ daily as new forecasts become
available; 2) For every timestep, e.g. 10 min, we obtain u∗ from
π(x, t), which is a computationally cheap and equivalent to re-
planning. This is necessary, as the true currents v(x, t) differ from
the forecasted currents v ̸= v̂, thus, the vessel will be in a different
spatial state x than anticipated. Further motivation is provided in
the lower left image which displays the stranding rate of passively
floating vessels over 10 days.

of seaweed over long time horizons [9], [10] and to multiple
agents that want to stay in proximity to each other to stay
connected in local communication networks [11].

However, these approaches do not factor in safety aspects,
although the use of Autonomous Surface Vehicles (ASV)
in unmanned and long-term operations may pose crucial
safety risks. In the event of significant damage, the ASV may
become inoperable and may be abandoned or sunk, resulting
in financial losses and environmental impacts. One important
safety hazard are shallow waters, especially near strong
currents, as the ASV can easily strand. Another significant
safety hazard is entering a garbage patch that has a high
concentration of marine debris, which can cover an area of
up to 1.6 million km2 [12] as in the case of the Great Pacific
Garbage Patch (GPGP). The garbage can get entangled in the
ASV rotors or damage other components, resulting in loss
of control. Furthermore, collisions with other vessels may
cause damage to the ASV and endanger the crew of the other
vessel. Thus, shipping lanes are another area of increased risk
to the ASV as they are used by large, fast-moving vessels.
Next, we present the related work on safe motion planning
for autonomous vessels in maritime environments.

a) Related Work: Prior research focuses on collision
avoidance [13], [14] and compliance with the Convention
on the International Regulations for Preventing Collisions at
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Sea (COLREGS) [15]–[20] for safe planning of autonomous
motions. For example, Zhao et al. [17] use Reinforcement
Learning (RL) to achieve COLREGS-compliant motion plan-
ning for encounters with multiple vessels. Other works
addressed dynamic obstacles and forbidden regions [21]–
[23]. Most research on safe motion planning for autonomous
vessels considers fully actuated vessels. Since our vessel
has restricted maneuverability due to its low propulsion,
complying with the rules for power-driven vessels from the
COLREGS is not critical. Therefore, we focus on safety
and collision avoidance with largely static obstacles such as
shallow areas, shipping lanes, or garbage patches.

Although research on maritime safety considers under-
actuated vessels, most consider underactuation due to non-
holonomic actuation of vessels such as [24]–[27]. In this
paper, we focus on systems that have a maximum propulsion
that is less than the magnitude of forecasted flow and often
also the forecast error, posing severe challenges for the safety
of ASVs. We use the term underactuated in this paper to
describe such systems, and note that we are using the term
in a way that is closer to its use in robotics, rather than its
typical control-theoretic meaning.

Agents operating in three-dimensional flows can avoid
obstacles or strong currents by utilizing the third dimension
[28]. This was demonstrated for low-propulsion stratospheric
balloons in [29]. Safety was ensured with high probability
by formulating the problem as Markov Decision Process
using a heuristic cost function and training a RL agent.
This approach relies on a realistic uncertainty distribution
of stratospheric winds.

Robust Model Predictive Control (MPC) approaches can
guarantee safety under disturbances by ensuring that the
system is always in a state from which it can reach a robust
control invariant set within a finite time horizon [30], [31].
In this robust control-invariant set, there always exists a
control input that ensures that the system can stay in this
safe set indefinitely. However, in our problem setting with
underactuated vessels and imperfect, deterministic ocean
current forecasts, no such control invariant set exists; hence
robust control with realistic bounds is infeasible, see Sec. II.

Our paper makes two main contributions: First, we per-
form an empirical evaluation of stranding risk for passively
floating vessels in the Northeast Pacific. Second, we present
our methods of Hamilton-Jacobi Multi-Time Reachability
(HJ-MTR) with re-planning on two timescales for safe
motion planning of underactuated ASVs in a setting with
realistic ocean currents and daily forecasts. Furthermore, we
evaluate our controller with several baseline controllers over
a large set of simulated missions. Since we focus on realistic
conditions, we chose to empirically evaluate our controller
in ocean currents with realistic forecast errors.

