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Abstract— Policy optimization (PO), an essential approach
of reinforcement learning for a broad range of system
classes, requires significantly more system data than indi-
rect (identification-followed-by-control) methods or behavioral-
based direct methods even in the simplest linear quadratic
regulator (LQR) problem. In this paper, we take an initial
step towards bridging this gap by proposing the data-enabled
policy optimization (DeePO) method, which requires only a
finite number of sufficiently exciting data to iteratively solve
the LQR problem via PO. Based on a data-driven closed-loop
parameterization, we are able to directly compute the policy
gradient from a batch of persistently exciting data. Next, we
show that the nonconvex PO problem satisfies a projected
gradient dominance property by relating it to an equivalent
convex program, leading to the global convergence of DeePO.
Moreover, we apply regularization methods to enhance the
certainty-equivalence and robustness of the resulting controller
and show an implicit regularization property. Finally, we
perform simulations to validate our results.

I. INTRODUCTION

As a cornerstone of modern control theory, the linear
quadratic regulator (LQR) problem has been the benchmark
for data-driven control methods that seek to design a con-
troller from raw system data. The manifold approaches to
data-driven control can be broadly categorized as indirect
(when identifying a dynamical model followed by model-
based control design) versus direct (when bypassing the
identification step). The use of direct data-driven control
is usually motivated when the dynamical model is difficult
to establish, or is too complex for model-based control
design. As an end-to-end approach, the direct methods are
conceptually simple and easy to implement in practice.

A representative instance of direct data-driven control is
policy optimization (PO), an essential approach for applica-
tions of reinforcement learning (RL) [1]–[3]. As an iterative
method, PO directly searches over the policy space to opti-
mize a performance metric of interest. Based on zeroth-order
optimization techniques, it uses multiple system trajectories
to estimate the policy gradient. There has been a resurgent
interest in studying theoretical properties of PO on the LQR
problem such as convergence and sample complexity; see
e.g., [4]–[7] and the comprehensive survey [8]. Even though
global convergence has been shown for the nonconvex PO
problem by a gradient dominance property [4], there exists
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a considerable gap in the sample complexity between PO
and indirect methods, which have proved themselves to be
more sample-efficient [9], [10] for solving the LQR problem.
This gap is due to the exploration or trial-and-error nature
of RL, or more specifically, that the cost used for gradient
estimate can only be evaluated after a whole trajectory is
observed. Thus, the existing PO methods require numerous
system trajectories to find an optimal policy, even in the
simplest LQR setting.

Recent years have witnessed an emerging line of direct
methods inspired by the Fundamental Lemma [11], which
states that the behavior of a linear time-invariant (LTI)
system can be characterized by the range space of raw data
matrices. This result implies a non-parametric representation
of LTI systems, giving rise to a notable implicit design
called data-enabled predictive control (DeePC) [12], which
has seen many successful implementations in different prac-
tical scenarios [13]. The fundamental lemma has also been
utilized to solve various explicit control design and analysis
problems [14]–[16]. In particular, it has been shown in [14]
that using subspace relations, the closed-loop LTI system can
be parameterized by input-state data, leading to a data-based
convex reformulation of the LQR problem. Compared with
PO, this approach is significantly more sample-efficient as
it only requires a batch of persistently exciting (PE) data.
Indeed, the PE condition is equivalent to identifiability for
LTI systems and should be a minimal assumption for most
control design problems [15], [17], e.g., the LQR problem.
There have been many recent works leveraging regularization
methods to promote certainty-equivalence and robustness of
the LQR [18]–[20], and to bridge behavioral-based direct
and indirect methods [21]. All these methods use only a
small batch of PE data compared to data-hungry zeroth-order
PO methods [4]–[6]. This leads to a natural question: does
there exist a data-efficient PO method for solving the LQR
problem?

