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Abstract— To analyse, control, and predict the behaviour of
the states of a non-linear dynamical system using measurement
functions in Hilbert space are a widely used method known
as Koopman operator theory. Traditional approaches leverage
matrix-based methods or artificial neural networks (specifically
encoder-decoder architectures) to approximate Koopman op-
erator. However, such methods necessitate significant power
and computational resources, hence may not be suitable for
applications that require real-time on-board processing, such as
sensor fusion in robotics/autonomous vehicles or adaptive con-
trol for drone stabilization. The recent development of brain-
inspired spiking neural networks and neuromorphic computing
platforms could provide an effective solution, as these offer
extremely low-energy computation and real-time responses. In
this paper, we introduce the implementation of a Spiking Neural
Network (SNN), that can efficiently approximate Koopman op-
erator. Our model, when tested over four systems, demonstrated
significant computational savings - up to 4× fewer addition
operations and 43× fewer multiplication operations, while using
only 20% of the input data compared to its ANN counterpart.

I. INTRODUCTION

The Koopman operator theory has recently gained traction
as a powerful alternative approach for analysing a non-
linear dynamical system using the evolution of measurement
function. In a seminal work published by B. Koopman in
1931 [1], demonstrated that a non-linear dynamical system
can be effectively represented by an infinite-dimensional
linear operator acting on a Hilbert space encompassing all
possible combination of the system’s state. Since then, the
method has been used to project the behaviour of non-
linear fluid flow [2], specifically quantify transport or mixing
in turbulent flows, nonlinear state reconstruction and data
fusion, among many others [3].

A fundamental challenge in Koopman operator theory lies
in its inherent infinite dimensionality. This stems from the
requirement to encompass the space of all possible mea-
surement functions, which necessitates an infinite number
of degrees of freedom to fully represent. To overcome this
hurdle, the focus of research efforts is on developing finite-
dimensional, matrix-based approximations of the Koopman
operator. One prominent technique for Koopman operator
approximation is Dynamic Mode Decomposition (DMD) [4].
This method aims to identify a low-rank linear model that
best approximates the Koopman operator’s behaviour in
projecting spatial measurements forward in time. However,
the reliance solely on linear measurements in DMD can limit
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its effectiveness in capturing the complexities of inherently
nonlinear systems.

While augmenting the measurement space with nonlinear
functions has the potential to enrich the resulting model,
this approach presents a new challenge. The introduction of
non-linearities may compromise a crucial property – closure
under the Koopman operator. This lack of closure can hinder
the interpretability and effectiveness of the approximated
model.

Recently, Artificial Neural Network (ANN) based work
has emerged to discover and represent eigenfunctions from
data. Normally, Encoder-Decoder Networks [5] are used for
this purpose, but these approaches are both compute and
power intensive and their memory footprint are quite high
- thereby making them unfit for cases such as sensor data
fusion for autonomous vehicles or robots, where compute,
memory and energy resources are scarce. Moreover, there
are cases such as stable and agile manoeuvring of drones
in a gust where quick adaptation and understanding of the
change in system with a varying degree of environmental
disturbances is a must-have requirement and corresponding
computation must be done in-situ in the drone.

Off late, Spiking Neural Networks (SNN) has emerged
as a new generation of AI paradigm that mimic functional-
ities of mammalian brain neural networks, process sparse
asynchronous events, and are good at learning temporal
patterns [6] [7]. When run on neuromorphic computing
platforms, that follow the non von Neumann architecture,
SNNs offer high energy efficiency [8] [9] which is crucial in
control engineering. SNNs can integrate with reinforcement
learning mechanisms [10], allowing the system to adapt
based on environmental feedback. By integrating environ-
mental dynamics into the reward function, SNNs can learn
robust controllers efficiently. Due to these capabilities, our
hypothesis is that SNNs can be a good candidate to approxi-
mate Koopman operators more efficiently thereby enhancing
Koopman-based control systems. Moreover, SNNs offer very
low energy consumption when they run on compatible neu-
romorphic hardware, enabling their implementation in real-
world control systems.

In this paper, we designed and implemented SNNs that
can approximate Koopman operator and have validated our
network performance on different systems. To the best of
our knowledge, ours is the first effort to use SNN for
approximation of Koopman operator. We found that our
model is computationally efficient, and it achieves at par
performance in approximating non linear systems compared
to state of the art. Notable features of our model are as
follows:
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• Our SNN models can be used for systems with both
discrete and continuous eigen spectrum. Moreover, it
can approximate Koopman operator with different initial
condition of the system.

