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Angel Mercado-Uribe, Jesús Mendoza-Ávila, Denis Efimov, Johannes Schiffer

Abstract— This paper analyzes two synchronverters con-
nected in parallel to a common capacitive-resistive load through
resistive-inductive power lines. This system is conceptualized as
a microgrid with two renewable energy sources controlled using
the synchronverter algorithm. It is modeled as an interconnec-
tion of three port-Hamiltonian systems, and the dq-coordinates
model is derived by averaging the frequencies. Applying the re-
cent Leonov function theory, sufficient conditions to guarantee
the global boundedness of the whole system’s trajectories are
provided. This is necessary to reach the global synchronization
of microgrids. Additionally, a numerical example illustrates the
potential resonance behavior of the microgrid.

I. INTRODUCTION

Modern society heavily relies on electrical energy sources.
Consequently, analyzing power systems, which are the cen-
tral column for electrical energy sources [21], is crucial to
ensuring the proper functioning of the electrical grid. How-
ever, the analysis of power systems is inherently complex
due to the dynamics of grid elements. Therefore, several as-
sumptions and simplifications are usually required to analyze
stability and design controllers [16], [25]. Traditionally, the
Synchronous Generator (SG) is the primary power source of
the current electricity grid [28], which is highly nonlinear.
For this reason, to simplify its analysis, several assumptions
are considered [7], [25], [27], [28]. Despite some of these
assumptions being reasonable under certain operating condi-
tions, most of them are not justifiable in generic operation
scenarios [1], [16]. Furthermore, the stability and robustness
properties can be just guaranteed for the reduced model,
yielding to predominantly local results.

In recent years, the use of renewable energy sources has
been increased [18], [20], [23], [25]. Despite the transition
to renewable energy sources is desirable for reducing green-
house gas emission [6], these sources introduce additional
perturbations to the grid and the replacement of SGs by
converters reduces the electrical grid’s inertia and hence, the
security margins as well [10], [13], [29]. Therefore, in order
to position renewable energy sources as the primary element
of power generation, a more rigorous analysis of stability
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and robustness for multiple renewable generators is essential
[13], [24], [26].

One effective strategy for controlling a converter is the
synchronverter algorithm [30], which guarantees complete
operational compatibility to the current electrical grid [30]
and has additional benefits [3]. However, similar to SGs,
the analysis of boundedness and stability of trajectories of
synchronverters encounters challenges due to state periodic
functions in its state dynamics, leading to multiple equilibria.
This situation complicates the classical stability analysis
based on Lyapunov functions and this approach is not
globally feasible for most multistable systems.

An alternative approach is the concept of Leonov functions
[8], [9], [15], [22]. This method leverages of the periodicity
and relaxes the conditions of Lyapunov functions. Using the
Leonov function approach, the global Input-to-State Stability
(ISS) of a SG connected to an infinite bus was proven in [24].

Following the idea of [24], the main objective of this paper
consists of utilizing the Leonov function approach to estab-
lish sufficient conditions for the boundedness of trajectories
of a microgrid, which is composed of two synchronverters
connected to a resistive-capacitive load through resistive-
inductive power lines. For the analysis, we assume that the
synchronverters mimic a SG perfectly, but in contrast to
standard analyses [1], [16], the whole nonlinear SG model
is considered. Similarly to [4] and [11], we consider the sys-
tem as an interconnection of port-Hamiltonian subsystems.
However, contrary to [4] and [5], we develop a rigorous
proof to guarantee the global boundedness of solutions of our
particular microgrid instead of a hard-to-verify assumption.
The main contributions of this paper can be summarized as:

• We derive the abc- and dq-coordinates port-Hamiltonian
model for the microgrid depicted in Figure 1 by using
the average frequency.

• We present sufficient conditions for global boundedness
of the system trajectories by using the Hamiltonian of
the system to construct a suitable Leonov function.

In contrast to our previous paper [17], we provide condi-
tions for global stability instead of designing a controller to
guarantee the ISS property for synchronverters with hetero-
geneous parameters.