In this paper, we provide an affirmative answer to the
above question. By leveraging the data-driven closed-loop
parameterization [14], we propose an iterative method called
data-enabled policy optimization (DeePO) to solve the LQR
problem. Instead of estimating the policy gradient from the
cost of observed trajectories, we show that after a change of
optimization variables, the gradient can be directly charac-
terized from a batch of PE data. Even though the resulting
optimization problem is nonconvex, it can be parameterized
as a data-based convex program. By exploiting this relation
and using a recent PO result [22], we further show that the
LQR cost is projected gradient dominated, while it is only
gradient dominated in [4], [5]. By establishing that the cost
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is also locally smooth, we show that the projected gradient
method converges to the global optimum. We also investigate
how regularization [18]–[20] affects the convergence of
DeePO. In particular, we show that the certainty-equivalence
regularizer leads to an implicit regularization property, mean-
ing that the DeePO algorithm without regularization behaves
as if it is regularized. This property has been advocated as
an important feature of gradient-based methods for solving
many nonconvex problems [23], [24]. Finally, we perform
a numerical case study to validate our theoretical results.
We are hopeful that the discovered DeePO method with
significantly relaxed data requirements offers a possible path
towards direct adaptive LQR control.

The rest of this paper is organized as follows. In Section II,
we revisit the LQR problem and recapitulate the data-driven
LQR formulation. In Section III, we propose the DeePO
method to iteratively solve the LQR problem and show its
global convergence. Section IV studies the effects of two
regularizers on the convergence of DeePO. Section V uses a
numerical example to validate our main results. Conclusion
and future work in Section VI complete this paper.

Notation. We use In to denote the n-by-n identity matrix.
We use σ(·) to denote the minimal singular value of a matrix.
We use ‖ · ‖ to denote the 2-norm of a vector or a matrix,
and ‖ · ‖F the Frobenius norm. We use ρ(·) to denote the
spectral radius of a square matrix. We use poly(·) to denote
a polynomial function. We use † to denote the right inverse
of a full row rank matrix.

II. PROBLEM FORMULATION

In this section, we first revisit the model-based LQR
problem. By recapitulating its direct data-driven formulation
from [14], we then propose our PO reformulation.

A. The Model-based LQR problem

Consider a discrete-time LTI system

x(t+ 1) = Ax(t) +Bu(t), (1)

where x(t) ∈ Rn and u(t) ∈ Rm are the state and control
input, respectively. We assume that (A,B) are controllable.

The LQR problem is phrased as finding a state-feedback
gain K ∈ Rm×n to minimize the quadratic cost

J(K) := Ex(0)∼D

[ ∞∑
t=0

(x(t)>Qx(t) + u(t)>Ru(t))

]
, (2)

where Q � 0, R � 0 are penalty matrices, and {x(t), u(t)} is
the trajectory following (1) and u(t) = Kx(t) starting from
the initial state x(0). The distribution D of x(0) satisfies
E[x(0)] = 0 and E[x(0)x(0)>] = In. It is well-known that
the unique optimal gain to (2) is

K∗ = −(R+B>P ∗B)−1B>P ∗A,

where P ∗ is the unique positive semi-definite solution to the
algebraic Riccati equation [25]

P ∗ = A>P ∗A+Q−A>P ∗B(R+B>P ∗B)−1B>P ∗A.

We aim to solve the LQR problem in a direct data-driven
approach when (A,B) are unknown, but we assume the
access to a T -length dataset of states and control inputs.

B. Direct data-driven formulation

Define the offline data matrices

X− =
[
x(0) x(1) . . . x(T − 1)

]
∈ Rn×T ,

U− =
[
u(0) u(1) . . . u(T − 1)

]
∈ Rm×T ,

X+ =
[
x(1) x(2) . . . x(T )

]
∈ Rn×T ,

which satisfy the system dynamics (1)

X+ = AX− +BU−. (3)

Throughout the paper, we assume that the following block
matrix of input and state data

D− =

[
U−
X−

]
∈ R(m+n)×T

has full row rank

rank(D−) = m+ n, (4)

i.e., the information in the data is sufficiently rich. This
condition is necessary for identifying (A,B) from data and
for solving the data-driven LQR problem [15]. As shown in
[14], it can be ensured provided that the input data U− is PE
of order n+ 1. Note that the columns of (X−, U−, X+) are
not necessarily consecutive data samples. In fact, they could
be from independent or multiple averaged experiments as
long as they satisfy (3) and (4) [14].