In what follows, we define our problem statement in Sec. II
and motivate the need for a safety controller with a stranding
study in Sec. III. In Sec. IV we introduce our method and
summarize HJ-MTR. We present our extensive simuation
experiments in Sec. V and discuss them in Sec. VI. We
conclude and present future work in VII.

II. PROBLEM STATEMENT

We now define the problem of collision avoidance for
underactuated vessels by introducing the flow model, vessel
model, and representation of obstacles. We then introduce
the notion of stranding as our key performance measure.

A. System Dynamics, Obstacles and Target

We consider moving in a general time-varying non-linear
flow field v(x, t) → Rn, with x ∈ Rn representing the
spatial state, t ∈ [0, T ] the time and n the dimension of
the spatial domain. In our case, n = 2 as we regard an
ASV operating on the ocean surface. We denote the actuation
signal by u from a bounded set U ∈ Rnu with nu the
dimension of the control. Let x(t) ∈ Rn denote the position
of our ASV at time t. Our model for the dynamics of the
ASV is given by

ẋ(t) = f(x(t),u(t), t) (1)
= v(x, t) + g(u,x, t) ∀t ∈ [0, T ], (2)

The actuation u influences the relative velocity g(u,x, t)
of the ASV with respect to the ocean. Hence the absolute
velocity of the vessel is given by the vector sum of the ocean
currents at the location of the vessel and the relative velocity
of the vessel with respect to the currents. The maximum
actuation of the vessel is constrained by ||g(u,x, t)||2 ≤
umax. We define the target and obstacle as sets T ⊂ Rn and
O ⊂ Rn respectively. We assume that these sets are not time-
dependent. However, note that our results can be extended
to time-dependent cases using schemes given in [32].

B. Problem Setting

The agent’s goal is to navigate safely and reliably from
a start state x0 at start time t0 to a target region T ⊂ Rn.
We employ the same empirical definition of reliability as [8]
defining it as the success rate of a controller navigating from
x0 at t0 to T within a maximum allowed time Tmax, over a
representative set of start-target missions (x0, t0, T ,O) ∈ M.
We define stranding as an agent entering the obstacle set O
before Tmax. We then quantify safety as the stranding rate of
a controller over the set of missions M. The obstacle set in
our experiments are shallow waters, but this can be any static
obstacles such as garbage patches or areas with high shipping
traffic density. If the true currents are known a priori and
there exists a trajectory that prevents stranding, our method
guarantees safety. However, we are interested in realistic
settings where only daily current forecasts v̂ are available
and these differ from the true currents v by the forecast
error δ. The forecasts provided by HYCOM [33] have a
global forecast error of Root Mean Squared Error (RMSE)
RMSE(δ) = 0.2m s−1. In this setting with a complex empir-
ical distribution of forecast errors δ(x, t) and severe underac-
tuation e.g. in our experiments ||g(u,x, t)||2 = 0.1m s−1 ≪
Root Mean Squared Error (RMSE)(δ) ≈ 0.2m s−1 and cur-
rents ||max(v)||2 ≈ 1.4m s−1 safety despite worst-case
forecast errors is impossible. Hence, in Sec. V we evaluate
the performance of our method empirically over a large
set of missions M under realistic currents and forecasts V.
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Fig. 2: Rate of passively floating vessels stranding, which we define
as entering waters with depth less than −150m. 5.04% of 10 000
simulated vessels starting in the region strand within 90 days. Some
vessels float over 20.0◦ before stranding.

We evaluate the performance based on the binary indicator
functions ISuc, IObs that evaluate to 1 if in the T and O sets
respectively and to 0 otherwise:

E x, t ∼ M︸ ︷︷ ︸
initial condition

; v, v̂ ∼ V︸ ︷︷ ︸
real and forecasted

ocean currents

{ISuc, IObs}︸ ︷︷ ︸
Success and Stranding

III. STRANDING STUDY

To illustrate the need for our safety controller, we analyze
the rate of stranding for passively floating vessels off the
coast of California and Mexico between N15◦ and N40◦ and
W160◦ and W105◦. We define entering an area with a depth
of less than −150m as stranding.

