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Abstract— We applied and adapted the linear en-
codings from [1] to the feasible-reference tracking
model predictive control (MPC) formulation from [2]
to reduce its computational cost. The improvements
come from avoiding to explicitly use the vertex-based
representation of the variable terminal set in testing
its inclusion in the constraint set. We considered both
polytopic and zonotopic formulations. For the later we
have also proposed a positive invariant (PI) zonotopic
approximation of the maximal PI set.

Index Terms— Model Predictive Control (MPC),
Variable Terminal Set, Set inclusion, Zonotopic sets.

I. Introduction
Model predictive control (MPC) is one of the most

popular control techniques due to the many variations
and overall robustness [3]. Its capacity to account for
constraints and costs explain its popularity in control.

While MPC is inherently robust to both internal un-
certainties and external disturbances, it was a source of
some concern that no clear proofs of stability and feasibil-
ity were known. The recursive feasibility notion discussed
at large in [4] provided the desired theoretical guarantees
by introducing the ancillary elements of terminal set
and control law. More recently, alternatives which define
a safe minimum prediction horizon length have been
presented [5]. Still, none of these approaches has proved
entirely satisfactorily. The later has impractically large
prediction horizons and the former forces the initial state
to lie in the backward reachable set of the terminal set
(the region of attraction), which may severely limit the
problem’s feasibility [6]. Consequently, significant effort
has been put in the last decade to alter the standard
formulations in the sense of enlarging the region of at-
traction, relax the terminal set conditions and/or reduce
the complexities of computing the terminal set/control
law. The last point is particularly relevant if we note
that the terminal set is, in its generic form, control
positive invariant (usually the implementations fall back
to positive invariance characterizations by choosing a
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priori the terminal control law). Many variations exist in
the literature, e.g., [2] proposes a variable terminal set, [7]
considers a union of invariant sets, [8] proposes an online
reconfiguration and [9] uses an implicit representation.

Both [2] and its expansion from [10] consider a variable
terminal set which is an affine transformation of the max-
imal positive invariant set (MPI) of the dynamics. The
additional degrees of freedom (offset term and scaling
factor) ensure that the tracked reference corresponds to
a pair of admissible terminal state and control law. The
drawback of this approach is that, for each MPC call, two
ancillary set inclusions have to be verified (to check ad-
missibility of the terminal state and input, respectively).
The standard test for polyhedral inclusion requires to
check that all vertices of the inner one validate the
constraints of the outer one. This may prove cumbersome
for higher dimensions due to the (usually) exponential in-
crease in vertices w.r.t. the number of inequalities which
describe a set in half-space form [11]. On the other hand,
a recent result [1], build upon [12], provides sufficient
conditions for the polyhedral set containment problem
employing only half-space descriptions. Motivated by
these ideas, our contributions are:

i) use and adapt the sufficient containment formula-
tions from [1] to avoid explicitly using the vertex
representation of the polyhedral sets;

ii) propose a positive invariant set construction based
on the scaled zonotope idea [13].

The rest of the paper is organized as follows. Section II
introduces the set-point tracking MPC problem and
describes the issues to be tackled. Section III adapts and
simplifies the set containment results to the specifics of
the MPC problem. The ideas are illustrated in Section IV
over two examples. Section V draws the conclusions.
Notation. Om×n ∈ Rm×n is the matrix with m rows and
n columns whose entries are zero. Whenever m = n, we
use the shorthand notation On. In ∈ Rn×n is the matrix
whose diagonal elements are one and zero otherwise.
For an arbitrary matrix G ∈ Rm×n, Gi denotes its i-th
column and G⊤

j its j-th row. The Minkowski sum between
two sets, X and Y , is defined as X ⊕ Y = {x+ y : ∀x ∈
X, ∀y ∈ Y }. R+ denotes the set of positive real numbers.