• It can effectively approximate the Koopman operator
even with minimal length of data; it is observed to work
with 20% of the original data length. This faster infer-
ence even with very small lengths of data potentially
saves a lot of time and computational resources.

• Our model is observed to perform up to 4× less addition
operations and 43× less multiplication compared to its
ANN counterpart.

• And finally, this model is estimated to consume ∼10−2

µJ per inference when run on Intel Loihi neuromorphic
board.

The structure of the paper is as follows: Section II provides
a review of works related to the approximation techniques
of the Koopman Operator. Section III elucidates the theory
of the Koopman operator and its approximation using ANN
while Section IV gives a concise overview of SNN. In
Section V, we delve into the proposed methodology and ar-
chitecture. Section VI describes the datasets, the experiments
conducted, the results obtained, and their analysis. Finally,
we conclude in Section VII with a mention of potential future
work.

II. RELATED WORKS

The Koopman operator can be approximated using sev-
eral methods. Kernel-Based Approximations is a data-driven
approach for estimating stochastic differential equations on
reproducing kernel Hilbert spaces (RKHS), while Finite
Section Theory achieves same by applying the concept
of infinite-dimensional operators on those equations [11].
Dynamic Mode Decomposition (DMD), Extended Dynamic
Mode Decomposition (EDMD) and other similar variants
are data-driven methods used to approximate the leading
eigenvalues, eigenfunctions, and modes of the Koopman
operator, [4], [12], [13]. Deep neural networks are also
used for learning Koopman eigenfunctions using autoencoder
networks [5], [14].

However, there are several gaps in the approxima-
tion of the Koopman operator. Problems like Finite-
Dimensional Limitations arise as we only have access to
finite-dimensional data, thus it is important to study ap-
proximation properties of finite-dimensional numerical algo-
rithms. Secondly, the composition operators under study are
rarely compact or self-adjoint, posing Operator Properties
challenges. Third, Infinite-Dimensional Challenges occur as
finite-dimensional approximation of the Koopman operator
involves identifying a subspace spanned by a subset of
eigenfunctions [15]. Other issues include the non-obvious
linearization of non-linear DEs by the Koopman function
for closed-loop systems, the compute-heavy and high latency
nature of approximating Koopman via ANN, and the compu-
tational heaviness of solving n-th order differential equations
for real-world systems due to non-linearity.

III. KOOPMAN OPERATOR AND ITS APPROXIMATION
USING ANN

A. Koopman Operator Theory

Koopman Operator Theory states that non-linear dynami-
cal systems can be represented as a linear operator in Hilbert
space of measurement functions of its state. This linear
operator should be able to predict the measurement function
in time and tends to be infinite dimensional in nature. One
major difference between classical linearization techniques
and the Koopman operator method is that while the former
is local (i.e. behaves linearly around a fixed set of points), the
later tends to be global. For any given continuous dynamical
system of the form in Eqn 1, we can describe it as an
equivalent discrete-time system in form of a Flow Map, Ft
as shown in Eqn 2,

d
dt

x(t) = f(x(t)) (1)

Ft = x(t0)+
∫ t0+t

t0
f(x(τ))dτ (2)

Koopman Operator κ for this system can be defined as shown
below:

κtg = g◦Ft ⇒ κtg(x(t)) = g(x(t +1)) (3)
where g is the Hilbert space measurement function, known as
observables. Simplest possible observable function is identity
function under some chosen Hilbert space basis, but this
becomes more complex with time and associated advancing
dynamics. Moreover, Koopman observables are of infinite
dimensions and hence computing it and designing a control
system based on it becomes intractable. Due to these reasons,
we need to find an appropriate finite representation for key
measurement functions. One possibility is to try finding a
relevant subset of Koopman eigenfunctions, φ(x) as they can
evolve the dynamics in a linear fashion.

B. Koopman Operator approximation using ANN

Traditional approaches for learning Koopman Operator,
like DMD, tries to capture the best-fit linear model in a
linear observable space. As such, it often fails to capture the
desirable non-linear features of the system. ANNs can be
used to capture finite-length approximations of non-linear
Koopman observable functions in a data-driven manner.
Encoder-Decoder Networks are normally used to learn these
representations [5], as detailed below:

1) Encoder: Encoder block is a multi-layered neural trans-
formation which learns a lifted space representation or
as a compressed latent space representation with Reser-
voir Computers (using RNN) or with Deep Autoen-
coders respectively. The combined transform performs
the change of coordinates as required by a Koopman
observable.

