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Abstract— In the field of international security, under-
standing the strategic interactions between countries within
a networked context is crucial. Our previous research has
introduced a “games-on-signed graphs [10]” framework to
analyze these interactions. While the framework is intended
to be basic and general, there is much left to be explored,
particularly in capturing the complexity of strategic scenarios
in international relations. Our paper aims to fill this gap
in two key ways. First, we modify the existing preference
axioms to allow for a more nuanced understanding of how
countries pursue self-survival, defense of allies, and offense
toward adversaries. Second, we introduce a novel algorithm
that proves the existence of a pure strategy Nash equilibrium
for these revised games. To validate our model, we employ
historical data from the year 1940 as the game input and
predict countries’ survivability. Our contributions thus ex-
tend the real-world applicability of the original framework,
offering a more comprehensive view of strategic interactions
in a networked security environment.

Index Terms— power allocation, resource allocation, secu-
rity, network games, international relations, Nash equilibrium

I. Introduction
In recent years, the study of “international systems”

within the realm of systems and control has gained
traction, although research in this area is still nascent.
An international system is a complex network of in-
teractions and relationships between various countries,
organizations, and other actors on the global stage. Such
systems are dynamic, with inputs like national power
and political ideologies leading to outputs like shifts
in cooperation, power dynamics, and conflict resolution.
Notably, these outputs are neither fixed nor deterministic
but are subject to change over time.

Pioneering work in the development of international
systems theory has been contributed by scholars like
Karl Deutsch, whose seminal writings [1]–[3] advocate for
formal modeling in international relations [4]. Deutsch
posits that human and social communication, despite
being more complex than machine communication, are
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subject to the same fundamental principles. For example,
Karl Deutsch and David Singer assessed the stability
of multipolar international systems, drawing significant
conclusions on the relationship between great powers
[5]. Similarly, Richard Rosecrance discussed how states’
characteristics and the global environment have changed
inter-state relations [6], thereby introducing new techni-
cal challenges to systems science.

To advance research in international systems, we have
developed a “games-on-signed graphs” framework [7]–
[15]. The power allocation games in this framework aim
to elucidate how countries strategically allocate resources
– primarily national power – to maximize favorable
outcomes in an increasingly complex international en-
vironment. Nowadays, given the increasing demand for
resources and the growing complexity of international
relations, understanding the strategic resource allocation
has become essential for policymakers, academics, and
practitioners alike. The instruments of national power
must be applied in an environment characterized by
mutual vulnerabilities, demanding careful calculation,
prudence, and strategic restraint. This is in line with the
network games literature (e.g., [16]–[29]), where network
resource allocation games have been extensively studied.
These studies cover diverse fields from transportation to
wireless communication (e.g., [30]–[33]).

In the power allocation games, countries strategically
deploy their national powers to support their allies and
oppose their adversaries in order to survive and succeed
in the international environment. These games can be
regarded as a system, whose input or “game parameters”
– including countries’ national power, is transformed into
the output, the achievement of their objectives in the
international environment, such as survival and success.
The transformation process would be shaped by the
structure of the system itself, as well as the actions and
strategies of other states.

To better capture the complexity of strategic scenarios
in international relations, this paper further investigates
countries’ preference structures in the power allocation
games. It seeks to refine the framework by making two
modifications to the preference axioms. First, the power
allocation games in [10] assume countries strictly prefer
states in which they survive over states where they do
not, regardless of their allies’ or adversaries’ situations.
Consequently, they always prioritize self-survival, and
the utility functions satisfying this preference axiom
have a “jump discontinuity [12].” The first modification
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relaxes this assumption – countries still prioritize self-
survival but only weakly prefer surviving states to non-
surviving ones. Thus, the corresponding utility functions
are not necessarily discontinuous. The second modifica-
tion is motivated from influence maximization. In the
new games, beyond self-survival, countries optimize the
number of survived allies and the number of vulnerable
adversaries. This modification renders the countries’
behavior more strategic. For instance, in the previous
model [10], each country will not protect the interest
of one ally by jeopardizing another ally’s interest. On
the contrary, in our new model, such strategic choice
is feasible if it increases the number of survived allies,
which is more consistent with many real-world scenarios.