II. Problem statement
Consider the discrete, linear, time-invariant system

xk+1 = Axk +Buk, (1a)
yk = Cxk +Duk, (1b)
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with A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m.
Furthermore, under the mild assumption of controllabil-
ity, there exists a feedback law

uk = ū−K(xk − x̄), (2)

with ū ∈ Rm, x̄ ∈ Rn chosen such as to respect the
steady-point condition x̄ = Ax̄+Bū and with K ∈ Rn×m

taken such that the closed loop dynamics

(xk+1 − x̄) = (A−BK)(xk − x̄), (3)

are asymptotically stable.
The goal is to steer output (1b) towards a reference

profile rk under input (uk ∈ U ⊂ Rm) and state (xk ∈
X ⊂ Rn) constraints. To do so, we consider the MPC
set-point tracking formulation given in [2], [10]:

min
uk,...,uk+Npred−1,

λk,x̄k,ūk,r̄k

Npred−1∑
i=0

(
∥xk+i − x̄k∥2Q + ∥uk+i − ūk∥2R

)
+
∥∥xk+Npred − x̄k

∥∥2
P
+ ∥r̄k − rk∥2W (4a)

s.t. xk+i+1 = Axk+i +Buk+i, (4b)
xk+i ∈ X , uk+i ∈ U , (4c)
xk+Npred ∈ λkT ⊕ {x̄k}, (4d)
λkT ⊕ {x̄k} ⊆ X , (4e)
ūk −K(xk+i − x̄k) ∈ U , ∀ x ∈ λkT ⊕ {x̄k}, (4f)[
A− I B
C D

][
x̄k

ūk

]
=

[
0
r̄k

]
, (4g)

ūk ∈ intϵ(U), x̄k ∈ intϵ(X ), i = 0 : Npred − 1 (4h)

Matrices Q,R,W are positive (semi-)definite and of ap-
propriate dimensions. P is the result of the Lyapunov
equation (A − BK)TP (A − BK) − P = −Q − KTRK,
and Npred is the prediction horizon.

The MPC from (4) differs from the standard ‘MPC
with terminal set’ construction in several key aspects (see
for further details [2] or the extensions from [10]):

• the set-point rk might be infeasible and thus im-
possible to reach; thus a feasible r̄k set-point results
from imposing a penalty term in the cost and enforc-
ing a steady-state condition in (4g); r̄k is guaranteed
to be the closest feasible (w.r.t. U ,X ) point to rk,
see [10, Theorem 2];

• to reduce conservatism, a variable (offset by steady-
state x̄k and scaled by scalar λk ≥ 0) set, λkT ⊕
x̄k is considered: terminal condition (4d), input (4f)
and state (4f) restrictions ensure that closed-loop
dynamics (3) are stable and admissible1;

• inclusion (4e) ensures terminal set admissibility and
(4h) avoid, via a small, positive scalar ϵ, that x̄k, ūk

lie on the boundaries of X ,U .

Remark 1. The standard point-tracking MPC works
under two contradictory impulses. On one hand, to reduce
conservatism, the terminal set should be as large as

1We abused the notation and took x̄ 7→ x̄k and ū 7→ ūk.

possible (i.e., chosen as the maximal positive invariant
(MPI) set [14]). On the other hand, tracking a reference
set-point may bring the state close to the boundary of
its admissible set (and outside the terminal set). Thus,
[2], [10], pre-compute the terminal set T as the MPI set
for dynamics (3), see Sec. III-B for further constructive
details. Then, λkT is also PI under (3) which implies in
turn that λkT ⊕ {x̄k} contains xk at all times. ♦
Remark 2. While rk is called a ‘reference’ we do not
make the assumption to know its evolution along the
prediction horizon. The value received at the current
simulation step (the k-th) is used as set-point to be tracked
by the terminal predicted output (yk+Npred) via suitable
choices of x̄k, ūk in (4g) and penalties in the cost (4a).♦

The weakness of (4) comes from enforcing the set-
inclusions2 (4e) and (4f):

