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Combinatorial-hybrid Optimization for Multi-agent Systems
under Collaborative Tasks
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Abstract— Multi-agent systems can be extremely efficient
when working concurrently and collaboratively, e.g., for trans-
portation, maintenance, search and rescue. Coordination of
such teams often involves two aspects: (i) selecting appropriate
sub-teams for different tasks; (ii) designing collaborative control
strategies to execute these tasks. The former aspect can be
combinatorial w.r.t. the team size, while the latter requires
optimization over joint state-spaces under geometric and dy-
namic constraints. Existing work often tackles one aspect by
assuming the other is given, while ignoring their close depen-
dency. This work formulates such problems as combinatorial-
hybrid optimizations (CHO), where both the discrete modes of
collaboration and the continuous control parameters are opti-
mized simultaneously and iteratively. The proposed framework
consists of two interleaved layers: the dynamic formation of
task coalitions and the hybrid optimization of collaborative
behaviors. Overall feasibility and costs of different coalitions
performing various tasks are approximated at different granu-
larities to improve the computational efficiency. At last, a Nash-
stable strategy for both task assignment and execution is derived
with provable guarantee on the feasibility and quality.

I. INTRODUCTION

Fleets of heterogeneous and autonomous robots are de-
polyed nowadays to accomplish tasks that are otherwise
too inefficient or even infeasible for a single robot, e.g.,
collaborative transportation [1], dynamic capture [2] and
surveillance [3]. Both the overall efficiency and capability of
the team are significantly improved by allowing the team of
robots to act concurrently and collaboratively. Two aspects
are often involved for the coordination of such teams. On
the one hand, the given set of tasks could be accomplished
by various subgroups of the team, however at drastically
different costs [4], [5]. For instance, three agents can detect
and capture a dynamic target much faster than one agent
(if possible at all), while five agents might be redundant
in certain scenarios. Thus, an appropriate task assignment
is crucial for the overall performance, which unfortunately
often has a complexity combinatorial to the number of agents
and tasks. On the other hand, given certain assignments, how
each subgroup executes the assigned task often boils down
to an optimal control problem [1], i.e., how to actuate the
agents collaboratively to minimize the cost associated with
a task, under the dynamic and geometric constraints [6].
Exact optimization has a high complexity due to the long
horizon and the high dimension of joint-state-control space
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of all collaborators. Lastly, there is often a “chicken or
the egg” dilemma w.r.t. these two aspects [7]. Namely, the
task assignment relies on the optimal control to evaluate
feasibility and actual cost, while the optimal control problem
requires certain assignments as inputs. Solving first the
control problems for all possible assignments and then the
task assignment problem is mostly intractable, as it multiplies
the complexity of both aspects.

A. Related Work

Task planning for multi-agent systems refers to the process
of first decomposing this task into sub-tasks and then assign-
ing them to the team, see [4], [8] for comprehensive surveys.
Well-known problems include the classic one-to-one as-
signment problem [9], the well-known multi-vehicle routing
problem [8], and the coalition formation problem [5], [10].
Representative methods include the Hungarian method [9],
the mixed integer linear programming (MILP) [4], the
search-based methods [11]; and the market-based meth-
ods [8]. However, this body of literature normally assumes a
static and known table of task-per-agent costs, which is not
always available or even invalid for collaborative tasks, as
the benefit of one agent joins a task depends on which other
agents also participate.

Motion planning for multi-agent systems refers to the de-
sign of control strategies for each agent to accomplish a given
task. One common task is the collaborative navigation where
each agent navigates to its goal position while avoiding colli-
sion with other agents or obstacles, see [12]. Another relevant
task is the collaborative load transportation [13], [14], where
several agents transport one object to the destination via
pushing or grasping. These motion planning problems remain
challenging due to the dynamic and geometric constraints
associated with different tasks.

