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Abstract— In this paper, we present a data-driven methodol-
ogy to predict and control the behaviour of nonlinear and non-
autonomous systems based on kernel functions. The technique
computes the forecasting by means of a linear combination
of past data. The weights used to compute the prediction
are obtained by solving a convex optimization problem that
stems from a novel kriging formulation. A Control Lyapunov
Function (CLF) based controller using the presented predictor
is also built. Finally, numerical examples of both prediction
and control are presented, showing the efficacy of the proposed
approach.

I. INTRODUCTION

Recently, data-driven approaches have gained the attention
of many researchers. In this kind of control method, a
controller is obtained without any previous knowledge of
the system dynamics. For this purpose, some experimental
data is supposed to be available. Then, there are mainly two
different ways of handling the aforementioned problem [1],
namely the direct approach and the indirect approach.

In the direct approach, a control law compatible with the
experimental data is directly obtained without identifying
a model of the system. Examples of this approach are
the data-driven controllers presented in [2], [3], the data-
driven model predictive control schemes proposed in [4],
[5], the behavioral approach in [6], [7] or the Reinforcement
Learning approaches reviewed in [8], [9], among others.

On the other hand, carrying out a system identification
process to obtain a model and, finally, synthesize a controller
based on the obtained model is usually called the indirect
approach. There are many techniques that result in different
types of models like nonlinear autoregressive exogenous
(NARX) models [10], Takagi-Sugeno models [11], Gaussian
Processes [12], Neural Networks [13], the Koopman Opera-
tor [14], Reservoir Computing strategies [15] and the Kriging
method [16], [17], [18] (also known in the literature as Direct
Weight Optimization [19] and dissimilarity functions [20]).

Once a model of the system is obtained, different control
strategies can be applied. For example, Model Predictive
Control (MPC) [21] uses a system model to forecast the
future behaviour of the system and compute the control
actions that minimize a certain optimization criteria over a
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prediction horizon. However, the need of solving the MPC
problem for an arbitrarily long prediction horizon might
make the problem untractable for nonlinear systems. A
possible way to leverage this burden would be to rely on
Control Lyapunov Functions (CLF) [22]. In CLF controllers,
an optimal control action fulfilling that the value of the
Lyapunov function is strictly decreasing at the next step is
computed. This works as if we are demanding the system to
constantly dissipate a certain amount of energy. For example,
see [23], [24] for some recent applications of CLFs in the
context of data-driven control.

In this paper, we present a new data-driven control scheme
based on a novel kriged prediction method (we refer the
interested reader to [16], [17], [18] for a discussion about
the prediction capabilities of these methods and some appli-
cations in the context of interval prediction, model predictive
control, etc.). Here, we introduce a nonlinear transformation
for the regressor, making it possible to tackle nonlinear
systems from a different perspective. We demonstrate that
explicit knowledge of this operator is not required due to the
fact that the cross-products of the transformed regressors can
be computed using a reproducing kernel function. Thanks to
these changes, the nonlinearity is not handled by means of lo-
cal data but using kernel functions, improving the prediction
capabilities. Finally, a data-driven CLF controller built upon
the proposed predictor is presented. The performance of the
predictor and the controller is illustrated through a simulated
example. There, it can be seen that the predictor can replicate
satisfactorily trajectories of the nonlinear system and the
data-driven CLF controller attains similar results than a CLF
controller with perfect knowledge of the system.

The paper is organized as follows: Section II presents the
predictor to be used alongside the paper whereas, in Section
III, it is shown how the proposed predictor can be used
to build a data-driven Control Lyapunov Function (CLF)
controller. Section IV presents both prediction and control
examples and, finally, Section V shows the conclusions and
the expected future work.

II. PROPOSED PREDICTOR

Consider a non-autonomous discrete-time nonlinear sys-
tem

yk+1 = h(xk, uk) + vk, (1)

where xk ∈ Rnx , uk ∈ Rnu , yk ∈ Rny , vk ∈ Rny are
the state, input, output and measurement noise of the system
at time k respectively and h(·, ·) : Rnx×nu → Rny is an
unknown nonlinear function. We assume, as in the NARX
model framework [25], that the state of the system xk can
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be expressed as

xk =
[
yk . . . yk−na

uk−1 . . . uk−nb

]
, (2)

with na ∈ Z and nb ∈ Z.
In this section, given a realization of xk and uk, a new

data-driven method to estimate yk+1 by means of past data
without explicitly building a model is proposed.