The rest of the paper is organized as follows. Some pre-
liminaries are presented in Section II. The port-Hamiltonian
model of the system is introduced in Section III. The port-
Hamiltonian model is transformed to dq-coordinates and de-
veloped in Section IV. The boundedness analysis is provided
in Section V. A numerical example is shown in Section VI.
Finally, conclusions are given in Section VII.
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II. PRELIMINARIES

A. Notation
Let R+ = {s ∈ R : s ≥ 0} as well as Z+ = Z ∩ R+.

The variable v ∈ Rk (v ∈ Zk) denotes a vector of real
(integer) numbers with k ∈ Z+ components, whose infinity
norm is represented by ∥v∥∞ = max (|v1| , ..., |vk|) and its
Euclidean norm is denoted by ∥v∥2 =

√
v21 + · · ·+ v2k. The

distance from a point p ∈ Rn to the set S ⊂ Rn is defined as
∥p∥S = infa∈S ∥p− a∥2. The identity matrix is represented
by Ik ∈ Rk×k. Let i ∈ R, then the notations in and in×m,
with n,m ∈ N, represent a column vector of n elements and
a matrix with n rows and m columns, respectively, with all
its elements being identical to i.

B. State periodic systems and Leonov functions
Let the map f : Rn → Rn be of class C1, f(0) = 0, and

consider a nonlinear system of the following form:

ẋ(t) = f(x(t)) ∀t ≥ 0, (1)

with state x(t) ∈ Rn. We denote by X(t, x) the solution of
(1) at time t fulfilling X(0, x0) = x0 for any x0 ∈ Rn.

We make the following assumption on the dynamics (1).
Let x = (z, θ) ∈ Rn, where z ∈ Rn−1 and θ ∈ R are two
components of the state vector.

Assumption 1: The vector field f in (1) is 2π-periodic
with respect to θ.
That is, we assume that the dynamics (1) are periodic with
respect to one state denoted by θ. Thus, the system (1) can
be embedded into a manifold M = Rn−1 × S by a simple
projection of the variable θ on the set S = [0, 2π).

Following [2], [8], [22], we introduce the next definition.
Definition 1: A C1 function V : Rn → R is a Leonov

function for the system (1) if there exist functions α1, α2 ∈
K∞, ψ1.ψ2 ∈ K and a continuous function λ : R → R
satisfying λ(0) = 0 and λ(s)s > 0 for all s ̸= 0, such that

α1(|z|)− ψ1(|θ|) ≤ V (x) ≤ α2(|z|)− ψ2(|θ|), (2)

for all x = (z, θ) ∈ Rn and the following dissipation
inequality holds:

∂V (x)

∂x
f(x) ≤ −λ(V (x)), ∀x ∈ Rn. (3)

Likewise, we recall the following proposition.
Proposition 1 ([2]): If for the system (1) there exists a

Leonov function as in Definition 1, then for all x0 ∈ Rn, the
trajectories X(t;x0) are bounded for all t ≥ 0.

Remark 1: The definition of a Leonov function presented
in [8] applies to systems with several periodic states, e.g.,
microgrids composed of more than two synchronverters.
However, using this definition is more restrictive for systems
with a scalar periodic state. So, Definition 1 is an adaptation
that can only be applied to the scalar case. This definition
considers sign-indefinite functions similar to the idea of
Leonov presented in [15], which allows the function to be
negative in the periodic variable in contrast to the standard
Lyapunov function.

Remark 2: Despite [2, Proposition 3] is stated for a par-
ticular case, the proof covers the case presented here.

III. SYSTEM MODEL AND PROBLEM STATEMENT

We consider a microgrid composed of two inverters op-
erated with the synchronverter algorithm [30], which are
feeding a common capacitive-resistive load, see Figure 1.
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Fig. 1. Diagram of two coupled synchronverters

We assume that all electrical quantities are balanced [25].
The parameters Rk > 0 and Lk > 0, k = 1, 2, are the
power line resistances and inductances. The load resistance
and capacitance are denoted by R > 0 and C > 0. The
parameters Dk > 0, Jk > 0 and Tmk

> 0 are the virtual
mechanical variables (damping, inertia and torque input)
of the k-th synchronverter. The three-phase load voltage
is denoted by vabc(t) ∈ R3. The phase angle, electrical
frequency and generated current of the k-th synchronverter
are denoted by δk(t) ∈ R, ωk(t) ∈ R and iabc,k(t) ∈ R3,
respectively. Then, the electromotive force is given by [30]

eabc,k = ωkεabc,k, εabc,k =Mfk ifk

 sin (δk)
sin

(
δk − 2

3π
)

sin
(
δk + 2

3π
)
 ,

where Mfk is the mutual inductance and ifk is the rotor
current, which is assumed constant. Likewise, the electrical
torque Tek is computed as Tek = ε⊤abc,kiabc,k [30]. Thus, the
system in Figure 1 can be modeled in abc-coordinates as

Jkω̇k =−Dkωk − ε⊤abc,kiabc,k + Tmk
, δ̇k = ωk,

Lk
diabc,k
dt

=−Rkiabc,k + εabc,kωk − vabc, k = 1, 2;

C
dvabc
dt

=− 1

R
vabc + iabc,1 + iabc,2.