We propose a novel algorithm to prove the existence
of pure strategy Nash equilibrium for this new game
and simulate predictions by using the data of relevant
countries in the year of 1940 as game input. By taking
these steps, we aim to expand the real-world applicability
of the power allocation games in the original framework
and provide a more comprehensive picture of power
deployment between countries in international security.

To provide a comprehensive examination of these
issues, the remainder of this paper is organized as follows:
Section II presents the definitions and the setup of the
game, introducing the specific modifications we propose
and elaborating on the new preference axioms. Section
III presents a novel algorithm for finding a pure strategy
Nash equilibrium in the game and Section IV validates
it through simulations using historical data from the
year of 1940. Finally, Section V concludes the paper,
summarizing our contributions and suggesting avenues
for future research.

II. Definitions and Model Setup
Denote by R≥0 the set of non-negative real numbers.

Let 1{·} be the indicator function, i.e., 1{C} = 1 if
the condition C holds, and 1{C} = 0 otherwise. In this
section, we formalize our model of international relations
as the following networked power-allocation game.

International relations as a signed graph: Consider
a world of n countries, indexed as i ∈ {1, . . . , n},
and assume that their mutual relations are fixed. For
any country i, denote the set of its allies by Ai and
the set of its enemies by Ei. We assume that all the
international relations are symmetric. Namely, j ∈ Ai

iff i ∈ Fj , and j ∈ Ei iff i ∈ Ej . For convenience,
let i ∈ Aj for any i ∈ {1, . . . , n}. These n countries
and the sets E1, . . . , En, A1, . . . ,An induce an undirected,
unweighted, and signed graph, where the nodes represent
the countries and the positive (negative resp.) edges
represent the friendly (antagonistic resp.) relations. Note
that we do not assume a complete graph. That is,
Ei ∪ Ai = {1, . . . , n} does not necessarily hold for any
i.Noting that relations between countries are generally
two-way and consistent, it is reasonable to assume that
relations between countries are the same.

Power allocation strategies: For each country i, we
define its power as a positive value pi. Country i can
arbitrarily divide its power and spend them on either
attacking its enemies or supporting its allies. For any
country j ∈ Ei (or j ∈ Ai respectively), denote by
xij the amount of country i’s power spent on attacking
j (supporting j respectively). The vector (xi1, . . . , xin)
is considered as the strategy of country i. Denote by
X = (xij)n×n the strategies of all countries and call it a
strategy matrix. By definition,

X ∈ Ω =
{
X ∈ Rn×n

≥0

∣∣∣For any i, xij = 0 if j /∈ Ei ∪ Ai,

and
∑

j∈Ei∪Ai

xij = pi

}
.

States of countries: Given any strategy matrix X ∈ Ω,
the state of each country i, denoted by si(X), is either
safe, or precarious, or unsafe, following the rules below:

si(X) =


safe, if

∑
j∈Ei

xij +
∑

j∈Ai

xji >
∑
j∈Ei

xji,

precarious, if
∑
j∈Ei

xij +
∑

j∈Ai

xji =
∑
j∈Ei

xji,

unsafe, if
∑
j∈Ei

xij +
∑

j∈Ai

xji <
∑
j∈Ei

xji.

That is, the state of a country depends on the power it
spends on attacking its enemies, plus the support from
its allies, and minus the attack from its enemies.

Preference axioms: To make our model more general
and inclusive, we do not specify the countries’ utility
functions, but instead assume they obey the following
preference axiom.