2) Linear Transformations: Domain knowledge can be
incorporated into the ANNs via imposing various con-
straints on the loss function of the Encoder-Decoder
network. For approximating Koopman Operator, the
most important constraint is to restrict the latent space to
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evolve in a linear fashion (after application of a learned
linear transformation). This linear transformation per-
forms the role of the Koopman matrix, which would be
the projection of the required Koopman operator in the
earlier encoded subspace.

3) Decoder: Decoder block performs the inverse trans-
formation of mapping the elements of the Koopman
observable space to the original coordinates. It can also
be a multi-layered network which can be structured
symmetrically to the encoder block.

Even though ANNs are competent in learning accurate
representations for Koopman approximation, they also have
some major disadvantages which limits their practical uses.
Deep ANNs require large amounts of data to learn from
during the training time and that might not be possible in
certain scenarios like fluid flow dynamics. The computational
and power requirements of these networks are often very
large, thereby limiting their applicability in situations where
power, memory and compute are scarce. For instance, many
of the robotic applications require large amount of portability
and as such their control systems are limited by power
and compute. Learning such data and compute efficient
representations for approximating Koopman operator, while
leveraging the power of deep networks still remains an open
problem.

IV. SPIKING NEURAL NETWORKS (SNN)

SNNs are a new generation of neural network that mimic
mammalian brain functionality very closely [6]. Here the
behaviour of individual neurons is simulated via a discrete
chain of spikes (aka events) over a time span against a
given external stimulus. Unlike traditional ANNs that operate
based on continuous firing rates, the spiking neurons do
not transmit information at each propagation cycle, but they
transmit information only when a membrane potential -
an intrinsic quality of the neuron related to its membrane
electrical charge - reaches a specific threshold value. When
the membrane potential reaches the threshold, the neuron
fires a voltage surge and a spike is emitted that travels to
subsequent neurons in the network and they, in turn, increase
or decrease their potentials in response to this signal. This
event based asynchronous processing of input is the key
feature of SNN and this in turn results into reduction of
processing and computation power.

Amongst several computational models of neuron that
are used in SNN, the most used and prominent one is the
Leaky Integrate-and-Fire (LIF) model. In this model, the mo-
mentary activation level (modeled as differential Eqn. 4) is
normally considered to be the neuron’s state, with incoming
spikes pushing this value higher or lower, until the state
eventually reaches threshold (or decays down), and finally
the neuron fires. After firing, the state variable is reset to a
lower value called resting potential. In the above Eqn. 4, V
denotes the neuron’s membrane potential, which fluctuates
based on the input stimuli. When V surpasses a certain
threshold, Vthresh, a spike s is emitted by the neuron. The
resting membrane potential is represented by Vrest , while I

signifies the cumulative input current to the neuron from all
its synapses. The total resistance that I encounters during
synaptic transmission is denoted by R. In the absence of any
input, V undergoes an exponential decay with time constant
τm.

τm
dV
dt

= (Vrest −V )+ IR

s =

{
1, V ≥Vthresh

0, V <Vthresh

(4)

We’ve employed the Euler method to discretize Eqn. 4 for
the purpose of simulation. The final vectorized form of the
equations for a layer of LIF neurons is given by Eqn. 5.

ut = vt−1 +WT sin
t

sout
t = H (ut −vthresh)

vt = αut − (vthresh ⊙ sout
t )

(5)

At time t, vt denotes the membrane potential vectors of the
LIF neurons, and ut signifies an intermediate potential vector.
In Eqn. 4, the incoming input term IR is represented as the
dot product of the synaptic weights W and the incoming
input spike vector sin

t . The output spiking activity of the LIF
neurons is represented by sout

t , which is computed as the
Heaviside Step function (H ) of the difference between ut
and the threshold. The membrane potential at time t decays
with a constant decay factor of α , approximated by e

−1
τm

and ⊙ symbolizes the Hadamard product. Our discretized
LIF equations employ a reset by subtraction method rather
than making the membrane potential reset to zero. This
reduces some of the information loss that can occur in the
vanilla spiking networks by retaining the residual membrane
potential as shown in [16].