First, we assume that some past data of the system is stored
in a database according to the following matrix structure

D =
[
x̄1 x̄2 . . . x̄N

]
,

D+ =
[
ȳ+1 ȳ+2 . . . ȳ+N

]
,

U =
[
ū1 ū2 . . . ūN

]
,

where N is the number of data points, U ∈ Rnu×N is
the database of control actions, D ∈ Rnz×N contains past
samples of the state and D+ ∈ Rnz×N contains the next
output of D. Assuming that x is given, it is possible to obtain
a prediction of the next output ỹ+ by solving the following
optimization problem [16], [17]

λ∗ = argmin
λ

(1− γ)

N∑
i=1

λ2
i + γ

N∑
i=1

|λi| (3a)

s.t. x =

N∑
i=1

λix̄i (3b)

u =

N∑
i=1

λiūi (3c)

1 =

N∑
i=1

λi, (3d)

where γ ∈ [0, 1) is a tuning parameter. Then, the prediction
ỹ+ can be computed by means of the optimal value of λ∗

and the data set, that is

ỹ+ = D+λ∗. (4)

To tackle the nonlinearity of the system, the easiest method
would be to consider a slightly different cost function

N∑
i=1

ωiλ
2
i + γ

N∑
i=1

|λi| (5)

where ωi corresponds to a certain weight that can be com-
puted as

ωi = ||x− x̄i||, (6)

that is, locality is now weighted in the cost function. We
refer the reader to [17] for more details about the original
predictor and the dissimilarity functions involved.

On the other hand, in the context of State-Space Kriging
(SSK) (which involves similar optimization problems), it was
shown in [18] that the use of kernel functions might attain
better prediction accuracy and computation times. However,
the kernel function in the SSK presented in [18] does not
consider the inclusion of past inputs in the kernel. This
implies that some nonlinearities of the system might remain
unmodeled.

In order to address the above issue, we introduce ker-
nel functions in the aforementioned optimization problem
for both the state and the input, improving the prediction
capabilities of such predictors. First, let us denote z as

z =

[
x
u

]
∈ Rnz , nz = nx + nu (7)

and thus we can define a new data set

Z =

[
D
U

]
=

[
x̄1 x̄2 . . . x̄N

ū1 ū2 . . . ūN

]
. (8)

Then, (3) can be rewritten as

λ∗ = argmin
λ

(1− γ)λ⊤λ+ γ∥λ∥1 (9a)

s.t. Zλ = z (9b)

1⊤λ = 1, (9c)

where ∥λ∥1 =
∑N

i=1 |λi|. Now, we propose to transform
the hard constraint (9b) into a soft constraint in a probably
high dimensional space H. Note that the transformation of
the hard constraint into a soft constraint makes sense in this
context since the hard constraint might become unfeasible in
H. Then, the following optimization problem is obtained

λ∗ = argmin
λ

(1− γ)λ⊤H1λ+ γ∥λ∥1

+

∥∥∥∥∥
N∑
i=1

φz̄iλi − φz

∥∥∥∥∥
2

Σ−1
φ

(10a)

s.t. 1⊤λ = 1 , (10b)

where H1 is a weighting matrix, φ(·) : Rnz → H
refers to a nonlinear operator mapping Rnz into a probably
high dimensional space H, φz̄i and φz denote φ(z̄i) and
φ(z) respectively and Σφ is a positive definite matrix of
appropriate dimensions. Note that, for example, φ(·) could
be a function such that, given z ∈ Rnz , it returns the
products and cross-products of the elements of z up to
order p, converting the previous problem to one similar
of polynomial regression, improving the potential to tackle
nonlinear correlations within the regressor. Now, denoting
φz̄ as

φz̄ =
[
φz̄1 φz̄2 . . . φz̄N

]
,

it is possible to write the previous optimization problem in
a more compact form as follows:

λ∗ = argmin
λ

(1− γ)λ⊤H1λ+ γ∥λ∥1 + ∥φz̄λ− φz∥2Σ−1
φ

(11a)

s.t. 1⊤λ = 1 . (11b)

Then, the term ∥φz̄λi − φz∥2Σ−1
φ

, can be rewritten as

λ⊤φ⊤
z̄ Σ

−1
φ φz̄λ− 2φ⊤

z Σ
−1
φ φz̄λ+ φ⊤

z Σ
−1
φ φz. (12)