Integrating the above two aspects yields a task and motion
planning (TAMP) problem for multi-agent systems [15],
[16]. The work in [7] proposes a combination of reced-
ing horizon-based task decomposition and motion planning
for autonomous assembly. Similarly, a furniture-assembly
task is considered in [17] where re-grasps are introduced
to decompose the long-horizon assembly operations. Both
works put strong emphases on the physical stability and se-
quential feasibility during collaborative manipulation, while
neglecting the combinatorial aspect as only a few agents are
considered. Thus, there remains a need for an integrated
solution for multi-agent TAMP problems that can tackle
simultaneously the combinatorial task assignment and the
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B. Our Method

To overcome these challenges, this work proposes a
combinatorial-hybrid optimization (CHO) framework for
multi-agent systems under collaborative tasks. Several agents
can collaborate on one common task as a coalition, the cost
of which depends not only on the number of participants,
but also the mode of collaboration and the underlying
control parameters. Thus, the proposed framework includes
two layers: (i) the optimization of coalition structure, and
(i) the hybrid search of optimal collaborative behavior
as the sequence of discrete modes and continuous control
parameters. Both layers are performed concurrently and in-
demand, i.e., the hybrid search for a given task coalition
is solved for the actual cost, only when such a coalition
is demanded promising during task assignment. It is shown
that the final solution of coalition structure and the associated
collaborative behavior is Nash-stable.

Main contribution of this work lies in two aspects: (i) the
formulation of combinatorial-hybrid optimization problems
for multi-agent systems under collaborative tasks, particu-
larly for scenarios where the agent-per-task costs do not exist
and can only be derived after solving a hybrid optimization
problem; (ii) the proposed framework finds simultaneously
the coalition formation and the optimal collaborative behav-
iors, with a provable quality guarantee.

II. PROBLEM DESCRIPTION
A. Model of Workspace and Agents

Consider a team of [N agents that collaborate in a shared
workspace, denoted by X — R¥. The system state € X
includes not only the agent states but also other dynamic
components such as movable objects and targets. Due to
the dynamic and geometric constraints such as collision
avoidance among the agents and with obstacles, the system
is required to stay within the allowed subset X5,z < &

B. Parameterized Modes

Moreover, these agents can change the system state by nu-
merous parameterized modes, denoted by = = {&1,- -+ , £k}
Under each mode & € =, the system state evolves under a
closed-loop dynamics hy : X x 2V x RP» — X ie.,

a(t+1) = hy(a(t), Nk, pi), VE€ [to, to + Tx), (1)

where k € K = {1,..-, K} for one valid mode; N}, € N
is a subset of agents that participate in this mode (called
coalitions); p, € RP* is the continuous parameter chosen
for this mode with dimension Py; z(t) and z(t + 1) are
the system states before and after agents in N} perform
mode & with parameter p; for one time step; to = 0 is
an arbitrary starting time; 7} is a given minimum duration
of mode &j;. For performance measure, there is a cost
function ¢ : X X% 2N x RP — R* associated with each
mode & under a particular choice of (N, pg). It is assumed
in this work that the functions hy, ¢, above associated with
each mode &, € = is accessible either via explicit functions or

Fig. 1. Illustration of three different modes for the use case of object
transportation: Long-Side Pushing (Left), Short-Side Pushing (Middle), and
Diagonal Pushing (Right).

numerical simulations. Such modes are often built upon well-
established functional modules that are designed beforehand
for specific and simpler purposes.

Example 1. As illustrated in Fig. 1, for the case of collabo-
rative transportation, the agents can make contact at specific
points on the box and push it forward by applying pushing
forces F,, € [0, Fiax]. Different combinations of contact
points result in different system dynamics thus different
modes = = {{}. Moreover, the parameters for modes = are
the applied forces py, = {F,}. It is evident that these agents
need to switch from a long-side pushing mode to a short-side
pushing mode, when moving through narrow corridors. W

C. Collaborative Tasks

Furthermore, there are M tasks specified for the team,
denoted by Q = {wq, -+ ,wp}. Each task w,, €  in the
most general sense is to change the system state to a set of
goal states X, € X. Each task can be accomplished by a
hybrid plan as a sequence of modes with appropriate choices
of coalitions and parameters, i.e.,