V. METHODOLOGY

We propose an efficient SNN based method for Koopman
operator approximation. Our methodology is inspired by
the deep neural network architecture mentioned in [5]. The
proposed system identifies sparse, binary representations of
Koopman eigenfunctions from a given sequence of states
of a dynamical system. Spiking Neural Networks have same
expressive power as the ANNs [17] and as such can be lever-
aged to learn complicated non-linear transformations such
as Koopman eigenfunctions. The proposed methodology for
approximating the Koopman operator using SNN is depicted
in Fig. 1. The detailed description about each component of
the architecture is given below.

A. Spiking Encoder Block (φs)

Given a time-varying state vector xt with t ranging from
1 : T , we learn a spiking encoder block φs, which tries to find
the finite approximations of suitable subsets of Koopman
eigenfunctions of the system. Instead of simply trying to
find a finite dimensional approximation of any measurable
function g, we focus on Koopman eigenfunctions φ , as they
ensure the closure property within the observable space.
Along with reduced computations, a spike-based encoder can
also impart robustness to the system [18].
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Fig. 1: Architecture diagram of the proposed system for Koopman approximation. The network comprises of an Encoder
block, Koopman Block and a Decoder Block. The Koopman Block, Ωs continuously predicts the complex eigen values
based on which the time-varying Koopman Operator Matrix, Kt is computed.

Encoder block comprises of stacked LIF-neuron layers,
with a Direct spike encoding as the first layer, which converts
the real valued states (xt) into spikes, by applying them to the
membrane potential of the LIF neurons. The corresponding
spike-activity dictates the spike domain representation of
the states. Due to the stateful nature, LIF neurons are
able to encode the continuous sequential values into sparse
spike-train representations retaining only the relevant non-
redundant information. The subsequent LIF-neuron layers
extract the latent eigenfunction representations in the spike
domain. The output spike trains of the encoder block are
integrated & converted into real-valued domain (represented
as yt ) and then are forwarded to the next block.

B. Spiking Koopman Block (Ωs)

For capturing the continuous spectrum of eigenvalues, we
use another spiking network, Ωs. This layer continuously
estimates the varying eigenvalues of the system from yt .
For enforcing symmetry, we extract the radius of the latent
states (∥yt∥2

2) and use this as a substitute for estimating the
eigenvalues. The Koopman Operator Matrix which linearly
evolves the dynamics in the latent space, can then be contin-
uously constructed as a parameterization of these estimated
eigenvalues. For each of the complex pair of eigenvalues at
time t, λt = µt ± iωt , the corresponding estimated Koopman
Operator Matrix, Kt will be having a Jordan block of the
form:

exp(µt∆t)
[

cos(ωt∆t) −sin(ωt∆t)
sin(ωt∆t) cos(ωt∆t)

]
(6)

C. Spiking Decoder Block (φ−1
s )

Finally, we also use another spiking network called De-
coder Block, φ−1

s for performing the inverse transformation
from the latent space yt to the native state space xt of the
system. Structure of the decoder block is exactly the same as
that of the encoder block, but in reverse order. For Instance,
for an encoder block with layer structure l1 × l2 × ·· · × ln,
the decoder network will be having a layer structure like
ln × ln−1 ×·· ·× l1.

D. Koopman Learning in Spike Domain

Backpropagation is a common method used in training
traditional neural networks, and its application in SNNs is
an area of active research [19]. The challenge lies in the
fact that SNNs involve discrete spike events, which create
discontinuities in the error surface, making it difficult to
apply standard backpropagation. However, researchers have
developed several methods to overcome this, such as surro-
gate gradient learning [20], where a differentiable function is
used to approximate the discontinuous spiking nonlinearity.
This allows the network to leverage the power of gradient-
based learning algorithms. In our case, we have used arctan
as a gradient approximation function. Also, we have used
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stochastic gradient descent (SGD) as an optimizer with the
loss function as mentioned below.

Loss Function: We use a custom loss function to ac-
curately learn the Koopman operator and observables. The
loss can be divided into 3 major components and associated
regularizations. The loss function can be written as shown
below:

L = β1Lrecon +β2Lpred +β3Llin +β4Lreg (7)
Lrecon corresponds to the reconstruction loss of the Spiking
Encoder-Decoder network, which is the Mean Squared Error
between the input state value xt and the reconstructed output
from spike decoder, φ−1

s (yt). In addition to this, to ensure
that the observable space that we learn is indeed a Koopman
eigenspace, we enforce a prediction loss component Lpred
and a linearity loss component Llin. Linearity component
ensures that the Koopman Matrix Kt evolves the dynamics
in the latent space in a linear fashion. The prediction loss
ensures that future states can be accurately predicted from
the evolved latent space for a time window, Tpred . In all our
experiments, Tpred is taken as half of the T . Each of these
components are then combined together with corresponding
weight factors (βi) to form the final loss L .