λkT ⊕ {x̄k} ⊆ X , (5a)
−λkKT ⊕ {ūk} ⊆ U . (5b)

The terms on both sides of the inclusion operator are
usually polyhedral sets, given in half-space form (as
an intersection of inequalities). Checking the inclusions
requires to enumerate the vertices defining the polyhedra
on the left (to ensure that each of them checks the
constraints of the one on the right). Specifically, taking
X = {x : HXx ≤ hX }, U = {u : HUu ≤ hU} and
T = {x =

∑
j αjvj ,

∑
j αj = 1, αj ≥ 0, ∀j} allows to

reformulate (5) into:

HX (λkvj + x̄k) ≤ hX , (6a)
HU (ūk − λkKvj) ≤ hU , ∀j. (6b)

Usually, the number of vertices is exponential w.r.t. the
number of inequalities from the half-space representation
[11] and enumerating them may prove non-trivial, espe-
cially for large state dimensions. In any case, even having
them, we would still have to add many inequalities in the
MPC problem (all of these from (6) into (4)). Our idea,
and the bulk of the remainder of the paper, has two parts:

i) make use of the sufficient containment formulations
(polytopic and zonotopic forms) given in [1] to avoid
explicitly using the vertex representation;

ii) exploit zonotopic formulations for sets U ,X , T to
further reduce the complexity of the representation.

III. Main idea
Consider the notion of an AH polytope [1], Z, defined as

the affine transformation of a polytope given by its half-
space representation Pz = {z ∈ Rnz : Hzz ≤ hz} ⊂ Rnz :

Z = {z̄} ⊕ ZPz, (7)

where Z ⊂ Rn×nz , z̄ ∈ Rn. Based on this definition we
recall two of the results from [1] which provide sufficient
conditions for set inclusion verification.

2Note that (4f) has been, for further use, put in a more compact
form than the one used in (4).
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Proposition 1. [AH-polytope inclusion, [1, Thm. 1]] Let
U = {ū} ⊕ UPu ⊂ Rn, V = {v̄} ⊕ V Pv ⊂ Rn, defined as
in (7), where Pu = {u ∈ Rnu : Huu ≤ hu}, Pv = {v ∈
Rnv : Hvv ≤ hv} and (Hu, hu) ∈ Rqu×n×Rqu , (Hv, hv) ∈
Rqv×n×Rqv , (U, ū) ∈ Rn×nu×Rn, (V, v̄) ∈ Rn×nv×Rnv .

Then set inclusion U ⊆ V holds if

∃ Γ ∈ Rnv×nu , β ∈ Rnv ,Λ ∈ Rqv×qu
+ (8)

such that

U = V Γ, v̄ − ū = V β, (9a)
ΛHu = HvΓ Λhu ≤ hv +Hvβ. (9b)

Zonotopes (in one interpretation, the affine mappings
of the unit ball of the infinity norm [11]) are a particular
case of an AH-polytope:

⟨t̄, T ⟩ := {t̄} ⊕ TBnt
∞, (10)

with t̄ ∈ Rn the zonotope’s center and T ∈ Rn×nt its
generator matrix. The particularities of representation
(10) lend to a simplified reformulation of Prop. 1.

Proposition 2. [Zonotope inclusion, [1, Cor. 4]] Let
U = ⟨t̄, T ⟩ ⊂ Rn, V = ⟨v̄, V ⟩ ⊂ Rn, defined as in (10),
where (U, ū) ∈ Rn×nu × Rn, (V, v̄) ∈ Rn×nv × Rnv .

Then set inclusion U ⊆ V holds if

∃ Γ ∈ Rnv×nu , β ∈ Rnv , (11)

such that

U = V Γ, v̄ − ū = V β,
∥∥[Γ β

]∥∥
∞ ≤ 1. (12)

A. Containment reformulations
We aim to provide linear and compact sufficient con-

ditions for the set inclusions checks from (5). We start
by assuming that T ⊆ X , the MPI set for closed-
loop dynamics xk+1 = (A − BK)xk, has already been
computed and is given in half-space representation: T =
{x : HT x ≤ hT }, with HT ∈ Rqt×n, hT ∈ Rqt .
Furthermore, recall that both U and X are given in half-
space form around (6). It is then straightforward to adapt
Proposition 1 to set inclusions (5) in the next corollary.