The stranding study can be conducted analytically or
experimentally. Here, we perform it empirically by sampling
10 000 missions each consists of a uniformly sampled start-
ing location, outside of the stranding area, and a uniformly
sampled starting time. We simulate the trajectories over a
time horizon of 10 and 90 days, using Copernicus data for the
year 2022. We observe that 1.67% missions strand within 10
days and 5.04% strand within 90 days. In Figure 2 we show
the spatial distribution of the stranding rate over 90 days. We
stop the simulation for vessels leaving the investigated region
and assume they do not strand, this occurred for 1.78%
missions within 10 days and 18.75% within 90 days.

IV. SAFE HJ CONTROLLER

The forecasts provided by many operational ocean fore-
casting systems are deterministic. This prohibits applying
probabilistic methods that would require a realistic distri-
bution of currents [34]. As alluded to in Sec. II, robust
control is infeasible in our setting. Hence we ensure safety
with imperfect forecasts by first solving an optimal control
problem assuming the forecated currents are accurate (Sec.
IV-A) and then developing a schema for re-planning on two
timescales to ensure safe and reliable operation (Sec. IV-B).

A. Multi-Time Hamilton Jacobi Reachability

To obtain our controller we first solve the continuous-time
optimal control problem formalized in HJ-MTR assuming the
forecasted currents v̂ are accurate. For the sake of complete-
ness and to focus on the relevant aspects, we summarize the
technique here. HJ-MTR [32] uses dynamic programming to
derive a controller that avoids obstacles and (a) if possible,

will get the system to the target in the minimum time, and (b)
if not, will get as close to the target as possible. To achieve
this behavior, we first define the modified dynamical system
fa such that the state x of the vessel remains in the target
or obstacle once it enters either of them.

ẋ = fa(x,u, t) =

{
0, x ∈ O ∪ T
v̂(x, t) + u(t), otherwise.

. (3)

Next, we define a cost function consisting of a running cost
l and a terminal cost lterm over the time-horizon t to T :

J(x,u(·), t) = lterm(x(T )) +

∫ T

t

l(x, s)ds (4)

The terminal cost function lterm(x) is infinitely high if the
ASV terminates in an obstacle and is otherwise equal to the
distance from the target set.

lterm(x) =

{
∞, x ∈ O
d(x, T ), otherwise.

. (5)

Our running cost l(x, s) provides a reward for every time
step once the target is reached:

l(x, s) =

{
−1, x ∈ T and x ̸∈ O
0, otherwise.

(6)

Using dynamic programming we then obtain the
Hamilton-Jacobi Partial Differential Equation (PDE) which
lets us solve for the optimal value function J∗:

∂J∗(x, t)

∂t
=


1, x(t) ∈ T ∩ (O)c

0, x(t) ∈ O
−minu [∇xJ

∗·f(x,u, t)] , otherwise.

J∗(x, T ) = lterm(x). (7)
To better interpret the the meaning of the value J∗(x, t) we
use a simple transformation to obtain the safe Time-to-Reach
(TTR) map D∗. An example is plotted in Fig. 3.

D∗(x, t) = T + J∗(x, t)− t, ∀(x, t) s.t., J∗(x, t) ≤ 0

For example, if D∗(x, t) is equal to 3, it means that a vessel
starting at x at time t can reach the target in 3 time units
when following the time-optimal control which can be easily
computed from D∗ as detailed next. The value functions J∗

and D∗ allow us to compute the time-optimal policy for the
system assuming the forecasted currents are accurate

πv̂(x, t) = argmin
u

[∇xD
∗(x, t) · f(x,u, t)] (8)

Under holonomic dynamics g(u,x, t) = u as in our experi-
ments, this simplifies to the negative gradient of D∗, as this
is the direction that will lead the ASV to the lowest time-to-
reach value:

πv̂(x, t) = − ∇xD
∗(x, t)

∥∇xD∗(x, t)∥2
umax.