Definition 1 (Preference): Given two strategy matri-
ces X and Y , country i ∈ {1, . . . , n} prefers X to
Y , denoted by X ≥i Y , if either of the following two
conditions hold:

(i) si(X) ∈ {safe, precarious} and si(Y ) = unsafe;
(ii) Either si(X), si(Y ) ∈ {safe, precarious} or si(X) =

si(Y ) = unsafe. Moreover,∑
j∈Ei

1{sj(X) ̸=safe} +
∑
l∈Ai

1{sl(X) ̸=unsafe}

≥
∑
j∈Ei

1{sj(Y ) ̸=safe} +
∑
l∈Ai

1{sl(Y ) ̸=unsafe}

There exist various utility functions obeying the above
preference axioms, e.g., the utility ui(X) of i defined as:

ui(X) =n1{si(X)=safe or precarious}

+
∑
j∈Ai

1{sj(X)=safe or precarious}

+
∑
j∈Ei

1{sj(X)=unsafe or precarious}.

Nash equilibrium: With Definition 1, a strategy X∗

is called a pure strategy Nash equilibrium if, for any i,
X∗ ≥i X for any X ∈ Ω satisfying that the j-th row of
X is equal to the j-th row of X∗ for any j ̸= i.
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III. Existence and Computation of Nash Equilibrium

In this section, we establish the main result of this
paper. That is, any game satisfying the preference
axioms given by Definition 1 admits at least one Nash
equilibrium. We establish this result via the following
steps:

(i) Step 1: we first construct a special subset of
strategy matrices, referred to as no-support-no-
unsafe (NSNU) strategy matrices.

(ii) Step 2: we show that the set of NSNU strategy ma-
trices is invariant under a certain type of strategy
adjustments, which will be specified later.

(iii) Step 3: by manipulating the countries’ strategy
adjustments, we show that any strategy matrix in
Ω can be changed to an NSNU strategy matrix
and then reach a Nash equilibrium via an iterative
process.

As Step 1, we define the no-support-no-unsafe (NSNU)
strategy matrices as follows.

Definition 2 (NSNU strategy matrix): Given the n
countries’ powers p1, . . . , pn, a strategy matrix X ∈ Ω is
called a no-support-no-unsafe (NSNU) strategy matrix,
if it satisfies that i) X = X⊤; 2) xij = 0 for any i, j
such that j /∈ Ei ∪ {i}.

The following facts are straightforward consequences
of the definition of countries’ states and the preference
axioms.

Fact 1: Under any NSNU strategy matrix X, there is
no support between allies, i.e., xij = 0 for any i and
any j ∈ Ai \ {i}. Moreover, no country is at the unsafe
state. A country i is safe if and only if xii > 0, and is
precarious if and only if xii = 0.

Fact 2: For any NSNU strategy matrices X and Y ,
for any i ∈ {1, . . . , n}, X ≥i Y if and only if∑

j∈Ei

1{xjj=0} =
∑
j∈Ei

1{sj(X)=precarious}

≥
∑
j∈Ei

1{sj(Y )=precarious} =
∑
j∈Ei

1{yjj=0}.

As Step 2, we characterize the best response of a
country i under an NSNU strategy matrix.

Definition 3 (Preferable adjustment): Given any
NSNU strategy matrix X ∈ Ω and any country i, define
Y as the preferable adjustment of X for i, if Y is
constructed from X as follows.

(i) If pi ≥
∑

j∈Ei
(xjj + xji), let the entries of Y be

equal to the corresponding entries of X except for
the following changes:

a) Let yii = pi −
∑

j∈Ei
(xjj + xji);

b) For any j ∈ Ei, let yij = yji = xjj + xji and
yjj = 0.

(ii) If pi < minj∈Ei
(xjj + xji), let the entries of Y

be equal to the corresponding entries of X except
for the following changes: Pick a j1 from the set
argminj∈Ei

(xjj + xji) and

a) Let yii = 0, yij1 = yj1i = pi, and yj1j1 =
xj1j1 + xj1i − pi;

b) For any j ∈ Ei \ {j1}, let yij = yji = 0 and
yjj = xjj + xji.