Corollary 1. Inclusions (5) are verified by the sufficient
formulations:

i) state inclusion (5a)

ΛxHT = HXλk, ΛxhT ≤ hX −HX x̄k, (13)

ii) input inclusion (5b)

ΛuHT = −HUKλk, ΛuhT ≤ hU −HU ūk, (14)

with Λx ∈ Rqx×qt
+ and Λu ∈ Rqu×qt

+ .

Proof: We adapt the sets from Prop. 1 to those used
in (5) and observe the simplifications that appear.

i) taking {ū, U,Pu, v̄, V,Pv} ← [ {x̄k, λk · I, T , 0, I,X}
we get that Γ = λk · I, β = −x̄k, which, put in (9),
directly give relations (13);

ii) taking {ū, U,Pu, v̄, V,Pv} ←[ {ūk, λk · K, T , 0, I,U}
we get that Γ = λk ·K,β = −ūk, which, put in (9),
directly give relations (14).

Remark 3. Note that, while λk is a variable changing
at each MPC run, it is still a scalar. It is then possible to
pre-compute Λ0

x ≥ 0 verifying Λ0
xHT = HX and replace

the inequality from (13) with

Λ0
xhT · λk ≤ hX −HX x̄k (15)

via notation Λx ← [ Λ0
xλk. The same procedure may

be applied for Λ0
u ≥ 0 verifying Λ0

uHT = −HT K to
subsequently replace (14) with

Λ0
uhT · λk ≤ hU −HU ūk. (16)

The advantage of these reformulations is that we no
longer introduce Λx,Λu as variables into the optimization
problem. They are obtained in a pre-processing step and,
within the MPC optimization problem (13) and (14) are
replaced by (15) and (16). This shows that we do not
need to introduce any new variables in the MPC problem
to describe the sufficient conditions from Cor. 1. ♦

Typically, constraint sets employed in MPC are sym-
metric to the origin (perhaps after a change of coordi-
nates). Thus, we propose the next corollary of Prop. 1.

Corollary 2 (Symmetric AH Polytope inclusion). Let
U,V be defined as in Prop. 1 but change Pu = {u ∈
Rnu : |Huu| ≤ hu}, and Pv = {v ∈ Rnv : |Hvv| ≤
hv} to symmetric (w.r.t. the origin) polytopes, with Hu ∈
R

qu
2 ×nu , Hv ∈ R

qv
2 ×nv , hu ∈ R

qu
2

+ and hv ∈ R
qv
2
+ . Then

we have U ⊆ V if:

∃ Γ ∈ Rnv×nu , β ∈ Rnv , Λ̄ ∈ R
qv
2 × qu

2 (17)

such that the following hold:

U = V Γ, v̄ − ū = V β, (18a)
Λ̄Hu = HvΓ, |Λ̄|hu ≤ hv − |Hvβ|. (18b)

Proof: Noting that Pu may be rewritten as Pu =
{u ∈ Rnu :

[
H⊤

u −H⊤
u

]
u ≤

[
h⊤
u h⊤

u

]
} (similarly for

Pv) we have that Λ ∈ Rqv×qu
+ , as defined in Prop. 1,

may be decomposed into Λ =

[
Λ1 Λ2

Λ2 Λ1

]
with Λ1,Λ2 ∈

R
qv
2 × qu

2
+ . This allows to reformulate (9) into

U = V Γ, v̄ − ū = V β,

±(Λ1 − Λ2)Hu = ±HvΓ, (Λ1 + Λ2)hu ≤ hv ±Hvβ.