Om = (Ekgrs Ny prg) -+ (s Ny prgp ), (2)

where L > 0 is the total number of modes to be optimized;
and (Nk;n, prr) are permissible coalitions and parameters
according to function hg¢, in (1) for each mode gkzn € =,
V¢ = 1,---, L. Thus, the evolution of system state under
plan ¢, is constrained by:

N U C R (PP

3)

T = To, Ty € Xg

m

where zo € X is a given initial state. The associated cost
of ¢, is given by the accumulated cost, i.e., c(p;,) =
D Cr (mkﬁl, J\/’kzn, Pk;;l% which holds for each w,, € Q.
In addition, since different modes can be executed in a
concurrent way for different tasks, it is assumed in this work
that different tasks change different dimensions of the state
in an independent way, i.e.,

2(t+1) = 2(t)+ Y (hup (2(0), Mg, pip) =2 (1)), @)
wm €N

where fk;n € = is the active mode of task w,, at time ¢t > 0;
(Nim, pry) is the associated coalition and parameter; z(t)
is the current system state; and x(¢ + 1) is the resulting state
after executing all active modes for one time step. Lastly,
since each agent can only participate in maximal one task
for all time, it holds that:

le (t) M Ny (t) =, Vwm17wm2 € )
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where NV, (t), N, (t) denote the coalitions responsible for
executing any two tasks wy,, ,wm, € €1 at time ¢ > 0.

D. Combinatorial-hybrid Optimization (CHO)

Problem 1. Given the above model of N agents
and M tasks, the complete combinatorial-hybrid optimiza-
tion (CHO) problem is defined as follows:

{Ig,lﬂ {max{c ©Om }+ Z c(Pm } ©)
st. (3)—(5), Vi, ¥m:

where {®,,} is the set of hybrid plans for all tasks; the
objective is to minimize a balanced cost between the maxi-
mum cost and the average cost among all tasks; (3)-(5) are
the dynamic and geometric constraints associated with the
system state and the structure of coalitions. ]

III. PROPOSED SOLUTION

The proposed solution tackles Problem 1 via two inter-
leaved and concurrent layers: (i) coalition formation, and (ii)
hybrid optimization of collaborative behaviors. The first layer
proposes candidates of coalitions for each task to minimize
the overall cost. These candidates are then sent to the second
layer which solves a constrained hybrid optimization for each
coalition, to determine the optimal hybrid plans and actual
cost to accomplish the assigned task. These costs are then
fedback to the first layer to adjust existing coalitions. This
process repeats itself until a Nash-stable solution is found.
Each layer is described in detail in this section.

A. Coalition Formation

1) Problem of Coalition Formation: The first layer assigns
the set of tasks to available agents. To begin with, the task
assignment problem is formulated based on the literature
of coalition formation [18], [19]. Particularly, consider the
coalition structure defined as follows:

F=(R,Q, f), )

where R = {1,---,N} is the team of N agents; Q =
{wy, - ,war} is the set of M tasks; f : 27 x Q — RT
is the cost function of a potential coalition for any given
task in €). Not that since the exact cost f above is often
unknown, thus estimated initially by simple heuristics such
as Euclidean distance, denoted by f.

Definition 1 (Assignment). A valid solution of the coalition
structure F in (7) is called an assignment, denoted by p =
{(Rm, wm), Ywm, € Q}, where R,,, € R is a coalition that
performs the common task w,, € @, and Ry, N Ry, =
o, ¥Ymq # ms. Moreover, the estimated cost is given by:

Cu) = max {fm} —I— — Z fm7 (8)

WmEN
m wmeﬂ

where fm = f(Rm, W) is the estimated cost of each
coalition; and C(-) is a balanced cost based on (6). [ |

Let p(wy) = Ry, return the coalition for task w,, and
u(n) = wy, return the task assigned to agent n, Vn € R,,

T T
s Tz./ .\3 g Taf \.7“1 N

,,,,,

olia. s

W) Wy W3 Wi Tasgk W) Wy W3 Wi Tagk
SWITCH (r; — R.,) SWITCH (r; — R.,)

Fig. 2. TIllustration of the coalition formation algorithm in Sec. III-A.2.
Agents switch coalitions to reduce the overall cost in (8).