L = β1∥xt −φ
−1
s (φs(xt))∥2+

β2
1

Tpred

Tpred

∑
i=1

∥xt+i −φ
−1
s (Ki

φs(xt))∥2+

β3
1

T −1

T−1

∑
i=1

∥φs(xt+i)−Ki
φs(xt)∥2 +β4Lreg (8)

In the above equation, Ki refer to the combined Koopman
Operator Matrix, which can be defined as Ki = ∏

i
j=1 K j.

To improve the performance, we additionally penalize the
contributor of maximum error during the reconstruction and
next-timestep prediction. To balance out and prevent overfit-
ting, we also use an L2 regularization on the parameters of the
Encoder-Decoder network (W). These two regularizations
constitute the Lreg term and it can be written as follows:

Lreg = ∥xt −φ
−1
s (φs(xt))∥∞+

∥xt+1 −φ
−1
s (Kφs(xt))∥∞ +∥W∥2

2 (9)

VI. RESULTS AND DISCUSSION

To support our assertions, we conducted experiments using
four distinct datasets - two with discrete eigen spectrum and
other two with continuous eigen spectrum.

1) Datasets with Discreet Eigen Spectrum: To create such
datasets, we have considered first a simple nonlinear system,
followed by a spacecraft rendezvous problem.

Case I - Discrete Spectrum: This is a simple nonlinear
system with a single fixed point and a discrete eigenvalue
spectrum as represented by Eqn. 10.

ẋ1 = c1x1

ẋ2 = c2(x2 − x2
1)

(10)

The dataset for the discrete spectrum is generated using
random initial conditions, where x1 and x2 are in the range
[−0.5,0.5] and c1 =−0.05 and c2 =−1. This specific region
of the phase space is adequate to encapsulate the dynamics.

The Koopman embedding is used to identify nonlinear coor-
dinates that flatten this inertial manifold, providing a globally
linear representation of the dynamics.

Case II- Spacecraft Rendezvous Problem: As another
instance of system with discrete eigenstructure, we examine
the problem of Low-Earth-Orbit rendezvous between two
spacecrafts, considered as a ’target’ and a ’chaser’, in a
circular orbit. The relative dynamics between the two space-
craft can be applied using Euler-Lagrange formulation to
the Lagrangian of the overall system L = T−U where T
is the kinetic energy and U is the potential energy can be
expanded as U = − µ

a ∑
∞
i=0 Pk(cosα)(ρ

a )
k, where α is the

relative angle between the target and the chaser, Pk are the
kth order Legendre polynomials, ρ is the relative distance
between the two spacecrafts, µ is a gravitational parameter,
and a is the radius of the circular orbit. Consideration of the
first three potentials in the expansion of U, leads to the linear
Hill-Clohessy-Wiltshire (HCW) [21] equations as described
in Eq.(11), for a 2−D engagement scenario,

ẍ = 3n2x+2nẏ

ÿ =−2nẋ
(11)

where, [x,y]T is the relative separation between two space-
craft defined in a moving LVLH (local vertical local horizon-
tal) coordinate system centered around the target spacecraft.
In these equations, the term n is defined as

√
µg
a3 , where a

is the length of the semi-major axis (= 6793137), indicative
of a low earth orbit), and µg is a constant, valued at 3.986×
1014. When the magnitude of the relative position and
velocity is substantial, a linear approximation of the HCW
equations cannot fully describe the system and consideration
of higher orders (greater than 3) in U are necessary leading
to a non-linear system of equations.

To test the efficacy of our Koopman approximation method
under various initialization conditions, we simulated the
above equations perturbed with a 4th order gravitational
potential term, under random initial positions and having
random initial velocities. We generated 5000 such random
trajectories for training the Koopman operator network where
initial relative coordinates were sampled uniformly from
[−100,100] and initial relative velocities were sampled from
[−3.0,3.0]. To check the generalization with respect to initial
conditions, a separate testing dataset of 2000 trajectories
was generated from a broader range of initialization values,
with positional values sampled from [−150,150] and velocity
values from [−5.0,5.0].