Under the rank condition (4), there exists a matrix G ∈
RT×n that satisfies [

K
In

]
= D−G (5)

for any given K. That is, K can be parameterized by
K = U−G where G satisfies a linear constraint X−G = In.
Then, the closed-loop matrix can be expressed in a data-
driven fashion as [14]

A+BK = [B A]

[
K
In

]
= (AX− +BU−)G = X+G,

leading to the following closed-loop system

x(t+ 1) = X+Gx(t). (6)

Furthermore, the LQR problem becomes

minimize
G

J(G),

subject to G ∈ SG := {G|X−G = In, ρ(X+G) < 1}.
(7)

Here, J(G) is the LQR cost following (6) and u(t) =
U−Gx(t), and SG is the feasible set. In contrast to the
model-based LQR, the problem (7) is characterized by raw
data matrices. Though (7) can be reformulated as a semi-
definite program (SDP) using techniques from [14], [18], it
is computationally challenging to solve for a large data size.

In this paper, we take an iterative PO perspective to
solve (7) viewing G as the optimization matrix. We aim to
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design a gradient-based method to find an optimal G while
maintaining feasibility, and recover the control from (5) as
K = U−G. Since (7) is a challenging constrained nonconvex
problem, we leverage a novel convex parameterization to
establish the global convergence.

III. DATA-ENABLED POLICY OPTIMIZATION

In this section, we first present our novel PO method for
solving (7). Then, we propose a convex parameterization of
(7) to derive the projected gradient dominance property of
J(G). By establishing the local smoothness of J(G), we are
able to show the global convergence of our method.

A. Data-enabled policy optimization to solve (7)
For G ∈ SG, the cost J(G) is finite and has the following

closed-form expressions [14]

J(G) = Tr{PG} = Tr{(Q+G>U>−RU−G)ΣG}, (8)

where PG satisfies the Lyapunov equation

PG = Q+G>U>−RU−G+G>X>+PGX+G, (9)

and ΣG := Ex(0)∼D[
∑∞
t=0 x(t)x(t)>] is the state covariance

matrix of the closed-loop system (6) satisfying

ΣG = In +X+GΣGG
>X>+ .

We have the following gradient expression for J(G).
Lemma 1: For G ∈ SG, the gradient of J(G) is∇J(G) =

2EGΣG with EG := (U>−RU− +X>+PGX+)G.
The expression of ∇J(G) is data-driven since both EG

and ΣG can be computed using raw data matrices under the
rank condition (4).

The feasible set SG contains a linear constraint X−G =
In, which motivates the use of projected gradient methods
to ensure feasibility. Define the nullspace of X− as

N (X−) := {G ∈ RT×n|X−G = 0},

and the projection operator ΠX− := IT − X†−X− onto
N (X−). The projected gradient update is then given by

G+ = G− ηΠX−∇J(G), (10)

where η ≥ 0 is the stepsize. We refer to this method as
data-enabled policy optimization (DeePO) since the update
(10) can be efficiently computed by raw data matrices, and
the control can be recovered from (5) as K = U−G. As
an iterative search method, the initial policy G0 requires to
satisfy G0 ∈ SG.

Due to non-convexity of both the objective J(G) and the
constraint SG, it is challenging to provide global convergence
guarantees for DeePO. Moreover, an optimal solution to (7)
is not unique. In fact, it has been shown in [20, Lemma 2.1]
that the solution set is

{G|G = G∗ + ∆,∆ ∈ N (D−)} with G∗ = D†−

[
K∗

In

]
,

(11)
which contains a considerable nullspace. Nevertheless, based
on a recent work [22] that proves optimality via convex
parameterization, we are able to show a projected gradient
dominance property of J(G).