Taking Λ̄ = Λ1 − Λ2 and observing that |Λ̄|hu ≤ (|Λ1|+
|Λ2|)hu = (Λ1 + Λ2)hu we arrive at (18).

Cor. 2 may be adapted for set inclusions (5), as was
done with Cor. 1 for Prop. 1. Without repeating the same
reasoning, the end result are relations

Λ̄xHT = HXλk, |Λ̄x|hT ≤ hX − |HX x̄k|, (19a)
Λ̄uHT = −HUKλk, |Λ̄u|hT ≤ hU − |HU ūk|, (19b)

with Λ̄x ∈ R
qx
2 × qt

2 and Λ̄u ∈ R
qu
2 × qt

2 . ♦
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Remark 4. Sometimes, as is the case for the first
example of Sec. IV, sets U ,X , T are symmetric w.r.t.
centers u0, x0, xt0. This may be handled by mappings
ū←[ ū+Uu0 and v̄ ←[ v̄+V v0 in Cor. 2 which, ultimately,
lead to the following reformulation of inequalities (19):

|Λ̄x|hT + |HX (x̄k + λkxt0 − x0)| ≤ hX , (20a)
|Λ̄u|hT + |HU (ūk − λkKxt0 − u0)| ≤ hU . (20b)

♦

B. Maximal positive invariant set approximation
Let us briefly recall the notion of set invariance [14].

A set Ω ⊂ Rn is called positive invariant (PI) w.r.t.
dynamics (3) iff the implication

xk ∈ Ω =⇒ xk′ ∈ Ω, ∀k′ ≥ k, (21)

holds for some finite index k. Equivalently stated, the
set-inclusion relation3 (A − BK)Ω ⊆ Ω has to hold.
The maximal positive invariant (MPI) set is simply the
largest PI set respecting the state constraints (Ω ⊆
X ). By construction, the MPI set is given (in possibly
redundant half-space form) as [15]

T =

L⋂
ℓ=0

(A−BK)ℓX , (22)

with L being a finite (under standard assumptions) scalar
which verifies (A−BK)L+1X ⊆ X .

The goal of (22) is to find the largest positive invariant
set which fits the feasible domain X . This makes sense in
the standard MPC construction where the terminal set
should ‘fit’ as well as possible within X . Yet, the variable
terminal set employed in (4) is often scaled to a smaller
value (via λk), which makes it no longer a ‘maximal’ PI
set. We may ask then whether using (22) as terminal set
is still justified. Hence, we propose to:

i) compute a PI set for the closed dynamics (3) using
a scalable zonotopic formulation;

ii) employ the zonotopic linear encodings from Prop.2
to further reduce the computational effort.

Recalling the definition of a zonotope from (10), we take

Tz(δ) = ⟨0, Gdiag(δ)⟩, (23)

with the generator matrix G a priori fixed and δ ∈ RD,
positive scaling factors which are to be determined. For
further use we make the notation ∆ := diag(δ). We have
to check two inclusions:

i) the invariance condition

(A−BK)Tz(δ) ⊆ Tz(δ), (24)

ii) and the state admissibility condition

Tz(δ) ⊆ X . (25)
3We consider the closed-loop dynamics described by A−BK. No

unstable system can have a bounded PI set.

For further use, we abuse the notation and we assume
that both U ,X may be written in zonotopic form (10):

U = ⟨0, U⟩, X = ⟨0, X⟩. (26)

Proposition 3. The largest zonotopic set Tz(δ̄), given
as in (23) and respecting (24)–(25) is defined by

δ̄ = max
δ

∑
1≤i1<...in≤D

∣∣det(Gi1...in)
∣∣ · n∏

j=1

δij

 (27a)

s.t. (A−BK)G∆ = G∆Γ1, ∥Γ1∥∞ ≤ 1, (27b)
G∆ = XΓ2, ∥Γ2∥∞ ≤ 1, (27c)

with Gi1...in denoting the sub-matrix obtained from G by
extracting columns of indices {i1, . . . , in}.