2) Datasets with Continuous Eigen Spectrum: : To create
such datasets, we have considered a nonlinear pendulum
system and a high-dimensional unsteady fluid flow around a
cylinder as these exhibit continuous spectra of eigen values.

Case I - Non-linear Pendulum: Here we examine a non-
linear pendulum that has a continuous eigenvalue spectrum
as shown in the following,

ẋ1 = x2

ẋ2 =−sin(x1)
(12)

The dataset for this pendulum is generated using random
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initial conditions, where x1 in the range [−3.1,3.1], slightly
less than the range [−π,π], and x2 varies between [−2,2].

Case II - High-dimensional nonlinear fluid flow: Next
we examined the nonlinear fluid flow that occurs around a
circular cylinder as a bluff body [5]. The high-dimensional
dynamics of this system evolve on a low-dimensional attrac-
tor, represented by a slow manifold as shown in the Eqn. 13.

ẋ1 = c1x1 − c2x2 +Ax1x3

ẋ2 = c2x1 + c1x2 +Ax2x3

ẋ3 =−c3(x3 − x2
1 − x2

2)

(13)

where {x1,x2,x3} are the dimensional representation, and
{c1,c2,c3,A} are constants. The fluid flow problem, when
confined to the slow manifold, is derived from random
initial conditions x on the bowl with radius r. Here we
transform the Cartesian co-ordinates to polar co-ordinates by
the substitution x1 = r cosθ , x2 = r sinθ , and x3 = (x2

1 +x2
2),

where r lies in the range [0, 1.1], θ is within [0,2π]. This
encapsulates all the dynamics on the slow manifold, which
are composed of trajectories spiraling towards the limit cycle
at r = 1. This is referred as Fluid Flow 1 in the later sections.

The fluid flow problem, when extended beyond the slow
manifold, is derived from random initial conditions x where
x1 lies in the range [−1.1,1.1], x2 is within [−1.1,1.1],
and x3 is within [0,2.42]. These boundaries are selected to
encompass the dynamics on the slow manifold covered by
the preceding dataset, as well as trajectories that originate off
the slow manifold. Any trajectory that expands to x3 > 2.5 is
discarded to ensure the domain remains reasonably compact
and well-sampled. This is referred as Fluid Flow 2 in the
later sections. For both the cases we have used c1 = 0.1, c2
= 1, c3 = 10 and A = −0.1.

A. Experimental Setup:

The proposed SNN network was simulated using PyTorch
and SNNTorch [22]. The network architecture for each of
the datasets is given in Table I. Only the encoder architecture
(φs) is provided as the spiking decoder (φ−1

s ) is always sym-
metrical to the encoder structure as described in section V-
C. For each of the above mentioned datasets, we tried to

TABLE I: Network architectures of the proposed Encoder
block and Koopman block for various datasets. (FC = Fully
Connected layer & associated dimensions are in numbers.)

φs Ωs
Discrete

Spectrum 2-FC-160-FC-160-FC- 2 1-FC-90-FC-90-FC-90-FC-1

Non-Linear
Pendulum 2-FC-80-FC-80-FC- 2 1-FC-170-FC-2

Fluid
Flow 1 3-FC-130-FC-3 1-FC-20-FC-20-FC-2,

Fluid
Flow 2 3-FC-105-FC-2 1-FC-300-FC-2

come up with the optimal hyper-parameters by means of a
randomized grid search. In all our experiments, the decay
factor α is set to 0.65 and the optimal vthresh is set to 0.5.
The number of epochs and the learning rate was fixed at

100 and 0.001 respectively in all our experiments. The β -
values used for learning the Koopman operator is given in
the Table II. The discretized time step ∆t is kept as 0.02 for
all the experiments.

TABLE II: β -values used during the training of the SNN

Discrete
Spectrum

Non-Linear
Pendulum

Fluid
Flow 1

Fluid
Flow 2

β1 1E-1 1E-3 1E-1 1E-1
β2 1E-1 1E-3 1E-1 1E-1
β3 1E0 1E-1 1E0 1E0
β4 1E-8 1E-9 1E-8 1E-9

B. Results

A comparative analysis of the Approximation performance
between ANN and SNN Koopman models was conducted
and the results are shown in Table III. The approximation
performance is quantified by the Mean Error, combining the
first 3 components of the Loss function L during inference.
From the data in the table, it is evident that the ANN model’s
performance in approximating the Koopman Operator is
optimal when dealing with larger data lengths. This suggests
that the ANN model’s ability to accurately approximate
the Koopman Operator is heavily dependent on the size
of the data it is processing. In contrast, our SNN model
demonstrates a consistent error rate when approximating
the Koopman Operator, regardless of the trajectory length.
This indicates that the SNN model’s performance is not
significantly affected by the size of the data, making it a
more reliable choice for diverse data sizes.