The constant term φ⊤
z Σ

−1
φ φz does not depend on λ and thus

it will not affect the value of λ∗, which means that we can
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get rid of it. Now, taking into account the first term in the
cost function of (11), that is, λ⊤H1λ, and making

H = 2(φ⊤
z̄ Σ

−1
φ φz̄) + 2(1− γ)H1, f

⊤ = −2φ⊤
z Σ

−1
φ φz̄,

(13)
optimization problem (11) can be written as

λ∗ = argmin
λ

1

2
λ⊤Hλ+ f⊤λ+ γ∥λ∥1 (14a)

s.t. 1⊤λ = 1. (14b)

In case that γ = 0, this becomes a quadratic programming
problem (QP) with only equality constraints and the value
of λ∗ can be computed by means of the following equation

λ∗ = −H−1f +H−11(1⊤H−11)−1(1 + 1⊤H−1f), (15)

where the above equation corresponds to the solution ob-
tained from the Karush-Kuhn-Tucker conditions [26]. Note
that in the case of γ > 0, the problem is still a strict
convex optimization problem subject to convex constraints
and thus it has a unique solution [26]. Then, the numerical
computation can be addressed using a dual formulation and
a accelerated gradient method [27].

In what follows, we show that we do not need precise
knowledge about φ(·). As φ(·) is an operator mapping a
vector in a space Rnz to a reproducing kernel Hilbert space
H, it is well known that we can compute the cross-product
of two elements in such space by means of a reproducing
kernel function, which is commonly known in the literature
as the kernel trick [28]. Thus, if we can pose every element
in the optimization problem in (14) as cross-products, the
problem can be solved without explicit knowledge of φ(·).

First, for a given pair a ∈ Rnz and b ∈ Rnz , we denote
⟨φa, φb⟩ = φaΣ

−1
φ φb . Then, it is clear that φ⊤

z̄ Σ
−1
φ φz̄ and

φ⊤
z Σ

−1
φ φz̄ can be written as

φ⊤
z̄ Σ

−1
φ φz̄ =


⟨φz̄1 , φz̄1⟩ ⟨φz̄1 , φz̄2⟩ . . . ⟨φz̄1 , φz̄N ⟩
⟨φz̄2 , φz̄1⟩ ⟨φz̄2 , φz̄2⟩ . . . ⟨φz̄2 , φz̄N ⟩

...
...

...
⟨φz̄N , φz̄1⟩ ⟨φz̄N , φz̄2⟩ . . . ⟨φz̄N , φz̄N ⟩

 ,

φ⊤
z Σ

−1
φ φz̄ =

[
⟨φz, φz̄1⟩ ⟨φz, φz̄2⟩ . . . ⟨φz, φz̄N ⟩

]
.

As only cross-products appear in the above matrices, every
element can be computed by means of a kernel function
without explicitly knowing the operator φ(·). There are
different kernel functions that can be used with the proposed
methodology [29].

Thus, given xk, it is possible to build the appropriate ker-
nel matrices and solve the optimization problem in equation
(14) to obtain λ∗

k. Then, by means of λ∗
k, it is possible to

compute the prediction of the next output using equation (4)
and, finally, the state can be built as

x̃k+1 =
[
ỹk+1 . . . yk−na+1 uk . . . uk−nb+1

]
.

(16)
For the sake of simplicity, we denote the previously obtained
prediction as

x̃k+1 = g(xk, uk), (17)

where g(·, ·) : Rnx×nu → Rnx is a function encapsulating
the proposed predictor.

III. CONTROL LYAPUNOV FUNCTION

Control Lyapunov Functions (CLF) correspond to the gen-
eralization of the traditional concept of Lyapunov functions
for autonomous systems to manipulable systems.

Definition 3.1 (Control Lyapunov Function): A function
V : Rnx → R+ is said to be a CLF of the system

x+ = f(x, u)

where x ∈ Rnx , u ∈ Rnu , f(·, ·) : Rnx×nu → Rnx , if it is
positive definite and, for a certain set B, it exists a control
input u so that

V (f(x, u))− V (x) ≤ 0, ∀x ∈ B.
Note that a system is asymptotically controllable to the origin
only if and only if it is possible to find an input u satisfying
the above condition. Also, for that purpose, it is needed to
upper bound the decrease rate of the CLF as follows

V (f(x, u))− V (x) ≤ −θ(||x||), ∀x ∈ B,

where θ(·) is a K function (see definition 3.3 in [30]). Note
that if the condition on the decrease rate cannot be guar-
anteed, it is possible to obtain stability but not asymptotic
stability properties.