B. Optimality via a convex parameterization

We first relate (7) to a convex parameterization via a
change of variables G = LΣ−1 as

minimize
L,Σ

f(L,Σ) := Tr{QΣ}+ Tr{LΣ−1L>U>−RU−},

subject to Σ = X−L,

[
Σ− In X+L
L>X>+ Σ

]
� 0.

(12)
Let S be its feasible set. The equivalence between the two
problems (7) and (12) are established below.

Lemma 2: For any (L,Σ) ∈ S, Σ is invertible and
LΣ−1 ∈ SG. Moreover, for G ∈ SG it holds that

J(G) = min
L,Σ
{f(L,Σ), s.t.(L,Σ) ∈ S, LΣ−1 = G}. (13)

In the following lemma, we show the convexity of the
parameterization (12).

Lemma 3: The feasible set S of (12) is convex in (L,Σ),
and f(L,Σ) is differentiable over an open domain that
contains S. Moreover, f(L,Σ) is convex over S.

We now formally define the gradient dominance property.
Definition 1: A differentiable function g(x) : Rn → R

with a finite global minimum g∗ is gradient dominated of
degree p over a set X ⊆ dom(g) if

g(x)− g∗ ≤ λX ‖∇g(x)‖p, ∀x ∈ X , for some λX > 0.
The gradient dominance property means that all the sta-

tionary points are optimal. Moreover, the convergence rate of
gradient-based methods usually depends on the values of the
degree p. Particularly, for smooth objective function p = 1
leads to a sublinear rate and p = 2 leads to a linear rate.

Equipped with Lemmas 2 and 3, we apply [22, Theorem
1] to show the gradient dominance property of J(G) over
any sublevel set SG(a) := {G|J(G) ≤ a} with a > 0.

Lemma 4 (Projected gradient dominance of degree 1):
For G ∈ SG(a), there exists µ(a) > 0 such that

J(G)− J∗ ≤ µ(a)‖ΠX−∇J(G)‖,

where J∗ is the optimal LQR cost to (7).
In contrast to the existing literature [4] on PO for the LQR,

the cost J(G) here is projected gradient dominated, meaning
that G is optimal if the projected gradient ΠX−∇J(G) is
equal to zero. By using Lemma 4, we next show global
convergence of the projected gradient descent in (10).

C. Global convergence of DeePO

We first prove the smoothness of J(G). Since J(G) tends
extremely to infinity as G approaches the boundary ∂SG, we
can only show that J(G) is locally smooth over any sublevel
set. Define the Hessian acting on the direction Z ∈ RT×n

as ∇2J(G)[Z,Z] := d2

dt2 J(G+ tZ)
∣∣∣
t=0

, and the directional

derivative of PG as P ′G[Z] := d
dtPG+tZ

∣∣
t=0

. Then, we have
the following closed-form expression for the Hessian.

Lemma 5: For G ∈ SG and a feasible direction Z ∈
RT×n, the Hessian of J(G) is characterized by

∇2J(G)[Z,Z] = 2Tr{Z>(U>−RU− +X>+PGX+)ZΣG}
+ 4Tr{Z>X>+P ′G[Z]X+GΣG},
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where P ′G[Z] =
∑∞
i=0(G>X>+ )i(Z>EG + E>GZ)(X+G)i.

Define ‖∇2J(G)‖ := sup‖Z‖F =1

∣∣∇2J(G)[Z,Z]
∣∣. We

show an upper bound for ‖∇2J(G)‖ over a sublevel set.
Lemma 6 (Local smoothness): For G ∈ SG(a), it holds

‖∇2J(G)‖ ≤ poly(a, ‖U−‖, ‖X+‖F , ‖R‖, σ(Q)) := l(a),
where l(a) is the smoothness constant of J(G) over SG(a).
That is, for any G,G′ ∈ SG(a) satisfying G+ δ(G′ −G) ∈
SG(a),∀δ ∈ [0, 1], the following inequality holds

J(G′) ≤ J(G) + 〈∇J(G), G′ −G〉+ l(a)‖G′ −G‖2/2.
Under the gradient dominance property of degree 1 in

Lemma 4 and the local smoothness in Lemma 6, we now
show the global sublinear convergence of DeePO. The key
is to select an appropriate stepsize such that the policy
sequence is feasible and stays in the sublevel set associated
with the initial policy G0 ∈ SG. For simplicity, let µ0 and
l0 denote the projected gradient dominance and smoothness
constants of J(G) over SG(J(G0)), respectively. We present
our convergence result in the following theorem.