(iii) If minj∈Ei
(xjj + xji) ≤ pi <

∑
j∈Ei

(xjj + xji), let
k = |Ei|, i.e., the number of country i’s enemies,
and index the enemies of i as j1, . . . , jk, with xj1j1+
xj1i ≤ xj2j2 + xj2i ≤ · · · ≤ xjkjk + xjki. In this
scenario, there exists m ∈ {1, . . . , k − 1} such that

m∑
s=1

(xjsjs + xjsi) ≤ pi <

m+1∑
s=1

(xjsjs + xjsi).

Let the entries of Y be equal to the corresponding
entries of X except for the following changes: Let
yii = 0.

a) For any s ∈ {1, . . . ,m}, let yijs = yjsi =
xjsjs + xjsi and yjsjs = 0;

b) Let yijm+1 = pi −
∑m

s=1(xjsjs + xjsi) = yjm+1i

and yjm+1jm+1
= xjm+1jm+1

+ xjm+1i − yjm+1i;
c) For any s ∈ {m+2, . . . , k}, let yijs = yjsi = 0

and yjsjs = xjsjs + xjsi.
Despite its complicated form, the intuition behind

preferable adjustment is quite clear: By re-allocating
power, country i aims to have as many precarious
enemies as possible. In addition, each of i’s enemies also
re-allocate its power spent on i and itself, in order to
maintain the symmetry of Y . As a result, Y is still a
NSNU strategy matrix and the allocation of i’s power
in Y constitutes i’s best response to X. The following
lemma confirms this argument.

Lemma 1 (Properties of preferable adjustment):
Given any NSNU strategy matrix X ∈ Ω and its
preferable adjustment for i, denoted by Y ,

(i) Y is also an NSNU strategy matrix;
(ii) for any X̃ ∈ Ω such that (x̃j1, . . . , x̃jn) =

(xj1, . . . , xjn) for any j ̸= i, country i prefers Y
to X̃, i.e., Y ≥i X̃.

(iii)
∑

j∈Ei
1{yjj=0} ≥

∑
j∈Ei

1{xjj=0}.
Proof: We first prove statement (i). By carefully

examining Definition 3, one could check that, in any
scenario the preferable adjustment guarantees that Y
is symmetric and all the diagonals are non-negative. In
addition, according to Definition 3, for any l ̸= i and
any j /∈ El ∪ {l}, xlj is not adjusted, i.e., ylj = xlj = 0.
Moreover, xij is not adjusted for any j /∈ Ei ∪ {i}, i.e.,
yij = xij = 0. That is, for any l, s, yls = 0 as long as
s /∈ El ∪ {l}. Therefore, according to Definition 2, Y is
an NSNU strategy matrix.

We now prove statement (ii). Since Y is an NSNU
strategy matrix, country i and all its allies are not unsafe.
Therefore, according to Definition 1, i does not prefer Y
to X̃ if and only if i and all its allies are not unsafe under
X̃ and i has strictly more precarious or unsafe enemies
under X̃ than under Y . We show that this is impossible
by discussing the three scenarios in Definition 3 one by
one.
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Suppose pi ≥
∑

j∈Ei
(xjj + xji). According to Defini-

tion 3, in this scenario, yjj = 0 for any j ∈ Ei, which
together with Fact 1 implies that all the enemies of i
are precarious. Therefore, the number of i’s unsafe or
precarious enemies under Y could not be smaller than
that under X̃. That is, Y ≥i X̃.

Suppose pi < minj∈Ei
(xjj + xji). Then pi < xjj + xji

for any j ∈ Ei. That is, given X, no matter how i re-
allocates its power on attacking its enemies, none of its
enemies will be precarious or unsafe. Therefore, in this
scenario, the numbers of precarious or unsafe enemies of
i under both Y and X̃ are 0, which leads to Y ≥i X̃.