Then, in order to find an input u satisfying the CLF
condition, we can solve an optimization problem like the
following

min
u

u⊤Ru (18a)

s.t. V (f(x, u))− V (x) ≤ −θ(||x||) (18b)
u ∈ U , (18c)

where R is a weighting matrix and U is the set of feasible
inputs. In case we would like to track the system to a certain
reference r, the previous optimization problem is modified
as follows:

min
u

(u− uref)
⊤R(u− uref) (19a)

s.t. V (f(x, u)− r)− V (x− r) ≤ −θ(||x− r||) (19b)
u ∈ U , (19c)

where the pair {r, uref} fulfills the equilibrium condition

r = f(r, uref). (20)

In this paper, we consider using the proposed predictor as
the model of the system, obtaining the following optimization
problem

min
u

(u− uref)
⊤R(u− uref) (21a)

s.t. V (g(x, u)− r)− V (x− r) ≤ −θ(||x− r||) (21b)
u ∈ U (21c)

where g(·, ·) corresponds to the predictor in equation (17). In
order to preserve the recursive feasibility of the optimization
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problem, the following relaxation is commonly used

min
u,σ

(u− uref)
⊤R(u− uref) + p σκ (22a)

s.t. V (g(x, u)− r)− V (x− r) ≤ −θ(||x− r||) + σ
(22b)

u ∈ U , (22c)

where κ ∈ Z, σ is a slack variable and p is a high-valued
constant. Depending on the application, different values of κ
can be considered. For example, in the context of penalty
functions and exact approximations, the l1 norm is used
frequently thanks to its good properties (see chapter 6 in
[26]) whereas, in the literature of CLF and Control Barrier
Function (CBF) controllers, the most popular choice is κ = 2
(see [31]). Here, we opt to follow the tendency of CBF and
CLF controllers and thus make κ = 2.

Remark 1: We point out that there are many ways to
address the problem of finding an appropriate Lyapunov
function for the nonlinear system to be controlled. For
example, in [32], the difference between the true nonlinear
system and a linear system is bounded by means of the
disturbance term. Then, it is possible to build a quadratic
Lyapunov function for the linear system. Another similar
way would be to obtain a linearized model of the plant
and build a linear controller for this model. Then, we can
use this Lyapunov function with our proposed approach to
extend its domain of attraction thanks to its good prediction
capabilities.

IV. NUMERICAL EXAMPLES

In this section, the effectiveness of the proposed data-
driven approach is tested in both a prediction and a control
example. As a benchmark, the quadruple-tank process [33]
will be used. The system consists of four interconnected
water deposits whose dynamics are given by the following
set of differential equations:

dh1

dt
= − a1

A1

√
2gh1 +

a3
A1

√
2gh3 +

γ1k1
A1

v1, (23a)

dh2

dt
= − a2

A2

√
2gh2 +

a4
A2

√
2gh4 +

γ2k2
A2

v2, (23b)

dh3

dt
= − a3

A3

√
2gh3 +

(1− γ2)k2
A3

v2, (23c)

dh4

dt
= − a4

A4

√
2gh4 +

(1− γ1)k1
A4

v1, (23d)

where h⊤ =
[
h1 h2 h3 h4

]⊤
is the state of the

system, v⊤ =
[
v1 v2

]⊤
is the input of the system and

everything else are parameters whose values are shown in
table I. Also, the considered sample time is Ts = 30s and
γ = 0.

A. Prediction example

In this subsection, the accuracy of the proposed approach
will be tested against the predictions obtained by using the
predictor from Remark 1 in [16] to show the corresponding
improvements of the predictions. For this purpose, a random
trajectory of the system, that is, given a certain sequence of

Parameter Meaning Value
A1,A2,A3,A4 Cross section of the tanks 0.03

a1 Discharge constant 1.3104× 10−4

a2 Discharge constant 1.5074× 10−4

a3 Discharge constant 9.2673× 10−5

a4 Discharge constant 8.8164× 10−5

g Gravity acceleration 9.81
γ1 Valve aperture 0.3
γ2 Valve aperture 0.4

k1, k2 Heat transfer coefficient 1/3600

TABLE I
PARAMETERS OF THE MODEL

Nt inputs, the evolution of the system from time k = 0 until
Nt will be computed in an open loop manner (only the initial
state is given and the output will not be measured again).