More importantly, an assignment g can be modified via the
following switch operation.

Definition 2 (Switch Operation). The operation that
agent n € R is assigned to task w,, € € is called a swirtch
operation, denoted by o'. The switch o) is valid only if
agent n can perform task w,,. Thus, an assignment p is
changed into a new assignment fi via o7 such that ji(n) =
Wy, For brevity, denote by i = ol*(u). |

Definition 3 (Nash Stable). An assignment p* is called
Nash-stable, if there does not exist any switch operation o)
such that C(o™(pn)) < C(u*) by (8), Vne N. [ ]

Given the above definitions, the first layer of coalition
formation is transformed into the problem of finding a Nash-
stable assignment as follows.

Problem 2. Given a coalition structure F in (7), find one
Nash-stable assignment p* by Def. 3. |

2) Dynamic Task Assignment: The proposed solution fol-
lows an iterative switching operations to reduce the largest
cost of all tasks. An initial assignment py can be derived in
a random or greedy way. Then, the farget coalition with the
k-th maximum cost is selected via:

(Rm*vwm*) = argmax%gm,wm)e,m {fm}, 9

where £ = 1 initially for the maximum cost; and ties are
broken arbitrarily. Given (R,,+,wm+), the first step is to
calculate the actual utility f,,~, via the hybrid optimization
procedure described in the subsequent section. There are
two possible outcomes: (I) If f« = maxX,,.m+{fm}, it
means that w,,» remains the target coalition. As illustrated
in Fig. 2, the goal is to find a switch operation U,T* for one
agent n € N such that after applying a;”* the maximum cost
is reduced, i.e.,

max {f(Rum+ 0 {n}, wm+), f(Rpn-\{n}, win-)}
< max {f(Rm*7 Wine)s (R, Wm—)}7

where m~ = po(n) is the task to which agent n was assigned
before applying the switch. Such a switch can be found by
iterating through all agents within R\R,,~, and verifying
whether the condition in (10) holds. Once a switch O’TT*
is found, a new assignment is given by p1 = o™ (1),
after which a new target coalition can be found via (9).
(D) If for < MaXp,zm+{fm}, it means that w,,« is no
longer the target coalition based on its actual cost. Then, the
estimated utility f,,~ is updated accordingly and thus a new
target coalition can be found via (9). The above procedure is

(10)
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repeated until the target coalition does not change anymore,
of which the assignment and target coalition are denoted
by px, and (W, Ry ), respectively.

Afterwards, the same process is repeated but focusing
on the target coalition with second largest cost, i.e., by
setting g, as the initial assignment and £ = 2 instead
in (9). Similarly, the procedure converges in this round after
the target coalition remains unchanged. The same round is
performed for £ = 3 and so on until & = M, when the
target coalition px,, has the minimum utility. Note that if
the target coalitions from the previous rounds, e.g., round k1,
are changed during the current round ks > kp, the whole
process is re-started from k£ = 1.

B. Hybrid Optimization

As previously mentioned, the group of agents in R,, as a
coalition should follow a hybrid plan ¢,, as defined in (2)
to accomplish task w,,. This section presents how such a
hybrid can be found via the proposed hybrid optimization.

1) Problem of Hybrid Optimization: For the ease of
notation, let X = xym ---xpm be the sequence of system
states at discrete time steps ¢t = 0,1,--- ,7T for a sufficient
duration T, B = &gy - -+ &g and P = pgm -+ ppm be

L1 JVEN AT N,

the sequence of modes applied to the system for time periods
[to,tl), [thtz), Ty, [thlvtN)’ where t,, = TLTQ,TO e N,
Vn = 0,---,[£] Note that Ty > 0 is chosen as a
lower bound on the duration of each mode to avoid too
frequent switching of modes and parameters. Furthermore,
let X, 8y, Py denote xp, Sk, pryn. Then, the hybrid
optimization problem is stated as follows:

Problem 3. Given a task w,, and the associated coalition
R, find the optimal sequences (X, E, P) that solve the
hybrid optimization (HO) problem below:

T
Illilljl Z Ccom(Xta Pt)
7 t=0
s.t. X() = Ty, X € XGm;

Sk = By, prp =Py, VEE [tn, tni1);
Xt+1 = hfk;ﬁ (Xt, Rm, Pt), YVt e [O, T‘]7

Y

where ccon(+) is a general function including the control cost
and smoothness; h&k;n (+) is the system dynamics under each
mode from (1); and the constraints require that the mode and
parameter are kept static within [¢,,, t,41). ]

Note that different from the original combinatorial-hybrid
optimization problem in (6), the goal of the hybrid optimiza-
tion problem above is to find the optimal hybrid plan ¢,,
for a specific task w,, and the corresponding coalition R,,.
A novel hybrid-search algorithm called Heuristic Gradient-
Guided Hybrid Search (HGG-HS) is proposed to solve
Problem 3. Instead of feeding the above problem directly
into a general nonlinear optimizer, the proposed algorithm
combines: (i) the A*-based discrete search for the optimal
sequence of modes, and (ii) the gradient-based optimization
for the optimal sequence of parameters. More specifically, the
hybrid search tree is defined as 7 = (V, E, vy, Vi), where

EXPANSION

SELECTION

argmin, v (cost(v) +h" (v))

Fig. 3. Illustration of the hybrid search algorithm in Sec. III-B.3: selection
and expansion (Left); iterative parameter optimization (Right).

V = {v} is a set of vertices for v € Xgsre; ECc V xVisa
set of edges; 1y € V is the initial vertex; and Vg < V is a
set of goal states determined by X, . Moreover, let cost(v)
be the cost of node v and prev(v) be the parent node of v.
2) Design of Heuristic Functions: As stated in [20], a
proper design of the heuristic function h : X — RT is
essential for the performance of the A* search algorithm.
Since it is impractical to find an exact heuristic function h°P*
that estimates perfectly the cost from a given vertex v € V to
the goal set Vi, this work proposes two approximations of
the exact heuristics at different level of abstraction: (i) the
global approximation hY that serves as a lower bound on
the actual cost, i.e., h°P* () = h9(x), Vo € X. For instance,
Euclidean distance is a common choice as admissible heuris-
tics; (ii) the local approximation h* that is differentiable
and has similar gradients to hA°"* in a local neighborhood,
ie., |[VhE (z) — VAP"(z)| < E, Vo € Ug(zg) = {x €
Xl||x — zo|| < d} and E > 0. Furthermore, a balanced
heuristic function A% is defined recursively as follows:

hB(v) = A(h%) + ARE (D, y)) (- NR9W), (12)

where 7 = prev(v); A € [0,1] is a weighting factor; and
Ah(p, v) is the change of cost from 7 to v, which is
estimated by the accumulated change along a path, i.e.,

L
ARE @, v) = 3 (BE, (w) = B (we0)), (13)

=1
where xg = 7, 27, = v, and xy € Ug(ap_1), V4= 1,--- | L.

Moreover, A is a parameter that effects the greedy-ness of
HGG-HS. Namely, when A = 0 holds, h® reduces to hY,
yielding a general heuristic search algorithm like A*. On the
other hand, when )\ = 1 holds, hB only depends on the local
approximation h”, resulting in a local greedy search.