Suppose minj∈Ei
(xjj + xji) ≤ pi <

∑
j∈Ei

(xjj + xji).
Rank the values xjj+xji with j ∈ Ei in ascending order,
i.e, xj1j1 + xj1i ≤ · · · ≤ xjkjk + xjki. Then there exists
m ∈ {1, . . . , k − 1} such that

m∑
s=1

(xjsjs + xjsi) ≤ pi <

m+1∑
s=1

(xjsjs + xjsi).

According to Definition 3, for any 1 ≤ s ≤ m,

yijs = xjsjs + xjsi and yjsjs = xjsjs + xjsi − yijs = 0,

and for any m+ 1 ≤ s ≤ k,

0 ≤ yijs <xjsjs+xjsi and yjsjs = xjsjs + xjsi − yijs > 0.

Therefore, according to Fact 1, under Y , the number of
i’s precarious enemies is m. Suppose that, under X̃, i
has q precarious enemies, denoted by d1, . . . , dq. Then
we have

q∑
s=1

x̃ids
≥

q∑
s=1

(x̃dsds
+ x̃dsi) =

q∑
s=1

(xdsds
+ xdsi).

Moreover, since xj1j1 + xj1i, . . . , xjkjk + xjki are ranked
in ascending order, we have

q∑
s=1

(xjsjs + xjsi) ≤
q∑

s=1

(xdsds + xdsi)

≤
q∑

s=1

x̃ids
≤ pi <

m+1∑
s=1

(x̃jsjs + x̃jsi).

Therefore, q ≤ m. That is, i has more precarious enemies
under Y than under X̃, which in turn leads to Y ≥i X̃.

Now we proceed to prove statement (iii). According to
statement (ii), i under Y has more precarious enemies
than under X. In addition, according to Fact 1, under
any NSNU strategy matrix, a country is precarious if
and only if the power allocated to itself is 0. Therefore,∑

j∈Ei

1{yjj=0} ≥
∑
j∈Ei

1{xjj=0}.

This concludes the proof.
Given the definitions of NSNU strategy matrix and

preferable adjustment, we are now ready to present and
prove the main result in this paper.

Theorem 2 (Existence of Nash Equilibrium): Given
n countries with powers p1, . . . , pn respectively, and

Procedure 1

Procedure 2

Fig. 1. The diagram of Procedure 1 and Procedure 2 defined in
the proof of Theorem 2.

given their ally and enemy sets A1, E1, . . . ,An, En, for
any power-allocation game as described in Section II,
there exists at least one pure strategy Nash equilibrium,
at which no country is unsafe and there is no support
between any pair of allies.

Proof: The proof is omitted due to the space limit.

Theorem 2 indicates that, for any power-allocation
game characterized in Section II, there exists a special
Nash equilibrium, at which every country manages to
keep themselves from being unsafe without any support
from its allies.

IV. Simulations
Though we have established pure strategy Nash equi-

librium existence, there are many possible Nash equi-
libria for the power allocation game. The simulation
algorithm as follows is used to generate the set of
pure strategy Nash equilibria for the game. The inputs
required for the algorithm are the parameters of the
game, including the power of each country, the relation-
ships between them, and their preference axioms. The
algorithm assumes a simple utility function as below:

ui(X) =

{
0 if si(X) = unsafe∑

j∈Ei∪Ai
uij(X) if si(X) ∈ {safe, precarious}

where uij(X) = 0 if j ∈ Ai and sj(X) = unsafe,
or if j ∈ Ei and sj(X) = safe. uij(X) = 1 if j ∈
Ai and sj(X) ∈ {safe, precarious}, or if j ∈ Ei and
sj(X) ∈ {unsafe, precarious}. Note that this utility
function satisfies the preference axioms in Definition 1.

The process involves each country sequentially up-
dating its power allocation strategy in response to the
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strategies of the other countries, until a pure strategy
Nash equilibrium is reached or a predetermined stopping
criterion, such as 10000 rounds of iteration, is met. The
output of the algorithm is an approximation of the set
of pure strategy Nash equilibria.