(4)

Inspired by [4], [11] (see also the correction [5]), we split
the system (4) into two parts, namely the mechanical and the
electrical one, and derive port-Hamiltonian representations
for each of these system parts. Defining the matrices

Rm =

[
D1

J2
1

0

0 D2

J2
2

]
, gξm =

 ε⊤abc,1

J1
01×3

01×3
ε⊤abc,2

J2

 , Cm =

[
Tm1

J1
Tm2

J2

]
,

and the variables

ξm =

[
ω1

ω2

]
, µm = −

[
iabc,1
iabc,2

]
, σm =

[
εabc,1ω1

εabc,2ω2

]
,

the mechanical part of the system (4) can be written as

ξ̇m =−Rm∇Hξm(ξm) + gξmµm + Cm,
σm =g⊤ξm∇Hξm(ξm),

(5)

where the Hamiltonian function and its gradient are

Hξm(ξm) =
J1
2
ω2
1 +

J2
2
ω2
2 , ∇Hξm =

[
J1ω1

J2ω2

]
. (6)
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Analogously, defining the variables

ξe =

iabc,1iabc,2
vabc

 , µe =

[
εabc,1ω1

εabc,2ω2

]
, σe =

[
iabc,1
iabc,2

]
,

and the matrices

Rξe = diag
(
R1I3
L2
1

,
R2I3
L2
2

,
I3
RC2

)
, gξe =

[
diag

(
I3
L1
, I3
L2

)
03×6

]
,

Jξe =

 03×3 03×3 − 1
CL1

I3
03×3 03×3 − 1

CL2
I3

1
CL1

I3
1

CL2
I3 03×3

 ,
the electrical part of the system (4) can be written as

ξ̇e = [Jξe −Rξe ]∇Hξe(ξe) + gξeµe,

σe =g
⊤
ξe∇Hξe(ξe),

(7)

where the Hamiltonian function and its gradient are

Hξe(ξe) =
L1

2
∥iabc,1∥2 +

L2

2
∥iabc,2∥2 +

C

2
∥vabc∥2, (8)

∇Hξe(ξe) =
[
L1i

⊤
abc,1 L2i

⊤
abc,2 Cv⊤abc

]⊤
. (9)

Therefore, defining the variable ξ =
[
ξ⊤m ξ⊤e

]
and

combining the systems (5) and (7), we obtain the whole
system (4) in compact form as follows[

δ̇1
δ̇2

]
=

[ 1
J1

0 01×9

0 1
J2

01×9

]
∇Hξ(ξ),

ξ̇ =

[
−Rm −gξmg⊤ξe
gξeg

⊤
ξm

Jξe −Rξe

]
∇Hξ(ξ) +

[
Cm
09

]
,

(10)

where the Hamiltonian of the whole system is

Hξ(ξ) = Hξm(ξm) +Hξe(ξe). (11)

Using this system, the main problem considered in the
present paper is formalized below.

Problem 1: Consider the system (10). Derive conditions
under which its solutions are globally bounded.

IV. PORT-HAMILTONIAN MODEL OF TWO COUPLED
SYNCHRONVERTERS IN dq-COORDINATES

In order to address Problem 1, we introduce the dq-
transformation [25]

Tdq(ψ) =

√
2

3

[
cos (ψ) cos

(
ψ − 2

3
π
)

cos
(
ψ + 2

3
π
)

sin (ψ) sin
(
ψ − 2

3
π
)

sin
(
ψ + 2

3
π
)] (12)

and the rotation matrix

Tr(ν) =

[
cos(ν) sin(ν)
− sin(ν) cos(ν)

]
, Tr(−ν) = T⊤

r (ν). (13)

Recall that for φ = ψ − ν [25],

Tdq(φ) = Tr(ν)Tdq(ψ). (14)