3) Heuristic Gradient-Guided Hybrid Search: Given the
above definition of balanced heuristics, the hybrid search
tree 7 is explored via an iterative process of node selection
and expansion. To begin with, similar to the A* algorithm,
a priority queue V., < V is used to store the vertices to be
visited, while a set V_; < V is used to store the vertices that
have been fully explored. Then, as illustrated in Fig. 3, the
proposed hybrid search algorithm consists of the following
stages: (I) Selection. The vertex with the lowest estimated
cost in Vo is selected, i.e., v* = argmin, .y, {cost(v) +
hB(v)}, of which the associated state is z*. (II) Expansion.
This vertex v* is expanded in three steps: (i) first, a feasible
mode £ € = is chosen given the state x*; (ii) then, a set
of candidate parameters {p*} < P is found for mode ¢
and z* via an iterative optimization in the parameter space
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as described in the sequel; (iii) lastly, given £ and {p*} above,
the set of resulting child vertices C¢ (v*) = {v} is given by:

Xt+1 = hﬁ(xtv Rﬂ’m p*)v Vi e [07 TO];

+ _ .
_XT07

. (14)

To=2x, V
which is encapsulated by v+ = Expand(z*, p*) for the ease
of notation. Moreover, the properties of v* is updated by
cost(vt) = cost(v*) + 220 Ceont(Xt, p*) and prev(vt) =
v*. Each child node v* € C¢(v*) is added to the node set V'
and Vi, if v ¢ V., and cost(vt) < cost(v), Vv € V
that satisfying [(vt — v)/§] = 0, where [-] is the rounding
function for a radius § > 0. Afterwards, the edge (v*,v7) is
added to the edge set E and labeled by the associated mode
and parameter (£, p*). (III) Termination. If all the child
vertices of v* have been explored, »* is removed from V,
and added to V. More importantly, if v* € Vi holds, the
optimized sequences = and P as the solution to Problem 3
can be obtained by tracing back the parent vertices and
retrieving its label (&, p). Thus, the hybrid search algorithm
returns the hybrid plan as described in (11), along with the
actual cost for the assigned task.

4) Iterative Optimization of Mode Parameters: The opti-
mization for parameter p* in the stage of expansion above
for node v* follows a two-stage process. In the first stage of
primitive expansion, parameters are initially selected from a
predefined set of primitive parameters {p1,---, 51} < Pe.
Then, a set of child vertices can be generated by Vf =
Expand(z*, p;), Vp; € ﬁg. Within this set, the child vertex
with lowest estimated total cost is selected, i.e.,

vi = argminye{uf}{cost(v) + hB(v) + hE (v, y)} (15)

and the associated parameter is p;~. In the second stage of
iterative optimization, the end state xg) and the associated
parameter p() is optimized via nonlinear optimization for
iterations ¢ = 1,--- , L. Initially, :Eéo) = v« and p(O) = pir.
Then, the following procedure is applied to update p(©):

To
Pl = argmin{ Z Ceont(X¢) + hfg) (XTO)};

pepe LA (16)

st. xo = v*, xq, € Ug(z)) in (14),

which can be solved by a general nonlinear optimization
solver such as IPOPT [21], as all states are parameterized
over p. Once p*1) is obtained, the associated end state
is updated by Y = Expand(v*, p*1)). This itera-
tive process continues until iteration L such that ngL) -
xéL_l)H < d. Consequently, the set of pairs of parameters
and end states is given by {(p®, xg))}, of which the
corresponding child vertices are {V(JZ)}. Thus, the set of all
child vertices C¢(v*) = {v;", Vi} U {v,), ¥} is sent to the
next step in the stage of expansion.

C. Overall Framework

As described in Sec. II-A.2, the two layers are executed
in an interleaved and concurrent way. More specifically, the
layer of coalition formation searches for the appropriate

switch operations to reduce the overall cost in (8) of an
assignment u. During this process, whenever the actual
cost f,, of a coalition R, for task w,, is required, the layer
of hybrid optimization searches for the optimal sequence
of modes and parameters (Z,,, P,,) for the coalition R,,
to accomplish w,,, while minimizing the actual cost. This
process repeats itself until no such switch operations can be
found and the costs of all coalitions have been verified by the
hybrid optimization. The resulting assignment is given by u*
and the optimal plan is (2}, P ) for each task w,, € Q.