Theorem 1 (Global convergence): For G0 ∈ SG and a
stepsize η ∈ (0, 1/l0], the update (10) leads to Gk ∈
SG(J(G0)),∀k ∈ N. Moreover, for any ε > 0 and

k ≥ 2µ2
0/(ε(2η − l0η2)),

the update (10) enjoys the following performance bound

J(Gk)− J∗ ≤ ε.
We compare with the traditional PO for the LQR [4]–

[6]. Their approach relies on a zeroth-order estimate of the
policy gradient, which inevitably requires numerous system
trajectories to approximate the cost. In sharp contrast, DeePO
directly computes the gradient from a batch of raw data
matrices based on a data-based representation of the closed-
loop system. This remarkable feature enables DeePO to work
with only a small batch of PE data. Moreover, the state-of-
the-art sample complexity (in terms of number of sampled
trajectories, the length of which can be very long) of PO
in [4]–[6] is O(log(1/ε)), while our sample complexity (in
terms of number of state-input pairs) is independent of ε.
Even though both two approaches achieve global conver-
gence (albeit with vastly different amounts of data), DeePO is
more flexible as it is compatible with regularization methods
used to enhance the robustness to noisy data, which will be
shown in the next section. To the best of our knowledge,
there are no robustifying regularization methods that have
been applied to the PO method for the LQR problem.

IV. DEEPO FOR THE REGULARIZED LQR
For the direct data-driven LQR formulation [18]–[20],

regularization plays an important role in promoting certainty-
equivalence and robust stability when the data is corrupted
with noise. This section investigates how regularization af-
fects the convergence of DeePO.

A. Certainty-equivalence regularizer
Consider the regularized LQR problem

minimize
G

Jλ(G) := J(G) + λ‖ΠD−GΣ
1/2
G ‖

2,

subject to G ∈ SG,
(14)

where λ ≥ 0 is a user-defined constant and ΠD− :=

I−D†−D− is the projection matrix onto the nullspace of D−.
For the noiseless data (X−, U−, X+) here, the orthogonality
regularizer in (14) does not change the optimal cost but
only singles out a solution G∗ satisfying ΠD−G

∗ = 0 from
the solution set in (11). When the data is corrupted with
noises, it promotes certainty-equivalence, i.e., when λ tends
to infinity the solution of (14) coincides with that of indirect
data-driven control with an underlying maximum likelihood
system identification attenuating the effect of noise; we refer
interested readers to [20, Section III] for more discussions.

Note that we have added the weighting Σ
1/2
G to the regular-

izer (c.f. [20, (15)]) to make it compatible with the convex
parameterization (12). As a result, (14) can be formulated
with LΣ−1 = G as the following convex problem

minimize
L,Σ

fλ(L,Σ) := Tr{QΣ}

+ Tr{LΣ−1L>(λΠ>D−
ΠD− + U>−RU−)},

subject to Σ = X−L,

[
Σ− In X+L
L>X>+ Σ

]
� 0.

(15)

Comparing (15) with (12), we see that fλ(L,Σ) upon
amounts to f(L,Σ) adding a convex regularizer, and hence
fλ(L,Σ) is convex. Indeed, by standard matrix analysis [26],
its Hessian acting on the direction (L̃, Σ̃) satisfies

∇2fλ(L,Σ)[(L̃, Σ̃), (L̃, Σ̃)] = ∇2f(L,Σ)[(L̃, Σ̃), (L̃, Σ̃)]

+ 2λ‖(ΠD−L̃−ΠD−LΣ−1Σ̃)Σ−1/2‖2F
≥ ∇2f(L,Σ)[(L̃, Σ̃), (L̃, Σ̃)].