Therefore, defining ϕ := 1
2 (δ1 + δ2), whose derivative is

ϕ̇ = 1
2 (ω1+ω2), and θ := δ1−ϕ = −(δ2−ϕ) = 1

2 (δ1−δ2),
we propose the following change of coordinates

xm = ξm, xe = Tdq(ϕ)ξe, ζ =
[
xm xe

]⊤
, (15)

where

Tdq(ϕ) =

Tdq(ϕ) 02×3 02×3

02×3 Tdq(ϕ) 02×3

02×3 02×3 Tdq(ϕ)

 .
Using the change of coordinates (15), the interconnection

between the mechanical and electrical sides is given by

gxm
µxm

=− Tr(θ)diag (L1I2, L1I2, CI2)xe,

gxe
µxe

=Tr(θ)⊤diag (J1, J2)xm,

where

Tr(θ) =
[
b⊤
1 Tr(θ)

⊤ 01×2 01×2

01×2 b⊤
2 Tr(θ) 01×2

]
with bk = bk

JkLk

[
0 1

]⊤
, bk =

√
3
2Mfk ifk for k = 1, 2,

plays an essential role. This term translates signals between
the dq-frame referenced to the average frequency ϕ and the
dq-frame referenced to the respective synchronverter angle.
So, using the angle dynamics θ̇ = 1

2 (ω1 − ω2), the change
of coordinates (15) and defining the matrices

R =

[
Rm 02×6

06×2 Re

]
, J (θ, ζ) =

[
02×2 −Tr(θ)
Tr(θ)⊤ Je(ζ)

]
,

Je(ζ) =

 ω̄
L1

J2 02×2 − 1
CL1

I2
02×2

ω̄
L2

J2 − 1
CL2

I2
1

CL1
I2

1
CL2

I2
ω̄
CJ2

 , ω̄ =
ζ1 + ζ2

2
,

J2 =

[
0 −1
1 0

]
, Re = diag

(
R1

L2
1

I2,
R2

L2
2

I2,
I2
RC2

)
,

the system (10) can be expressed as

θ̇ =
[

1
2J1

− 1
2J2

01×6

]
∇H(ζ),

ζ̇ =
[
J (θ, ζ)−R

]
∇H(ζ) +

[
C⊤
m 01×6

]⊤
,

(16)

whose Hamiltonian is given by

H(ζ) =
1

2
ζ⊤diag (J1, J2, L1I2, L2I2, CI2) ζ. (17)

V. CONDITIONS FOR GLOBAL BOUNDEDNESS OF
SOLUTIONS

We consider the following assumption, see also [12].
Assumption 2: The system (16) possesses at least one

equilibrium point (θ∗, ζ∗).
Assumption (2) is a natural requirement. Furthermore, we

define the synchronization frequency as ω∗ = ζ∗1 = ζ∗2 .

A. Shifted Hamiltonian
Defining the variable ζ̃ = ζ − ζ∗, the shifted Hamiltonian

for the system (16) can be written as follows

H̃(ζ̃) = H(ζ̃ + ζ∗)− ζ̃⊤∇H(ζ∗)−H(ζ∗), (18)

whose gradient is

∇H̃(ζ) = ∇H(ζ)−∇H(ζ∗).

Thus, under Assumption 2 and using the shifted Hamiltonian
in (18), the system (16) in coordinates ζ̃ results in

θ̇ =
[

1
2J1

− 1
2J2

01×6

]
∇H̃(ζ̃),

˙̃
ζ =

[
J (θ, ζ)−R

]
∇H̃(ζ̃) + (J (θ, ζ)− J (θ∗, ζ∗))∇H(ζ∗).

(19)
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1) Derivative of the Shifted Hamiltonian Function: Since
J (θ, ζ) is a skew-symmetric matrix, the derivative of H̃
along the trajectories of the system (19) results in

˙̃H = −∇H̃⊤R∇H̃ +∇H̃⊤(J (θ, ζ)− J (θ∗, ζ∗))∇H(ζ∗).
(20)

By following [4], [5], equation (20) can be rewritten as

˙̃H = −∇H̃⊤(R−M(ζ∗))∇H̃ +∇H̃⊤T (θ, θ∗)∇H(ζ∗),
(21)

where

M(ζ∗) =

[
02×2 M12(ζ

∗)
M⊤

12(ζ
∗) 06×6

]
,

M12(ζ
∗) =

[
− ζ∗

4

4J1

ζ∗
3

4J1
− ζ∗

6

4J1

ζ∗
5

4J1
− ζ∗

8

4J1

ζ∗
7

4J1

− ζ∗
4

4J2

ζ∗
3

4J2
− ζ∗

6

4J2

ζ∗
5

4J2
− ζ∗

8

4J2

ζ∗
7

4J2

]
,

is a symmetric matrix and

T (θ, θ∗) =

[
02×2 −∆Tr

(θ, θ∗)
∆⊤

Tr
(θ, θ∗) 06×6

]
, (22)

with ∆Tr
(θ, θ∗) = Tr (θ)−Tr (θ∗), is a skew-symmetric one.