B. Replanning to Operate With Imperfect Forecasts

The derived HJ-MTR policy πv̂ is time-optimal and guar-
antees safety when the forecasted currents are accurate.
However, in realistic settings forecasts are imperfect and
differ from the true currents. To achieve safe and reliable
operation we replan on two timescales as depicted in Fig. 1.

First, on a daily basis we receive new forecasts v̂ and solve
the optimal control problem to obtain the value function
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Fig. 3: Trajectory of our method in analytical currents evading
obstacle. The safe Time-to-Reach map spares out obstacles and
areas where the underactuated agent is inevitably pushed into the
obstacle.

using HJ-MTR. Second, we use the policy πv̂ (Eq. 8) as
feedback policy. This means that at each timestep when we
are at a state x, we take the control that is time-optimal
assuming the forecast is true from that time onwards. This
is equivalent to full-time-horizon replanning on the forecast
at every step. This is necessary because the true currents v
differ from the forecast currents v̂, therefore, at each step,
we will be in a spatial state x different from that anticipated.
The full schema is sketched out in Algorithm 1.

In summary, there are three core advantages of our method
compared to classical MPC with non-linear programming.
The solution of the HJ-MTR guarantees time-optimality
under known arbitrary non-linear dynamics over the full-
time horizon and does not get stuck in local optima. The
online computation for replanning at every step is very low,
for holonomic systems it’s a simple gradient computation.
Lastly, this approach enables graceful degradation: in case
the vessel cannot reach the destination our method will
attempt to minimize the terminal distance to the target, while
non-linear programming would not provide a solution.

Algorithm 1: Replanning on Two Timescales
Input: Forecast Currents v̂(x, t), t = 0, x(t) = x0

while t ≤ Tmax and x(t) ̸∈ T and x(t) ̸∈ O do
if new forecast available then

compute new safe time-to-reach map D∗

ut = πv̂(x(t), t) =
argminu g(u,x(t), t) · ∇xD∗(x(t), t)

Apply ut for ∆t:
x(t+∆t) = x(t) +

∫ t+∆t

t
f(ut, x(s), s) ds

t = t+∆t

V. EXPERIMENTS

To evaluate if our method can reduce the stranding rate
while also reaching the target, we simulate a large number

of missions on realistic ocean currents and compare the per-
formance of our method to baseline methods. In this section,
we first detail the system dynamics and simulation setup and
then how we ascertain the realism of our simulations. Further,
we explain the creation of our obstacle sets, the generation
of a representative set of missions, and lastly the baselines
and controllers we compare to and the evaluation metrics.

A. Experimental Setup

Our experiments investigate the stranding rate and relia-
bility of several controllers for navigating a two-dimensional
ASV with holonomic actuation g(u,x, t) = u of fixed
magnitude ||u||2 = 0.1m s−1. The control input is the
angle θ for steering the ASV in ocean currents v(x, t) ∈
[0m s−1, 1.4m s−1], which the vessel utilizes to reach its
target region. We simulate the ASV for Tmax = 240 h. If
the ASV collides with an obstacle, we terminate the mission
and count it as stranded, if it reaches the target region within
Tmax we count it as success, if it does neither we count it
as timeout.

a) Realistic Ocean Forecast Simulation: In a real-world
setting, a vessel can receive the most recent forecast daily
and provide it to the control method to perform replanning.
To simulate the system dynamics based on the true currents
v(x, t) we use Copernicus hindcasts [35]. For simulating the
daily forecasts we use a series of 5 days of HYCOM [33]
hindcasts that become available daily. It should be noted
that, unlike HYCOM, Copernicus incorporates tidal currents
into its forecasts. We want to ensure a realistic simulation
of the forecast error δ. The forecast error can be measured
with various metrics such as RMSE, vector correlation, and
separation distance [33], [35]. In our simulations, these are
on average 0.18m s−1 RMSE, which is close to the RMSE
of the HYCOM forecast error [36] at 0.19m s−1. In terms
of vector correlation, with a value of 2 representing perfect
correlation and 0 no correlation, we measured 0.63 compared
with 0.64 for the HYCOM forecasts [36] and 0.62 for
Copernicus [35], each measured at t = 71h. Thus, our
simulation setup represents realistic situations well.