Moreover, following analogous arguments as in Section III,
Jλ(G) can also be shown to be locally smooth. Based on
previous analysis, the projected gradient update

G+ = G− ηΠX−∇Jλ(G) (16)

converges to the optimal solution of (14) under a proper
stepsize selection.

B. Robustness-promoting regularizer
Regularization can also be used to enhance robust stability.

Consider the following regularized LQR problem

minimize
G

Jγ(G) := J(G) + γTr{GΣGG},

subject to G ∈ SG,
(17)

where γ ≥ 0 is a user-defined constant. To see why it pro-
motes the robust stability for noisy data, we note that the state
covariance matrix is given by ΣG = In + X+GΣGG

>X>+ .
Thus, a small Tr{GΣGG

>} can reduce the effect of noises in
X+. Different from the certainty-equivalence regularization,
the regularizer in (17) bias the LQR solution even when the
data is noiseless, reflecting a trade-off between performance
and robustness.

The problem (17) can be formulated with LΣ−1 = G as

minimize
L,Σ

fγ(L,Σ) := Tr{QΣ}

+ Tr{LΣ−1L>(γIT + U>−RU−)},

subject to Σ = X−L,

[
Σ− In Xt+1L
L>X>t+1 Σ

]
� 0.

(18)
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Fig. 1. Supspace relations among N (D−), ΠX−∇J(G), and G∗.

Clearly, fλ(L,Σ) is also convex since

∇2fγ(L,Σ)[(L̃, Σ̃), (L̃, Σ̃)] = ∇2f(L,Σ)[(L̃, Σ̃), (L̃, Σ̃)]

+ 2γ‖(L̃− LΣ−1Σ̃)Σ−
1
2 ‖2F ≥ ∇2f(L,Σ)[(L̃, Σ̃), (L̃, Σ̃)].

By analogous reasoning and combining the smoothness of
the regularizer, the projected gradient update

G+ = G− ηΠX−∇Jγ(G) (19)

converges to the optimal solution of (17) under a proper
stepsize selection.

C. Implicit regularization

Apart from the convergence, we observe an interesting
implicit regularization property of the certainty-equivalence
regularized LQR problem (14) formally defined below.

Definition 2 (Implicit regularization): For the regular-
ized LQR problem (14), suppose that a convergent algorithm
generates a sequence of {Gk}. If G∞ := lim

k→∞
Gk satisfies

ΠD−G
∞ = 0, then the algorithm is called regularized; If

it is regularized with λ = 0, then it is called implicitly
regularized.

The concept of implicit regularization has been adopted
in many recent works on nonconvex optimization, including
matrix factorization [23] and PO for robust LQR prob-
lems [24]. As its name suggests, it means that the algo-
rithm without regularization behaves as if it is regularized.
Note that implicit regularization is a property of a certain
algorithm for solving a certain nonconvex problem. In the
following theorem, we specify the conditions for the update
(16) to be implicitly regularized for problem (14).

Theorem 2 (Implicit regularization): Consider (14) with
λ = 0 and suppose that G0 satisfies ΠD−G

0 = 0. Then, the
update (16) leads to ΠD−G

k = 0, k ∈ {0, 1, . . . }.
By Theorem 2, a sufficient condition for implicit regular-

ization is

G0 = D†−

[
K0

In

]
,

provided with a stabilizing policy K0. Theorem 2 also
helps understand the optimization landscape of DeePO. Fig.
1 illustrates the relations among the nullspace N (D−),
the projected gradient, and an optimal solution G∗. Since
ΠX−∇J(G) is orthogonal to N (D−), the resulted policy of
DeePO can be read as G∞ = ΠD−G

0 +G∗.
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Fig. 2. Convergence of the DeePO methods.