Therefore, ˙̃H in (21) can be written as

˙̃H = −∇H̃⊤RM (ζ∗)∇H̃ +∇H̃⊤T (ζ∗)

[
∆cos
∆sin

]
, (23)

where RM (ζ∗) = R−M(ζ∗) is a symmetric matrix, and

T ⊤ (
ζ
∗)

=

−b1ζ∗4
J1

−b2ζ∗6
J2

0
b1ω∗
L1

0
b2ω∗
L2

01×2

−b1ζ∗3
J1

b2ζ∗5
J2

b1ω∗
L1

0
−b2ω∗

L2
0 01×2

 ,

with ∆cos = cos (θ)− cos (θ∗), ∆sin = sin (θ)− sin (θ∗).

B. Boundedness of ζ̃-dynamics

In order to formulate our main result, we introduce two key
lemmas, whose proofs are omitted due to space limitations.

Lemma 1: Consider the function

f(θ) =ζ∗4 (sin(θ)− sin(θ∗)− (θ − θ∗) cos(θ∗))−
ζ∗3 (cos(θ)− cos(θ∗) + (θ − θ∗) sin(θ∗)) .

(24)

For all θ ∈ R, it holds that

|f(θ)| ≤ 1

2
ε1(θ − θ∗)2, ε1 =

√
(ζ∗3 )

2
+ (ζ∗4 )

2
. (25)

Lemma 2: The matrix

Mλ2
=

[
Mλ211

Mλ212

M⊤
λ212

1
2λ (γ1 − b1ε1)

]
(26)

with

Mλ211
=diag

(
R1 − λL1

L2
1

I2,
R2 − λL2

L2
2

I2,
1− λRC

RC2
I2

)
,

Mλ212
=
[
b1ω

∗

2L1
11×2

b2ω
∗

2L2
11×2 01×2

]⊤
,

where ε1 is defined in (25), is positive definite if

λ < min

(
R1

L1
,
R2

L2
,

1

RC

)
, (27)

γ1 > b1ε1 +
1

λ

(
b21

R1 − λL1
+

b22
R2 − λL2

)
(ω∗)

2
. (28)

Using these lemmas, the following theorem can be stated.

Theorem 1: Assume that λ and γ1 take values such that
the inequalities (27) and (28) are satisfied. Then, the trajec-
tories of the system (19) are bounded if there exist some
values ϵ1 and ϵ2 ∈ R+, such that

D1 ≥λJ1 +
16J2

1 ϵ1 + σζ∗ + 4γ21
16λmin (Mλ2

)
,

D2 ≥λJ2 +
16J2

2 ϵ2 + σζ∗ + 4 (γ1 + σf )
2

16λmin (Mλ2)
,

ϵ1ϵ2 ≥ 1

162J2
1J

2
2

(
σζ∗ + 4

(
γ21 + γ1σf

))2
,

(29)

where σζ∗ = (ζ∗3 )
2
+ (ζ∗4 )

2
+ (ζ∗5 )

2
+ (ζ∗6 )

2
+ (ζ∗7 )

2
+

(ζ∗8 )
2, σf = |b2ζ∗6 + b1ζ

∗
4 | + |b2ζ∗5 − b1ζ

∗
3 | and λmin (Mλ2)

represents the smallest eigenvalue of the matrix Mλ2
in (26).