Proof: The cost (27a) describes (23)’s volume as
defined in [16]. Terms (27b)–(27c) are sufficient reformu-
lations of conditions (24)–(25) via Prop. 2.

Having a new, zonotopic, terminal set (Tz(δ̄) instead of
T ) allows us to adapt Prop. 2 into the following corollary.

Corollary 3. Consider Tz(δ̄) defined as in (23) with
δ̄ obtained from Prop. 3. With the notation from (26),
inclusion conditions (5) are guaranteed to hold if

λkG∆̄ = XΓx, −x̄k = Xβx, ∥[Γx, βx]∥∞ ≤ 1, (28a)
λkKG∆̄ = UΓu, −ūk = Uβu, ∥[Γu, βu]∥∞ ≤ 1, (28b)

hold, with notation ∆̄ := diag(δ̄).

Proof: Set inclusions (5) become4, with the redefi-
nition from (26) and replacement of T with Tz(δ̄):〈

x̄k, λk ·G∆̄
〉
⊆ ⟨0, X⟩,〈

ūk, λk ·KG∆̄
〉
⊆ ⟨0, U⟩.

Applying Prop. 2 to these relations directly leads to (28),
thus concluding the proof.

IV. Illustrative example

We test the improvements in computation time for
various implementations of set inclusions (5):
S1) the exact, vertex / half-space constraints from (6);
S2) the polyhedral formulations from (13)–(14);
S3) the reduced polyhedral forms from (15)–(16);
S4) the polyhedral forms exploiting symmetry in (19);
For illustration purposes we use both the simplified
aircraft example from [2] and the ‘CSE1’ example from
the COMPleib [17]. The first is relevant for comparison
purposes (w.r.t. [2], [10]) and the later better emphasis
the computation time gains (due its higher dimension).

We used the MPT3 [18] and CasADi [19] tools to solve
the MPC problem in Matlab.

4The minus sign may be discarded in the first equality of (28b)
since zonotopes are symmetric to the origin.
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A. Simplified aircraft example from [10]
The system’s state has two components: the attack

angle (between the airplane’s orientation and the velocity
vector), α, and the pitch rate (the rate of change of the
airplane’s angle over the x-axis), q. The system’s input
is the elevator angle of the airplane, δ.

The discretized (with a sampling time of 60ms) LTI
system is given by[

αk+1

qk+1

]
=

[
0.9719 0.0155
0.2097 0.9705

]
︸ ︷︷ ︸

A

[
αk

qk

]
+

[
0.0071
0.3263

]
︸ ︷︷ ︸

B

δk

y =
[
1 0

]︸ ︷︷ ︸
C

[
αk

qk

]
,

with state and input constraints

X = {(α, q)T | − 15 ≤ α ≤ 15,−100 ≤ q ≤ 100},
U = {δ | − 25 ≤ δ ≤ 25}.

For the MPC problem (4), we take, similarly with [2],
the stage penalty matrices Q = diag(10, 1), R = 1, W =
104, and terminal ingredients, the penalty matrix P =
[124.24, 5.17; 5.17, 3.47] and terminal control gain K =[
1.96, 0.84

]
. The prediction horizon is chosen Npred =

20, and ϵ = 10−5. On a simulation horizon of 18 sec we
consider a piecewise constant, over each slot of 6 seconds,
taking the values {0, 30, −20}, respectively. The initial
state is taken to be x0 = [18; 0].

The results are depicted in Fig. 1. The top plot in
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Fig. 1: Simulation results for the airplane model

Fig. 1a illustrates the ideal reference (loosely dashed,
red), the feasible reference (dotted green) and actual out-
put (solid blue). The bottom plot illustrates the input.
The feasible reference, output and input are obtained
with scenario S1). We do not depict the signals for the
remaining scenarios to avoid cluttering the figure and
because they have very similar values. Fig.‘1b shows the
scaling factor λk under each of the scenarios. We observe
that the values range, as expected, between 0 and 1
and we observe that the values for the scenarios S1),
S2), and S3) fully overlap over the segment [6, 18] sec.
Since we did not tune W which penalizes the difference
between ideal and feasible reference and since, as noted in
[1], the AH/zonotopic encodings describe only sufficient
conditions, we consider these scaling values acceptable.