The data set, validation set and test set contain a number
of N = 300, Nv = 300 and Nt = 300 samples respectively.
Note that the validation set is used to tune the parameters of
the proposed approach, i.e. the kernel function and the matrix
H1. For the kernel function, we have chosen a quadratic
kernel function so that:

K(a, b) = (α+ a⊤b)2 (24)

where α is a tunable parameter. On the other hand, H1 is
chosen to be a diagonal matrix

H1 = β IN (25)

where IN is the N × N identity matrix and β is a tunable
parameter. The considered criteria to optimize the parameters
α and β is the following:

min
α,β

1

Nv

Nv∑
j=1

(h̃j(α, β)− h̄j)
2 (26a)

s.t. α ≥ 0, β ≥ 0. (26b)

That is, minimizing the Mean-Squared Error (MSE) of the
predictions in the validation set.

First, we assume that the state is measurable and no
measurement error is present, i.e. yk = xk. The results
are shown in Figure 1. Note that the whole trajectory is
computed without any kind of feedback given the initial
condition. The obtained MSE is 1.1755×10−4. On the other
hand, the chosen baseline predictor using local data obtained
a MSE of 8.4882 × 10−4, which is almost 8 times bigger
than the previous one.

Next, we assume that the output is noisy. In particular,
we consider an additive random noise with an uniform
probability distribution ranging in the interval [−0.15, 0.15],
which can be considered quite high taking into account the
order of magnitude of the state of the system. The results are
shown in Figure 2. There, it can be seen that the addition of
noise to the measurements does not change drastically the
performance of the predictor. The new values of the MSE
for the proposed approach and the baseline are 0.0127 and
0.0142 respectively.
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Fig. 1. Noiseless test trajectory.
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Fig. 2. Noisy test trajectory.

B. Control example

In this subsection, the proposed predictor will be used
within a CLF controller as it was shown in section III. As
the Lyapunov function V (x), we choose the tracking error,
that is (x− r)⊤(x− r). The output is affected by a random
uniform noise within the range [-0.025,0.025] meters.

Here, the sampling time is Ts = 10 seconds and the
number of data samples is N = 1000. The simulations
lasts for 4000 seconds, i.e. 400 time instants. The desired
reference changes every 1000 seconds, making a total of
four reference changes during the simulation. Along with
the proposed approach, a baseline controller is also shown.
Not only this controller is a CLF controller with perfect
knowledge of the system, but it can also measure the state
without being affected by the measurement noise.

The results are shown in figures 3, 4 and 5. Figure 3
shows the evolution of the output of the system during
the simulation. It is easy to see that, not only the desired
reference is tracked, but also the performance is very similar
to the one obtained by the controller with perfect knowledge,
as it was expected due to the good prediction capabilities of
the kernel-based proposed data-driven predictor.
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Fig. 3. Output of the system for the closed loop simulation.

In figure 4, the values of the input applied to the system
are shown. Similarly, the computed control actions by the
proposed approach are almost identical to the ones obtained
by the baseline controller in spite of the potential model
mismatches and the measurement noise.
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Fig. 4. Input applied to the system for the closed loop simulation.

Finally, the evolution of the Lyapunov function is shown
in figure 5. Note that the peaks in the Lyapunov function
correspond to the changes in the reference. Also, we notice
that the strictly decreasing behaviour of the Lyapunov cannot
be achieved for every time instant due to the presence of
noise, as it can be expected.
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Fig. 5. Evolution of the Lyapunov function for the closed loop simulation.

V. CONCLUSIONS

In this paper, we presented a data-driven predictor based
on past data and kernel functions in order to forecast non-
linear systems. By means of a set of examples involving
the quadruple tank process nonlinear system, it was shown
that the prediction capabilities of the proposed approach are
satisfactory with and without measurement noise. Also, it
was shown that the proposed approach can be applied in the
context of control easily, achieving good results. As future
work, we consider a detailed discussion about the asymptotic
stability and recursive feasibility of the proposed data-driven
CLF controller.
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driven control of nonlinear systems using semidefinite programming:
A survey,” Annual Reviews in Control, p. 100911, 2023.
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