Proof: Based on the Hamiltonian structure, we consider
the candidate Leonov function

V = H̃ − 1

2
γ1(θ − θ∗)2 + b1f(θ − θ∗) (30)

where f(θ−θ∗) is defined in (24). The derivative of V along
the solutions of (19) can be written as

V̇ = ˙̃H − γ1(θ − θ∗)η⊤∇H̃ + b1∇fη⊤∇H̃, (31)

where η =
[

1
J1

− 1
J2

01×6

]⊤
. Substituting equation (23)

in (31), we obtain

V̇ =−

 ∇H̃
θ − θ∗

∆cos
∆sin


⊤ RM (ζ∗) 1

2
γ1η −Tf (ζ∗)

2
1
2
γ1η

⊤ 0 01×2

−T ⊤
f (ζ∗)

2
02×1 02×2


 ∇H̃
θ − θ∗

∆cos
∆sin

 ,
where

Tf (ζ∗) = T (ζ∗)−
[
b1
J1
ζ∗412 − b1

J2
ζ∗412 02×6

]⊤
Adding and subtracting the term λV , with λ ∈ R+, we

obtain

V̇ =−

 ∇H̃
θ − θ∗

∆cos
∆sin


⊤ RM (ζ∗) 1

2
γ1η −Tf (ζ∗)

2
1
2
γ1η

⊤ 0 01×2

−T ⊤
f (ζ∗)

2
02×1 02×2


 ∇H̃
θ − θ∗

∆cos
∆sin

+

λ

(
H̃ − 1

2
γ1(θ − θ∗)2 + b1f(θ − θ∗)

)
− λV.

(32)

We recall that H̃ = ∇H̃⊤PH∇H̃ , with PH =

diag
(

1
J1
, 1
J2
, 1
L1
, 1
L1
, 1
L2
, 1
L2
, 1
C ,

1
C

)
. Likewise, from the

Taylor series, we have the following inequalities

|∆cos| ≤ |θ − θ∗| and |∆sin| ≤ |θ − θ∗| .

Therefore, using these inequalities and Lemma 1, the right-
hand side in (32) can be bounded by

V̇ ≤− λV −
[
∇H̃
θ − θ∗

]⊤
Mλ

[
∇H̃
θ − θ∗

]
, (33)

with

Mλ =

[
Mλ1

Mλ12

M⊤
λ12

Mλ2

]
,
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where Mλ2
is defined in (26),

Mλ1 =

[
D1−λJ1

J2
1

0

0 D2−λJ2

J2
2

]
, Mλ12 =

[
M12

[
γ1

2J1
γ1+σf

2J2

]]
,

with σf = |b2ζ∗6 + b1ζ
∗
4 |+ |b2ζ∗5 − b1ζ

∗
3 |.

Recalling Lemma 2, the matrix Mλ2
is positive if the

conditions (27) and (28) are satisfied. Therefore, the whole
matrix Mλ is positive semidefinite if

Mλ1 −Mλ12M
−1
λ2
M⊤

λ12
≥ 0. (34)

Since Mλ2 is a positive definite matrix, we have Mλ2 ≥
λmin (Mλ2

) I7, which implies M−1
λ2

≤ (λmin (Mλ2
) I7)

−1,
where λmin(·) represents the smallest eigenvalue of a matrix.
Therefore, the inequality (34) can be estimated by

λmin (Mλ2)Mλ1 −Mλ12M
⊤
λ12

≥ 0. (35)

Defining the variables

σζ∗ =(ζ∗3 )
2
+ (ζ∗4 )

2
+ (ζ∗5 )

2
+ (ζ∗6 )

2
+ (ζ∗7 )

2
+ (ζ∗8 )

2
,

σDk
=λmin (Mλ2

) (Dk − λJk) , k = 1, 2,

the inequality (35) can be written as 16σD1
−σζ∗−4γ2

1

16J2
1

−σζ∗+4(γ2
1+γ1σf)

16J1J2

−σζ∗+4(γ2
1+γ1σf)

16J1J2

16σD2
−σζ∗−4(γ1+σf )

2

16J2
2

 ≥ 0.

Selecting D1 and D2 such that

16λmin (Mλ2) (D1 − λJ1)− σζ∗ − 4γ2
1

16J2
1

= ϵ1 > 0,

16λmin (Mλ2) (D2 − λJ2)− σζ∗ − 4 (γ1 + σf )
2

16J2
2

= ϵ2 > 0,

(36)

the inequality (35) is satisfied if

ϵ1ϵ2 ≥ 1

162J2
1J

2
2

(
σζ∗ + 4

(
γ21 + γ1σf

))2
.

Thus, we have V̇ ≤ −λV if the inequalities (27)-(29) are
satisfied. From Lemma 1 and inequality (28), V satisfies the
property (2) in Definition 1. Therefore, the function (30) is
a Leonov function for the system (19) and the trajectories of
the system (19) are globally bounded by Proposition 1.