V. SIMULATIONS

In this section, we perform simulations to validate the
convergence of DeePO and the effects of regularization.

A. Numerical example

We randomly generate a dynamical model (A,B) with
n = 4,m = 2 from a standard normal distribution and
normalize A such that ρ(A) = 0.8, i.e., the open-loop system
is stable. The resulting model parameters (A,B) are

A =


−0.137 0.146 −0.297 0.283
0.487 0.095 0.417 0.301
−0.018 0.049 0.175 0.435
0.143 0.317 −0.293 −0.107

 ,

B =


1.639 0.930
0.264 1.793
−1.464 −1.183
−0.776 −0.111

 .
It is straightforward to check that (A,B) is controllable.
Let Q = I4 and R = I2. We use Gaussian distribution to
generate a batch of sufficiently exciting data (U−, X−) with
T = 10 that satisfies (4), and compute X+ by (3). In the
sequel, we only use (U−, X−, X+) to perform the DeePO
methods and validate the convergence.

B. Convergence of the DeePO methods

We consider three algorithms, i.e, DeePO in (10), DeePO
with the certainty-equivalence regularizer in (16) and with
the robustness regularizer in (19). For all the three al-
gorithms, we set the stepsize to η = 2 × 10−3 for a
fair comparison. For DeePO and DeePO with robustness
regularizer, we set the initial policy as

G0 = D†−

[
K0

I4

]
∈ SG

with K0 = 0 since the system is open-loop stable. For
DeePO with certainty-equivalence regularizer, we set

G0 = D†−

[
0
I4

]
+ ΠD−M ∈ SG,

where the elements of M ∈ RT×n are randomly sampled
from a Gaussian distribution N (0, 0.01) (otherwise due to
the implicit regularization, there will be no difference in
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the convergence curve compared with DeePO). To see how
regularization parameters affect the performance, we select
λ = 1, 10 for the certainty-equivalence regularizer and γ =
1, 10 for the robustness regularizer.

We illustrate the performance of the three algorithms in
Fig. 2, where their relative errors are defined as (J(Gk) −
J∗)/J∗, (Jλ(Gk) − J∗λ)/J∗λ , and (Jγ(Gk) − J∗γ )/J∗γ , re-
spectively. While Theorem 1 only shows a more conser-
vative sublinear convergence rate, all the three algorithms
converge linearly in the simulation. The DeePO algorithm
with certainty-equivalence regularizer (denoted by CE in
Fig. 2) has the slowest convergence. The case for λ = 10
converges faster than the case λ = 1 due to the faster
decay of the regularizer λ‖ΠD−GΣ

1/2
G ‖2, and it achieves the

same rate as the unregularized DeePO algorithm. Under the
robustness regularizer, the DeePO algorithm has the fastest
convergence, and γ = 10 leads to a larger convergence rate.
Nevertheless, the resulted policy is different from those of the
other two algorithms as discussed in Section IV-B. Finally,
we note that all the algorithms only use 10 pairs of state-
input data to achieve an arbitrary relative error. In sharp
contrast, the zeroth-order optimization method in [6] uses
105 trajectories (of manually tuned length to approximate the
cost well) to achieve 0.01 relative error for an LTI system
with m = n = 3.

VI. CONCLUSION

In this paper, we have proposed the DeePO method that
only requires a finite number of PE data to solve the LQR
problem. By relating the nonconvex optimization problem to
a convex program, we have shown the global convergence of
DeePO. Furthermore, we have shown that the regularization
method can be applied to enhance certainty-equivalence and
robust stability without affecting its convergence.

In future, it would be valuable to discover a strongly
convex reparameterization of (7), which may improve the
sublinear convergence rate to linear. It would also be inter-
esting to study DeePO in a more general setting, e.g., the
LQR with noisy inputs. Since DeePO is an efficient iterative
method, it is expected to be able to applied to online control,
where the control performance is constantly improved by
collecting more real-time data. We are also hopeful that it can
be used to solve the adaptive LQR for time-varying systems.
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