—m>

Thus, the final hybrid plan in (2) for w,, is given by:

P = (51:;?7 Roms Pi*cyll) e (€2tmN, R 'OZI”N)’ a7
where 27 = 5,:?; ”.5’;% and P, = pztml, ...pzﬁv, and the
total length varies across different tasks. Given these hybrid
plans, each agent n € A can start executing the assigned
task p* (n), by following the optimal sequence of modes with
the chosen parameters. Due to unforeseen disturbances and
uncertainties, the system state may evolve differently from
the planned trajectory, in which case the task assignment and
hybrid plans should be updated by resolving Problem 1 given
the current system state.

IV. NUMERICAL EXPERIMENTS

To further validate the proposed method, extensive numer-
ical simulations are presented in this section. The proposed
method is implemented in Python3 and tested on a laptop
with an Intel Core i7-1280P CPU.

A. Experiment Setup

As shown in Fig. 4, the workspace of size 10m x 10m is
cluttered with rectangular obstacles. There are 16 agents and
6 boxes randomly distributed within the workspace. Each
box has a size of 1m x 0.5m, and the circular agents have a
radius 7 = 0.1m. For simplicity, each robot has a first-order
dynamics and can provide bounded pushing force at specific
points of the box, thus changing the state of boxes with
second-order translational invariant dynamics. Note that the
cluttered workspace introduces severe geometric constraints,
yielding a significantly more difficult transportation task
than the obstacle-free environments [13], [14]. Initially, the
task cost f(-) in (7) is estimated by the sum of Euclidean
distances from agents to the targeted box, and the distance
to its goal position. The heuristic function h9(z) is designed
as the minimum distance from state = to X¢, , estimated by
the A* search, and h*(x) is designed as the kinematic cost
under the local geometry constraints from current state x to
next intermediate region X on the shortest path.

B. Results

Evolution of the system state is shown in Fig. 4. Initially,
the coalition formation for 6 tasks and 16 agents takes
9s, during which 16 hybrid search problems are solved in
the hybrid optimization layer. It can be seen that different
modes have a significant influence on overall cost. e.g.,
box 5 reaches its goal location faster by choosing a short-
side pushing mode with 2 agents to pass through a narrow
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Fig. 4. Snapshots of collaborative transportation within two scenarios: 16
agents (blue circles) for 6 boxes (Top); 10 agents for 4 boxes (Bottom).

passage; 3 agents are assigned to box 4 such that it can
be pushed through 2 passages that are far away; box 5 is
pushed to its target by 4 agents via almost a straight line. To
further validate the applicability, another complex scenario
is considered and shown in Fig. 4, where numerous sharp
turns are required for the boxes to arrive at the destinations.
Consequently, more frequent mode switchings can be found
in the final solution, e.g., the coalition of 4 agents associated
with box 3 switches the mode from the “long side” to the
“short side”, such that the box could pass through the first
passage at t = 45s. However, since pushing from a narrow
side introduces higher kinematic uncertainty and thus larger
cost, the same coalition switches to the “diagonally pushing”
mode after passing through the second passage at ¢ = 92s.
Furthermore, for both boxes 1 and 2, two agents switch from
“long-side” to “short-side” for the middle passage at ¢t = 70.

C. Comparisons

Effectiveness of the proposed method is compared against
two baselines: (i) the Greedy Assignment (GA), where each
task is assigned to one closest free agent squentially until
each agent has an assigned task; (ii) Fixed Mode (FM) where
all coalitions follow only one mode, and the layer of coalition
formation remains the same. The main metrics to compare
are the sum of the cost of the hybrid plans for all coalitions
and the time when all tasks are completed. It is shown that
our algorithm surpasses both baselines in every metric, e.g.,
the GA and FM methods have an average completion time
of 127.8s and 132.7s, which is much higher than 108.5s of
our method. The FM method takes considerably more time
than ours, as the switching of different modes is essential for
the task completion.

V. CONCLUSION

This work proposes a combinatorial-hybrid optimization
(CHO) framework for multi-agent systems under collabora-
tive tasks. The proposed approach solves simultaneously the
coalition formation and the hybrid optimization of collabo-
rative behaviors, with a provable quality guarantee. Future
work involves the consideration of uncertain environments.
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