Moreover, the SNN model exhibits a faster learning of
dynamics, even when the sample length is as short as 21 or
11. This highlights the SNN model’s superior adaptability
and efficiency in learning from smaller data sets. How-
ever, the ANN model’s performance significantly deteriorates
when dealing with smaller data lengths. This degradation in
performance underscores the limitations of the ANN model
in handling smaller data sets and its dependency on larger
data lengths for optimal performance. It is to be mentioned
that we observed one outlier to this in case of the non-linear
pendulum dataset, where ANN shows superior performance
over SNN irrespective of the length of the data. The outlier
behaviour could be a statistical happenstance but nevertheless
warrants some further study. For any practical purposes, this
behaviour can be overlooked as the difference in test error
is only in the order of 1E-4 and can be less significant for
many of the control problems.

As mentioned previously, we further test the generalization
of our Koopman approximation method under various ini-
tialization conditions of the spacecraft rendezvous problem.
The performance comparison between the ANN and SNN
models is shown in Table IV. The Test error of SNN is lower
than that of the ANN, implying a better generalization in
the range beyond the training data distribution. The mean
Koopman operator for the spacecraft rendezvous problem,
when estimated using the ANN and the SNN, show similar
eigenvalues at [0.9997± 0.0139i] which is consistent with
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TABLE III: Performance Comparison between ANN and SNN for Koopman approximation on multiple datasets

ANN SNN
Dataset
Name

Length of
data Train Error Val Error Test Error Train Error Val Error Test Error

51 1.65E-7 1.87E-7 1.87E-7 4.73E-4 4.42E-4 4.97E-4
41 2.35E-3 2.79E-3 2.99E-3 4.68E-4 4.74E-4 4.75E-4
31 1.24E-3 1.76E-3 1.76E-3 4.57E-4 4.79E-4 4.98E-4
21 6.09E-4 1.07E-3 1.07E-3 5.36E-4 9.90E-4 9.42E-4

Discrete
Spectrum

11 2.86E-4 7.26E-4 8.11E-4 2.05E-4 4.09E-4 4.11E-4
51 8.30E-6 1.11E-5 1.30E-5 5.85E-4 5.69E-4 5.34E-4
41 4.39E-4 7.02E-4 7.19E-4 5.63E-4 7.23E-4 7.74E-4
31 2.07E-4 4.09E-4 3.84E-4 6.12E-4 6.34E-4 6.57E-4
21 9.13E-5 2.30E-4 2.66E-4 6.71E-4 6.89E-4 7.14E-4

Non-Linear
Pendulum

11 3.87E-5 1.74E-4 1.72E-4 7.18E-4 7.39E-4 7.56E-4
101 7.00E-6 7.61E-6 7.53E-6 7.73E-4 7.84E-4 7.95E-4
81 7.19E-3 1.11E-2 1.09E-2 3.49E-4 3.64E-4 3.53E-4
61 7.37E-3 1.10E-2 1.10E-2 3.65E-4 3.63E-4 3.66E-4
41 5.43E-3 1.07E-2 1.07E-2 1.57E-4 1.62E-4 1.58E-4

Fluid Flow1

21 1.08E-3 4.25E-3 4.28E-3 3.39E-4 3.60E-4 3.44E-4
121 5.22E-7 6.12E-7 6.27E-7 4.27E-4 4.22E-4 4.29E-4
96 3.66E-3 5.78E-3 5.91E-3 3.73E-4 3.57E-4 3.80E-4
72 2.28E-3 5.51E-3 5.46E-3 3.79E-4 3.63E-4 3.72E-4
48 2.37E-3 5.24E-3 5.27E-3 3.61E-4 3.62E-4 3.60E-4

Fluid Flow2

24 2.39E-4 1.96E-3 2.01E-3 3.18E-4 3.05E-4 3.07E-4

the observations that an inclusion of the higher order gravita-
tional potential terms leads to a divergent relative separation
trajectory for the uncontrolled system. However, SNN based
approach operates on lesser number of past training window
data, when compared to ANN, making it more adaptive to
the system changes.