b) Obstacles derived from Bathymetry: The bathymetry
data we employ is the GEBCO 2022 grid [37]. It is a global,
continuous terrain grid with a resolution of 15′′. We coarsen
it to the same resolution of the current data 5′ by using the
maximum in each grid cell to overestimate the elevation in
each grid cell.

c) Representative Set of Missions: We generate a repre-
sentative set of 1146 start-target missions (x0, t0, T ,O) ∈ M
with high stranding risk based on the following procedure.
First, we select suitable target regions T using rejection
sampling: we uniformly sample the center points for target
regions xT ,center spatially in the region introduced in Sec.
III. We then reject points based on three conditions: if they
are too close to the simulation region boundary (distance
below 0.5◦), if they are too close to the obstacles (distance
below 0.025◦), and if they are too far from the obstacle
(maximum distance to an obstacle above 3◦). The high-risk
target regions T are then the circular regions with radius
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rT = 0.1◦ around xT ,center. To ensure diverse ocean current
conditions we then uniformly sample times t0 from 2022.
To select the start-point x0 for each mission, we need to
make sure that it is fundamentally feasible to reach the target
from x0. For that, we calculate the set of all states from
which there exists a control such that the ASV can reach the
target within a specific timeframe knowing the true currents
v and assuming no obstacles. Note that if we calculate
the TTR map D∗ based on v as illustrated in Fig. 3, we
directly get the sets of states that can reach the target within
a specific timeframe [tlower, tupper] as using the values of
D∗, {x | D∗ ∈ [tlower, tupper]}. We then sample the start
position x0 from these sets so that the ASV could reach
the target within 5-9 days assuming known currents and no
obstacles.

d) Baselines and Controllers: We evaluate our method
Multi-Time HJ Reachability Closed-Loop Controller With
Obstacles (MTR) in comparison to three safety controllers
and two baselines. The first baseline is Passively Floating
(Floating) to lower bound the performance of controllers
and to show the complexity of safely completing the mis-
sions. The second baseline is the MTR With No Obstacles
Controller (MTR-no-Obs) [8]. The first safety controller we
compare against is Switch-MTR-no-Obs, a simple solution
that adds safety functionality to the baseline MTR-no-Obs.
It does not reason about currents for safety, instead, it is
a switching controller that uses MTR-no-Obs when it is
far away from obstacles and switches to an away-from-
obstacles controller if the ASV gets closer than 20 km to
the obstacle. The away-from-obstacle controller actuates with
full actuation into the direction of the largest distance to
obstacles and once the distance to obstacles is larger than the
threshold, the navigation controller MTR-no-Obs takes over
again. The second and third safety controllers are ablations
to our main method MTR. The Switching Controller With
Obstacles (Switch-MTR) is the same switching as before
but uses MTR for navigation. Lastly we compare with MTR
With Small Disturbance (SmallDist-MTR), a robust control
version of MTR with an unrealistically low disturbance of
d = 0.05m s−1. We obtain the robust value function by
formulating the optimal control problem as game between
u and d and then solving the HJ PDE [38].

e) Evaluation Metrics: As detailed in Sec. II we have
two metrics. The main metric stranding rate measures safety
as the rate of entering the obstacle set O over the set of
missions M. The success rate measures the reliability of
reaching the target.

B. Experimental Results

In the complex realistic flows with large forecast errors
and close proximity to obstacles, our controller MTR has
a stranding rate of only 0.96%, compared to 4.71% of the
baseline MTR-no-Obs (Table I) and outperforms the other
safety controllers.