Theorem 1 suggests that the trajectories of the microgrid
can be made bounded by using sufficiently large damping
coefficients, which is expected for this kind of systems.

VI. NUMERICAL EXAMPLE

For simulation, we consider the system in dq-coordinates
(16). Likewise, based on [17], [19], we consider the follow-
ing parameters J1 = J2 = 0.1[kg ·m2/rad], b1 = b2 =√
3/2[V · s], R1 = R2 = 0.75[Ω], L1 = L2 = 2.2[mH],

R = 10[Ω] and C = 1[mF ]. Meanwhile, the parameters D1,
D2, Tm1

and Tm2
will be used for comparison result by

fixing the frequency synchronization in ω∗ = 50[ rad
s ].

From (16), we can calculate the equilibria sets. As we are
using identical electrical parameters and based on [17], [28],
we would expect two different equilibria sets. One of them,

is obtained for θ = 2kπ, k ∈ Z, and the other one is got for
θ = (2k−1)π, k ∈ Z. So, using θ = 0, we fix the mechanical
inputs as Tm1 = D1ω

∗ + b1ζ
∗
4 and Tm2 = D2ω

∗ + b2ζ
∗
6 to

obtain the following equilibrium points

θ∗ =2kπ, ζ∗1 = ζ∗2 = 50, ζ∗3 = ζ∗5 = 1.4094,

ζ∗4 =ζ∗6 = 2.9921, ζ∗7 = −1.3862, ζ∗8 = 59.1482,
(37)

with k ∈ Z, which are independent on D1 and D2. So, the
values of D1 and D2 do not alter the equilibria (37).

From inequality (27), we get λ < 100. Fixing λ = 90 in
(28), we get γ1 > 156.0169. Choosing γ1 = 340 and fixing
ϵ1 = ϵ2, we obtain D1 > 16.5235 and D2 > 16.6845 from
the inequalities in (29).

For simulations, we fix D2 = 16.7[N·m·s
rad ] and D1 takes

values in {1, 2, 16.6}[N·m·s
rad ]; where only the last value sat-

isfies our conditions. Likewise, we employ the Euler solver
in Simulink MATLAB with a sample time 65 [µs], which
corresponds to the sample time of the converters in our
laboratory [14]. We assume θ(0) = 0 and ζ̃(0) = −π18.

Before presenting the results, we stress that the equilibria
in (37) were verified by simulations for all cases.

In Figure 2, the simulation results for D1 = 1[N·m·s
rad ] are

shown. We can see that the difference between synchronvert-
ers’ phases θ diverges, which implies that the frequencies ζ1
and ζ2 cannot reach synchronization, i.e., ζ̃1 and ζ̃2 do not
converge to the same constant.

Fig. 2. Trajectories of the system (19) for D1 = 1[N·m·s
rad ].

In Figure 3, the simulation results for D1 = 2[N·m·s
rad ] are

presented. In this case, the states converge to the equilibria
set, with θ = (2k− 1)π for k ∈ Z. Nevertheless, we can see
that these trajectories are indeed bounded. Likewise, we can
note that ζ̃1 and ζ̃2 converge to zero.

In Figure 4, the simulation results for D1 = 16.6[N·m·s
rad ]

are illustrated. Here, all trajectories converge to the origin.
It is clear from these simulations that the minimum damp-

ing coefficient for D1, with D2 = 16.7[N·m·s
rad ], falls within

the range of 1 to 2[N·m·s
rad ]. This range is not so far to the

minimum obtained with inequalities (27)-(29).

VII. CONCLUSIONS AND FUTURE WORK

In this paper, a model of two-parallel synchronverters
in port-Hamiltonian form is presented and a reduced-order
model is obtained by applying the dq-transformation.
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Fig. 3. Trajectories of the system (19) for D1 = 2[N·m·s
rad ].

Fig. 4. Trajectories of the system (19) for D1 = 16.6[N·m·s
rad ].

Using the dq mathematical model (19), sufficient condi-
tions for the damping coefficients to ensure global bound-
edness of trajectories in two-parallel synchronverters with a
capacitive-resistive load are presented. The result is obtained
by constructing a Leonov function for the whole system.

Future work aims to find a weak Lyapunov function to
provide sufficient conditions for almost global stability of
the invariant set of system (19). Likewise, we will extend the
microgrid to a broader amount of electrical energy sources.
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