TABLE IV: A comparison between ANN and SNN ap-
proaches for spacecraft rendezvous dataset

Train Error Val Error Test Error
ANN 8.63E-4 8.80E-4 8.94E-4
SNN 6.05E-4 6.05E-4 5.95E-4

We also have evaluated the predictive performance of our
Koopman approximation method using the Fluid Flow 1
dataset. We attempted to evolve the states of a random trajec-
tory solely from its initial states using the SNN. The original
trajectory and the prediction comparisons between ANN and
SNN are depicted in Fig. 2a and Fig. 2b, respectively. As
illustrated in the figures, the difference in prediction quality
between ANN and SNN approximations is minimal, and
in both cases, the predicted trajectory successfully mirrors
the original dynamics. We also attempted to visualise the
latent space representations learned by both networks. Fig. 2c
shows the latent space representation generated by the ANN
for the aforementioned Fluid Flow trajectory. It learns an
observable space that closely resembles the original trajec-
tory. The actual latent representations from the SNN, which
are spike trains, cannot be visualised in the same manner
as that of ANN. Therefore, the visualisation we present
is the one that has been decoded following the integration
operation. The SNN representations exhibit a stark contrast
(refer to Fig. 2d), they do not maintain any structure of the
original trajectory. This is an anticipated outcome as we are
transitioning states from the real-valued domain to a discrete
and discontinuous spike domain. Despite this, it can still

(a) (b)

(c) (d)

Fig. 2: Visualisation of Koopman Approximation System: (a)
A sample trajectory of the 3-dimensional Fluid-Flow data;
(b) The predicted trajectory estimated by both ANN (blue
curve) and SNN (orange curve) for the sample trajectory
data; (c) ANN representation of the latent space; (d) SNN
representation of the latent space

predict the original dynamics consistently with minimal error
degradation.

The suggested approach delivers at par accuracy with
existing methods, but the true advantage lies in the reduced
computational effort it requires. As indicated in Table V,
across all datasets, the average number of additions during
inference is 2-4× lower than that in an ANN. However,
the key distinction becomes apparent when comparing the
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average number of multiplications performed by both the
ANN and SNN models. For the SNN model, this number is
significantly lower (6-43×) than that of the ANN, which is a
result of the inherent sparsity of the SNN. In our comparison,
network architecture of the SNN is strictly kept same as
that of the ANN. All the traditional compression techniques
like quantization, pruning, distillation etc. which reduces the
number of operations for ANN, can also be applied on top
of our network for further reduction in computations.

TABLE V: Comparison of computation effort per inference
between ANN and SNN

# of Addition # of Multiplication Estimate on Loihi
for SNN

Dataset ANN SNN ANN SNN SOP/ts Energy (µJ)
Discrete

Spectrum 4.3M 1.2M 4.3M 0.1M 96 0.036

Non-linear
Pendulum 0.7M 0.3M 0.7M 51K 74 0.021

Fluid
Flow 1 0.2M 0.1M 0.3M 33K 57 0.012

Fluid
Flow 2 0.2M 95K 0.2M 30K 51 0.024

In SNNs, the total number of operations is typically quan-
tified by a metric known as Synaptic Operations (SOP) [9].
SOP is defined as the average number of spikes per timestep,
taking into account all training and inference activities. As
can be observed from the sixth column of Table V, the
number of SOPs per timestep per inference is quite small,
attributable to the optimised spiking activity within the SNN
layers. The power requirements of an SNN are directly
proportional to the total number of SOPs performed during
its operation. The final column of the Table V provides
an estimate of the energy consumption when the system is
implemented on Intel’s neuromorphic chip, Loihi [9]. The
estimated energy consumption per inference, measured in
microJoules (µJ), has been computed and is sufficiently low
to align with the power budget of edge devices.

VII. CONCLUSIONS AND FUTURE WORKS

Real time approximation of Koopman operator in-situ at
edge devices such as drones, satellites etc are crucial in order
to adapt and understand the behaviour of underlying non-
linear dynamical system. In this paper, we have shown for the
first time that how SNN can be efficiently used to address this
problem. Based on the promising results of our simulation-
based experiments, we plan to test the effectiveness of this
method on other varieties of complex non-linear systems to
further substantiate our assertions. Additionally, this paper
suggests a potential power advantage which we aim to
validate [23] through testing in neuromorphic hardware such
as BrainChip Akida [24] and Intel Loihi [9].
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