• At time 0, initialize the pure strategy Nash equi-
librium set X to be empty and a strategy matrix
X(0).

• At time t, each country i updates its power al-
location strategy xi(t − 1) to optimize its total
utility ui(X) that satisfies the preference axioms, by
assuming the strategies of all the others xj(t−1), j ̸=
i to be fixed and the total power constraint to be
time constant,

pi =
∑
j∈n

xij(t).

• Stop updating if reaching a pure strategy Nash
equilibrium X∗ or the maximum number of rounds
t = T .

• Update the equilibrium set X ∪ {X∗} and go back
to initialize a different strategy matrix.

• At the end of the rounds, compute the number of
pure strategy Nash equilibria for each distinctive
prediction as well as the predictions’ relative per-
centages.

• Obtain countries’ likelihoods of survival based on
the step above. As in [8], a country is believed to
survive if it is safe or precarious.

In this example, we use data from the Correlates of
War project [35] to denote countries’ conflictual and
cooperative relationships in the year of 1940. We also
calculate countries’ national power with their CINC
(composite index for national capability) index. The
results regarding countries’ likelihoods of survival are
in Table 1. After approximating the survival likelihoods
from the power-allocation game, we compared it against
the real-world situation. We analyzed each country’s
historical state from 1940 to 1941. A country that was
not at war in its territory was generally safe, while a
country that was in war had a chance of being unsafe. We
recorded the state of each country as a result of the power
allocations. By comparing the power allocation game’s
calculated results with the analysis of the historical
situation, we obtained an accuracy rate of 0.7407 for
the model. While international situation is complex,
this quantitative analysis method makes it possible to
achieve better accuracy through model and algorithm
improvement, such as by varying the utility functions
and increasing the number of iteration rounds.

V. Conclusion and Further Discussion
Similar to the approach in [10], this paper establishes

the existence of a pure strategy Nash equilibrium for
a new type of power allocation games. These games
are adapted from the original models presented in [10].
Instead of relying on fixed-point theorems, we employ an

Fig. 2. 1940: red (adversaries), green (alliances)

TABLE I
Likelihood of Survival By Country in 1940

Country Survival Likelihood Country Survival Likelihood
Turkey 1.0 Norway 0.0
USA 1.0 Ecuador 1.0
Australia 1.0 Iraq 1.0
Denmark 0.99490 Peru 1.0
Egypt 1.0 Brazil 1.0
Canada 1.0 Paraguay 1.0
New Zealand 0.0 Chile 1.0
Saudi Arabia 1.0 Thailand 0.0
Argentina 1.0 Uruguay 1.0
Haiti 1.0 DR 1.0
South Africa 0.0 Hungary 0.96837
Afghanistan 1.0 Italy 0.0
China 1.0 Mexico 1.0
UK 0.0 Ireland 0.00306
Netherlands 1.0 Belgium 0.00816
Luxembourg 0.0 Guatemala 1.0
Honduras 1.0 France 1.0
El Salvador 1.0 Greece 1.0
Panama 1.0 Nicaragua 1.0
Switzerland 0.0 Costa Rica 1.0
Bulgaria 0.0 Japan 0.0
Colombia 1.0 Spain 0.00510
Romania 0.05306 Portugal 1.0
Russia 1.0 Estonia 0.0
Latvia 0.0 Lithuania 0.0
Iran 1.0 Finland 0.0
Sweden 0.00204 Germany 1.0

algorithm that directly constructs such an equilibrium.
Additionally, we simulate predictions for countries’ sur-
vivability using real-world data.

There are several promising avenues for future re-
search. Beyond generalizing the results of this paper to
different contexts and static game scenarios, it would
be valuable to explore the equilibrium properties and
predictions in dynamic power allocation games. Another
meaningful direction would be to examine a dynamical
system that models countries’ power evolution as they
optimize a utility sum over time, making necessary trade-
offs between “guns” and “butter.” These topics will be
addressed in a more expanded version of this paper.
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