We evaluate if the stranding rate of the controllers is
lower than the baseline of MTR-no-Obs in a statistically
significant manner with a one-sided two-sample z proportion

test. Let Γ be the stranding rate of a controller and our
null hypothesis be: H0 : ΓMTR-no-Obs = Γcontroller. With
the alternate hypothesis: HA : ΓMTR-no-Obs > Γcontroller.
The stranding rate of all safety controllers is higher than
MTR-no-Obs in a statistically significant way with p-values
Switch-MTR-no-Obs p = 2.6e−3, MTR p = 3.1e−8,
Switch-MTR p = 9.3e−7, and SmallDist-MTR p = 9.5e−5.
The success rate of MTR is not reduced by safety: in fact it
shows the highest success rate.

TABLE I: We compare the performance of multiple controllers, the
arrows indicate if high, or low is preferred. Our MTR outperforms
other controllers in terms of safety and reliability. ∗ marks a statis-
tically significant lower stranding rate compared to MTR-no-Obs.

Controller Stranding Rate ↓ Success Rate ↑

MTR(ours) 0.96%∗ 37.26%
Switch-MTR 1.31%∗ 37.17%
SmallDist-MTR 1.92%∗ 33.16%
Switch-MTR-no-Obs 2.53%∗ 36.82%
MTR-no-Obs 4.71% 36.91%
Floating 4.89% 2.53%

VI. DISCUSSION

We note that all our safety controllers have a success rate
that is lower than the 82.3% as reported for MTR-no-Obs
in [8]. We believe this is due to three differences in the
experimental setup. First, our missions are longer and have
smaller time buffers to reach the target. The time-to-target for
each mission in [8] is between 20-120h with Tmax = 150 h,
while our sampled time-to-target is 120-216h with Tmax =
240 h. In extreme cases, their missions are expected to finish
in 20 h with 130 additional hours to reach the target, while
in the worst case, our missions can have a 216 h mission
with a buffer of 24 h. Second, some of our missions may
be infeasible due to stranding on obstacles as we sampled
the starting points x0 without considering obstacles. Third,
we sample missions with a maximum distance to shore of
3◦, which exposes the vessels to more tidal currents near the
shore which implies a higher forecast error.

VII. CONCLUSION AND FUTURE WORK

In this work, we have demonstrated that HJ-MTR with
obstacles can be used to reduce the rate of stranding even
in complex flows using daily forecasts with large errors. We
evaluated our method over a large set of 5-9 day start-to-
target missions distributed spatially near the Coast of Cali-
fornia, Hawaii, and the Baja California area and temporally
across the year 2022 using realistic ocean currents. In our
experiments, our method has achieved a stranding rate of
0.96%, which is significantly lower than that for the baseline
controllers and also has a slightly higher success rate. While
we have demonstrated the ability of our method with two-
dimensional ocean currents, we emphasize that it is also
applicable in a three-dimensional setting [28] underwater or
in the air. Furthermore, HJ-MTR is able to handle time-
varying constraints [32]. However, including dynamic ob-
stacles such as ships that move fast and change their course
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would require a higher frequency of re-planning to account
for course changes, resulting in higher computational costs.

In the future, we plan to model zones of a potential hazard,
e.g. shipping lanes and garbage patches, as soft constraints,
where instead of preventing entering altogether it would
be beneficial to, e.g. minimize the time spent therein. By
reducing time in shipping lanes an ASV could avoid many
vessels. As of now, it’s unknown how underactuated ASVs
would be classified under the COLREGS and if evasion is
necessary or if they should stop their propulsion to be floated
along a vessel [39], [40]. Getting the rotors of an ASV
entangled in the garbage can render it inoperable, hence it
is beneficial to avoid areas with a larger density of garbage
such as the center of the GPGP, while not making the whole
1.6 million km2 [12] of the GPGP an obstacle to avoid. To
solve this, we can investigate using a risk-based extension
of a soft-edge and dynamic forbidden region [23], [41].
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