The mean computation times are depicted in the
following table. Due to the problem’s small size (x ∈ R2)
the values are close and quite small.

Scenario S1) S2) S3) S4)
Mean Computation Times [msec] 1.3 1.6 1.2 1.1

TABLE I: Computation times

B. CSE1 example from [17]
The ‘CSE’ dynamics describe a system combining cou-

pled springs, dashpots and masses. The mass positions
and velocities define the system state and its input are
the two forces exerted at the ends of the coupled springs
chain [17]. The continuous-time model is given by

ẋ =

[
0 I

−M−1
c Kc −M−1

c Lc

]
︸ ︷︷ ︸

A

x+

[
0

M−1
c Dc

]
︸ ︷︷ ︸

B

u

y =

[
1 0 0 · · · 0
0 1 0 · · · 0

]
︸ ︷︷ ︸

C

x,

, where Mc = µI, Lc = δI,

Kc = k



1 −1 · · · 0 0

−1 −2
. . . 0 0

... . . . . . . . . . ...

0 0
. . . −2 −1

0 0 · · · −1 1


, and Dc =


1 0
0 0
...

...
0 0
0 −1


The ‘CSE1’ variant (for 10 springs), with parameters n =
20, µ = 4, δ = 1, k = 1, is discretized with the forward
Euler method for a sampling time of 1 sec. The state and
input constraints are:

X = {x ∈ R20 : ∥x∥∞ ≤ 1}, U = {u ∈ R2 : ∥u∥∞ ≤ 1}.

For the MPC problem (4), the penalty matrices are
Q = I20, R = I2, W = 104, and the terminal ingredients
P , K are computed accordingly. The prediction horizon
is taken as Npred = 10 and ϵ = 10−5. The initial state is
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taken as x0 = 0.33 · [1, 1, . . . , 1]⊤. The reference signal
is piecewise constant at rk = [1.2; 0.8].
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Fig. 2: Simulation results the coupled spring system

Figures 2a illustrates the ideal reference (loosely
dashed, red), the feasible reference (dotted green) and
actual output (solid blue). The first pseudo reference
values stabilize around 1m, instead of 1.2m, because of
the state constraints, and the pseudo reference for the
second state goes to 0.9m, instead of 0.8m, because it
is the closest feasible point. In both cases, the state of
the system follows the pseudo reference closely. Fig 2b
illustrates the two inputs, which respect the input con-
straints. The feasible reference, outputs and inputs are
plotted for the scenario S2) since S1) fails to run and the
remaining scenarios behave similarly. The computation
times for the three scenarios are presented in II.

Computation Times [msec]
Scenario⋆ min mean max

S2) 153 210 316
S3) 17.6 30.3 46.8
S4) 26 36.4 60.6

TABLE II: Computation times for CSE1 system

⋆We stopped the application for the vertex / half-space
scenario S1) after 24 hours because it was stuck in the
pre-processing steps of the optimization problem. The
other scenarios behave similarly (values around the same
order of magnitude) and show promising behavior (fast
computation time) for even larger problem sizes.

V. Conclusions
We have applied and adapted the linear encodings

from [1] to the feasible-reference tracking MPC of [2] to

reduce the computational cost of checking the various
set inclusions employed in the scheme (by avoiding to
explicitly use the vertex representation of the terminal
set). We used both polytopic and zonotopic formulations
and for the later case we proposed a zonotopic approxi-
mation of the MPI set. We observed clear computation
time reductions. We plan to extend the current work to
provide recursive feasibility guarantees.
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